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the deviation (error) of the pole from the desived upright position is utilized.
O the other hand, if only the information on whether the run was suecessfyl
or a failure is exploited, a reinforeement problem arises. Clearly, it is always
advantageous to exploit all available information. Therefore, reinforcement
learning techniques are not addressed in this book. They mainly become
interesting for strategy learning where no desired output and consequently
no error signal is available for each step.

For unsupervised learning methods only input data is utilized, The oljec-
tive of unsupervised methods is grouping or clustering of data. The exploited
information is the input data distribution. Unsupervised learning techniques
are primarily applied for data preprocessing. They are discussed in Chap. 6.

This chapter gives an introduction, and a brief overview of the most m-
portant optimization techniques. The focus is on the application of these
techniques to modeling and identification. Mast, of the methods deseribied
are parameter optimization techniques. In Fig. 2.1 the basic voncept iz de-
picted from a modeling point of view. A model Si-) maps the inputs gathered
in the inpat veetor o Lo the scalar output i The model is parametorized by a
set of 1 parameters gathored in the parameter vector f such that § = flu, 8).
The goal of a parameter optimization technique is to find the “best” approx-
imation § of the measured ourput #» which may be spoiled with noise i, by
adapting the parameter vector 8. A more precise definition of “hest” will be
given in Sect. 2.3, It is helpful to look at this problem as a search for the
optimal point in an n-dimensional parameter space spanned by the param-
cter vector #. The Chaps. 3, 4, and 5 address such parameter optimization
technigques.

Besides these parameter optimization technigues, so-called strocture op-
timization techniques represent another category of methods. They deal with
the problem of searching an optimal madel structure, e.g., the optimal kind
of function f(-) and the optimal number of parameters. These issues are

diseussed in Chap, 7 and partly addressed also in Chap. &,

This chapter is organized as follows. First, a brief overview on the su-
pervised learning methods is given. Section 2.2 gives an illustration of these
techniques by means of a humorous analogy. In Sects. 2.3 and 2.4 some defi.
nitions of loss functions for supervised and unsupervised learning are given.

Fig. 2.1. Process and mode|
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M_:.n.r: weights are wsually chosen randomly, u___._.__::___._ means thaf the __.._Muﬁ-
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interesting for strategy learning where no desired output and consequently
no error signal is available for each step.

For unsupervised learning methods only input data is utilized, The oljee-
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With Newton-type (second order) algorithm [with fixed step size np = 1],
the Himalayas are covered with fog, and the kangaroo can ondy see a litte way
around her location [first and second order derivative information|. Judging
from the local terrain, the kangaroo makes a guess about where the top of
the mountain is, assuming that the mowntain has o nice, smooth, gquadrtic
shape. The kangaroo then tries to leap all the way to the top in one Jump.

Since most mountains do not have a perfect quadratic shape, the kangaroo
will rarely reach the top in one jump. Hence, the kangoroos must iterate, e
jump repeatedly us previously descritied until she finds the top of the mountuin,
Unfortunately. there is no assurance thal this mewntain will be Everest.

In a stabilized Newton algorithoe [with variable step size 5], the kanga-
roo has an altimmeter, and of the juwmp takes her to 6 lpwer point, she bocks
up to where she was and takes o shorter jump. If ridge stabilization [the
Levenberg-Marquardt idea| is used, the kangaroo also adjusts the divection of
fier jump to go up o steeper slope. If the algorithm sn't stabilized, the kango-
roo may mistakendy jump to Shanghat and get served for dinner i o Chinese
restaurant [divergence|.

In steepest ascent with line search, the fog is very dense, and the kangaroo
can only tell, which direction leads up most steeply [only first order derivative
information], The kangerse hops tn this direchion undal the terrain starts go-
‘ing down. Then the kangareo looks around again for the new steepest ascent
direction and iterates,

Using an ODE (ordinary differentiol equation) solver 15 similar Lo sleep-
esl ascent, excep! that kangeroe crawls one all fives to the top of the nearest
mountain, being sure to crawl in stecpest divection at all times.

The follouting description of conjugate gradient methods was written by
Tony Flate (1993):

The envirenment for conjugate gradient search 15 just hike thal for
steepest ascent with line search - the fog 15 dense and the kangarco
can only tell, which direction leads wp, The difference is that the kan-
gareo has some memory of the direchion of has hopped ane before, ard
the kangoroo assumes that the ridges ave strawght Goe, the swiface
s quodratic). The kangareo chooses a direction to hop that is up-
wards, but that does not resulf in i going downwards in the previous
directions it has hopped in, That is. it chosses an upwards divection,
mating along which will not undo the work of previous steps. It hops
uptwards until the terrain starts going down again, then chooses an-
ather direciion,

In standard backprop, the most common NN troining method, the kangeroo
is blind and has to feel around on the grounds to moke a guess about, which
way is up, {f the kangaroo ever geis near the peak, she moay yump beck and
forth across the peak without ever landing on ot If you use a decayimny step
size, the kangaroo gets tived and makes smaller and smaller hops, so if she
EUer gets near the peak she hes a better chance to actually landing on




vefore the Himalayas erode away, fn backprop with momentym the kangaroo
has poor traction end can’t make sharp turns. With online traintng, thére are
frequent earthgquakes, and mountaing constantly appear ond disappenr. This
makes it difficult for the blind kungareo to tell whether she has ever vedcfed
the top of o mountain, and she has to take small kaps Lo avoid falling into
the gaping chasms that van apen up ol any moment,

Notice that in all the methods discussed so far, the kangaros can hope at
best to find the top of a mountain elose to where she starts. In other words
these are local ascent methods. There's no yuarantes that this mountain will
be Everest, ar even a wery high mountain, Many methods erist to try to find
the glabal aptimum.

