
Contents

1 Genetic algorithms for numerical optimization 5
1.1 Introduction . 5
1.2 Outline of a genetic algorithm 7
1.3 Fitness function . 8
1.4 Solution representation . 9

1.4.1 Binary representation 9
1.4.2 Real-value representation 11

1.5 Initial population . 11
1.6 Selection . 11

1.6.1 Roulette wheel selection 12
1.6.2 Stochastic universal sampling 14
1.6.3 Rank-based selection . 15
1.6.4 Tournament selection 15

1.7 Genetic operators . 16
1.7.1 Crossover . 16

1.7.1.1 Binary crossover 16
1.7.1.2 Real-valued crossover 18

1.7.2 Mutation . 19
1.7.2.1 Binary mutation 19
1.7.2.2 Real-valued mutation 20

1.8 Elitism . 21
1.9 Termination criteria . 21
1.10 Parameters of a genetic algorithm 22

3

Contents

1.11 Genetic algorithms for multivariable function optimization . . 23
1.11.1 Solution representation and the initial population . . . 23

1.11.1.1 Binary representation 23
1.11.1.2 Floating-point representation 24

1.11.2 Selection . 24
1.11.3 Genetic operators . 24

1.11.3.1 Crossover . 25
1.11.3.2 Mutation . 25

1.12 Conclusions . 26

4

Chapter 1
Genetic algorithms for numerical
optimization

1.1 Introduction

Simulating biological evolution has gathered the interest of scientists since
1950s. The techniques developed over the years, based on principles of nat-
ural selection and genetic inheritance, have been used also for optimization,
and are now grouped under the name evolutionary computing or evolutionary
algorithms.

Four main approaches of the basic idea have been developed. In Ger-
many, Rechenberg and Schwefel developed evolution strategies at about the
same time as Fogel, Owens and Walsh introduced evolutionary programming in
the United States. In the 1960s, John Holland from the University of Michigan
developed genetic algorithms, and thirty years later, the principles of biolog-
ical evolution were applied by John Koza to genetic programming, (Mitchell,
1998; Eiben and Smith, 2003).

Evolutionary algorithms have been successfully applied to a large vari-
ety of problems from optimization, engineering design, resource scheduling,
data mining, systems identification, structural design etc.

Genetic algorithms (GAs) are some of the most widely known strategies
of evolutionary computation. Among other applications, they have been suc-
cessfully used for difficult optimization problems with objective functions

5

Chapter 1. Genetic algorithms for numerical optimization

that are multi-modal, discontinuous and non-differentiable, (Houck et al.,
1995). Traditional optimization algorithms often fail in such cases.

Example 1.1 The highly multimodal Rastrigin function, (Marco-Blaszka and
Désidéri, 1999), defined by:

f(x) = nA−
n∑

i=1

(
x2

i −A cos 2πxi

)
, xi ∈ [−5.12, 5.15] (1.1)

is shown in Figure 1.1 for n = 2 and A = 2.

−5

0

5

−5

0

5

10

20

30

40

50

x
1

x
2

Figure 1.1: Rastrigin’s function

A plot of Schwefels function:

f(x) =
n∑

i=1

xi sin(
√
|xi|), xi ∈ [−500, 500], i = 1, n (1.2)

is shown in Figure 1.2, for n = 2.
Both functions have a global minimum, which can be hardly determined by means

of gradient techniques or any of the methods described in previous chapters. Classi-
cal search techniques would return a local optimum, depending of the initial point
selected.

6

1.2. Outline of a genetic algorithm

−500

0

500

−500

0

500

−500

0

500

x
1

x
2

Figure 1.2: Schwefel’s function

Genetic algorithms will be introduced as a method for single-variable
function optimization and then extended for the multivariable case.

The general optimization problem will be formulated as maximization
over a given interval [a, b]:

max
x

f(x), x ∈ [a, b] (1.3)

1.2 Outline of a genetic algorithm

Genetic algorithms are probabilistic search techniques based on the ideas of
natural evolution and the Darwinian principle of survival of the fittest. An
extended terminology, borrowed from natural genetics, describes the main
features of genetic algorithms. We shall introduce only those terms that apply
directly to an optimization problem, (Michalewicz, 1996; Mitchell, 1998):

• An initial population of random individuals is created. Individuals, or
chromosomes are made of genes and incorporate the variable information.
They are candidate solutions of the problem.

• Individuals are assigned a fitness measure which is usually the objective

7

Chapter 1. Genetic algorithms for numerical optimization

function.