In stmulated aunealing, the kangaros is drunk and fops around randomiy
for wilong time, However, she gradually sobers up and the more sober she 15,
the more likely she is to hop up hill [temperature decreases according to the
anneiling schedule].

Inow vandom madti-start method, lots of kangaroos are parachuted inlo the
Himalayas af random places. You hope at least one of them will Sind Fuevest,

A genetic algorithm begins like random maulti-start, However, these kan-
guroos do pot know that they are supposed to be looking for the top of o
mountein. Bvery few years; you shoot the kungaroos at low altitudes and
hope that the ones that are left will be fruatful, wmultiply, and ascend. Current
research suggests that flens may be o effertine tan kangaroes in genetic
algorithms, since thew faster rate af reproduction more than compensates for
their sharter hops [crossover is more important than mutation].

A tunneling algorithm can be applied in combmmation with any focal ascent
method but veguires divine @itevvention and a Jet ski. The kangaroo first finds
the top of any nearby mountain, Then the kungaroe calls upon her deity fo

flood the carth to the point that the waters Just reach the top of the current
mountuin. She get on her ski, goes aff wn search of a fugher mountain, and
repeats the process wntil ne higher mountains can b found.

2.3 Loss Functions for Supervised Methods

Before starting with any optimization algorithm, & eriterion needs to be de-
fined that is the exact mathemarical description of what has to be optinized.
In supervised learning the error eli) is usually computed as the difference
between the measured process output y(e) and the model output gie) for a
given number N of training data samples 1 = 1,..., Nt the so-called training
data sel (sce Fig. 2.3). Usually the measured process outpul yif) is conupted
with noise n(7), So the actually desired output (i) is unknown, The mose
eommen choice for 4 criterion is the sum of squared errars or its square root,
oy

HO =3 6% with efi) = (i) — (i) (2.1)

=1
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Fig. 2.3. Process and model for data sample @

Since the ohjective is to find the _a:mE:.E .&. ﬁ_Em function [ H.m__lu_d __:r nm,”__”M
a lpss fumction. Linear and nonlinear optimization problems .Eﬂ.wﬁm
= Cos kind of loss function are called least squares (LS5 and nonlinear H_ai
i __w_._._".q._.m\__ problems. The reasons for the popularity of this loss *.,::.n._._o:
mﬁﬂnmmmm:oi:m. To achieve the minimum of a r.n,._wm mnE..ﬁ_E:.‘ its m_.mhrﬁm__u _,_.ME
# be equal to zero. With (2.1) this leads to a linear equation system if the
M_ch mﬂnﬁm is linear in the unknown parameters. ”_..#:m.. muq.. :m_m..w.ﬂ, ﬁﬁw:m...mﬂm
the error sum of squares leads to an easy-to-solve _.Em#.q :E:_:mmﬂw_cz_mﬁ.xm”r
gop Chap. 3. Another property of this loss function is the wzm ratic s H___._w
of the errors, which favors many small CITOTS OVET a ".E.q wnmﬂd ,.uam,.,m_“.u_ m
H.u..ucﬂm;u_, ran often be seen as an zq_ﬂEwﬁ.".wmm. Nate, .rod_..m:_..__wn., that this property
makes the sum of squared errors mmzm:._...ﬁ o outliers. —

The sum of squared ercors loss *._._E.,,.Eu_.ﬁw: Le extended by weighting the
contribution of each squared error with a faceor, say q,,

....
\ (i 2.2
I0) =" g (i) (2.2)
=1
This offers the additional advantage thar knowlodge m”c::ﬁ the H,m_m...E:...... ol ,E
confidence in each data sample 4 can be incorporated in {2.2) by m_.,h.r.n..::_m L hm
¢ appropriately. Problems applying this type of criterion are called weighte
least squares (WLS) problems. , .
Even mare general is the following loss function definition:

ifp

h_f_. B
o) = | Y alle@i”] - (23)

i=1
Besides p = 2 comman choices for pare p = 1 E_E__ Jw.m. the Sum of h_.r__wv%:h__w
errors) and p = oo (that is, the maximum error)'. Figure m_,__ _”__m_._m_.qm ﬂ..
of a second order polynomial through 11 data samples by HE::E,E_“m thres
different loss funetions of type (2.3) with p = 1,2, and oo, respectively.

" Note that taking the pth root in (2.3} just scales the absolute value of the loss

‘ g i F S £ITOr
function. It is important, however, to let (2.3} converge to the maximum
for p — oo,