• The concept of survival of the fittest is implemented in a selection pro-
cedure. Individuals with higher fitness will have a better chance to sur-
vive.

• Selected individuals, (the parents), are chosen for reproduction (or
crossover), to produce new individuals (the offspring), which will inherit
some of the characteristics of the parents.

• Some of the new individuals are altered by mutation which is an arbi-
trary change in the genes of a selected chromosome.

• The newly produced individuals will be placed into the population of
the next generation with a better average fitness. The process is repeated
leading eventually to an optimum or to a best fit individual.

Algorithm 1 summarizes the general structure of a genetic algorithm.
Each of the concepts introduced here will be detailed in the subsequent sec-
tions.

Algorithm 1 Genetic algorithm
Initial population: generate a population of N random individuals
while stop criterion not fulfilled do

Selection: select the fittest individuals for reproduction
Reproduction: create new individuals by applying genetic operators
(crossover, mutation)
Recombination: creation of the new population

end while

1.3 Fitness function

The fitness function evaluates the performance of an individual. For the basic
optimization problem given by (1.3), the fitness function can be the same as
the objective function f(x).

GAs are generally developed to solve a maximization problem. A min-
imization problem can always be converted into a maximization one by

8

1.4. Solution representation

changing the sign of the function:

min
x

f(x) = max
x

(−f(x)) (1.4)

Some of the selection methods that will be introduced, require that the
values of the fitness function are strictly positive for any value of x ∈ [a, b]. In
this case, a common practice is to add a large positive value to f(x) and solve
the problem:

max
x

(f(x) + C) , C > 0 (1.5)

1.4 Solution representation

The representation, or encoding, of one individual depends on the nature of
the problem. It is generally a string of parameters, also known as genes, from
a given alphabet. In Holland’s original design, the genes were binary digits
(0 and 1). They can also be real values, integers, symbols, etc.

The set of all feasible individuals is known as the search space.

1.4.1 Binary representation

Consider the problem of maximizing a single-variable function over an inter-
val [a, b] with an accuracy ε. A chromosome, in the binary representation, is
a binary vector with the number of bits determined by the precision required.

The length of the interval is b−a and the solution can be one of the (b−a)/ε

real numbers located between a and b and equally spaced by ε (Figure 1.3).

Figure 1.3: Potential solutions in [a, b]

All potential solutions will be mapped into binary numbers between
00 . . . 0 and 11 . . . 1. The lower bound of the interval (a) is mapped into a
string of zeros and the upper bound (b) is mapped into a string of ones. The
number of bits (n) of one chromosome is determined from the following re-

9

Chapter 1. Genetic algorithms for numerical optimization

lation:
2n − 1 ≥ b− a

ε
(1.6)

Note that 2n − 1 is an integer number whose base 2 representation is a string
of ones of length n. Thus, n will be chosen so that 2n − 1 is the closest integer
that is greater or equal than the number of potential solutions in the interval.
The interval [a, b] is mapped, actually, into the base 2 representation of the
first 2n − 1 integer numbers.

For the reverse process, of mapping a binary string into a real number
from [a, b] two steps have to be taken:

• Convert the binary string to base 10 and obtain an integer number X .

• The corresponding real number, x, is calculated from:

x = a +
b− a

2n − 1
X (1.7)

Example 1.2 Consider the interval [a, b] = [−2, 2] and the desired accuracy of
the solution ε = 10−2. The length of the interval is 4 and the number of real values
equally spaced by 10−2 is 4/10−2 = 400. The chromosomes will be represented as
binary strings of 9 bits between

0 0 . . . 0︸ ︷︷ ︸
9

and 1 1 . . . 1︸ ︷︷ ︸
9

because
29 − 1 = 511 > 400 > 28 − 1 = 255 (1.8)

The precision will actually be better than 10−2 because there are 512 possible
solutions in the search space, thus the distance between two consecutive values is
4/512 = 0.007.

The mapping of the original interval into binary numbers is presented in Figure
1.4.

If we want to obtain the corresponding real value of the individual 101010101,
it has to be converted first to base 10 and we obtain X = (101010101)2 = (341)10.
The real value is then:

x = −2 +
4

29 − 1
341 = 0.6692 (1.9)

10

1.5. Initial population

Figure 1.4: Potential solutions in [−2, 2]

1.4.2 Real-value representation

In the real-value (or floating-point) representation, an individual can take any
continuous value in the interval [a, b]. The precision is only limited by the
roundoff error of the computer.

1.5 Initial population

The initial population is a set of N randomly generated individuals from the
search space. For a binary representation, N random binary strings of length
n are generated. In case of real-value representation, N random numbers are
generated in the interval [a, b].

The population will evolve during the algorithm, but the size of the pop-
ulation (N) remains unchanged.

1.6 Selection

The selection process implements the ”survival of the fittest” concept. Indi-
viduals undergo a probabilistic selection based on their fitness value which
will decide wether or not they will survive in the next generation. Several
copies of the same individual may be selected. Good individuals, with high
fitness, have more chances to survive and reproduce, while the inferior ones
are less likely to be selected.

11

Chapter 1. Genetic algorithms for numerical optimization

The result of the selection process is an intermediate population known
as the mating pool, of size N . Genetic operators (crossover and mutation) will
be applied to some of the individuals in the mating pool.

There are several schemes for selection which will be presented in the fol-
lowing sections: roulette wheel, stochastic universal sampling, ranking and
tournament selection.

1.6.1 Roulette wheel selection

Roulette wheel is the original selection mechanism for GAs. Implementation of
this approach requires that all the fitness values are positive numbers. There-
fore, the objective function must be scaled as indicated by (1.5).

Consider a roulette wheel where all the chromosomes (xi) in a population
of size N , are located in sectors proportional to their fitness. Denote

F =
N∑

i=1

f(xi) (1.10)

the total fitness of the population. If this is equal to the circumference of the
roulette wheel, each chromosome in the population will have a correspond-
ing sector bounded by an arc equal to its fitness.

When spinning the wheel the probability that an individual will be se-
lected is proportional to its fitness.

In order to obtain N individuals in the mating pool, the wheel is spun N

times. The same individual can be chosen several times, which is very likely
to happen when it has a large fitness value.

Example 1.3 Figure 1.5 a) shows the roulette wheel selection procedure. The pop-
ulation is composed of 5 individuals placed on the roulette wheel in sectors propor-
tional to their fitness. The largest interval is occupied by individual 4 which has a
large probability to be selected, even more than once. Individual 2 which is the least
fit, corresponds to a smaller interval within the roulette wheel. It may be selected, by
chance, but it is less probable that it will be selected for several times.

For a computer implementation of this procedure, consider the unfolded
circumference of the roulette wheel, (Figure 1.5 b). All chromosomes in the
current population will line up, as segments having the length equal to the

12

1.6. Selection

Figure 1.5: Roulette wheel selection

individual fitness. The total length of the segments is equal to F . Spinning
the wheel is equivalent to generating a random number (r) from the interval
[0, F]. The individual whose segment spans the random number will be
selected, (Kwong et al., 1999).

The roulette wheel strategy is described by Algorithm 2, (Obitko, 1998).

Algorithm 2 Roulette wheel selection
Calculate the sum of all individual fitness

F =
N∑

i=1

f(xi)

for j=1:N do
Generate a random number, r ∈ [0, F]
Set S = 0, i = 0
while S ≤ r do

Set i ← i + 1
Set S ← S + f(xi)

end while
Return the individual xi

end for

13

Chapter 1. Genetic algorithms for numerical optimization

1.6.2 Stochastic universal sampling

As an alternative to the roulette wheel selection, Baker (1987) suggested the
stochastic universal sampling.

To introduce this selection method, like in the case of roulette wheel, we
shall consider the individuals in a population located in sectors proportional
to the individual fitness. The wheel has N selection points equally spaced
and it will be spun just one time to select all N individuals to be transferred
in the mating pool. The number of times an individual is selected is equal to
the number of pointers that fall into its slot.

Example 1.4 Consider the same population of 5 chromosomes as in Example 1.3.
The wheel, having 5 equally spaced pointers is spun once. As shown in Figure 1.6 a)
the selected individuals are x1, x3, x4, x4, x5.

Figure 1.6: Stochastic universal sampling

The Figure 1.6 b) shows the unfolded circumference of the wheel, where
the individuals are mapped to segments of a line, such that each individual’s
segment has the size equal to its fitness, as in roulette-wheel selection. The
total length of the line is F as given by the relation (1.10).

If N individuals are to be selected, an array of N equally-spaced pointers
is placed over the line. The distance between two of them is F/N . ”Spinning

14

1.6. Selection

the wheel”, in this case, is the same as generating a random number r ∈
[0, F/N] which will determine the position of the first pointer.

The algorithm 3 describes this procedure.

Algorithm 3 Stochastic universal sampling
Calculate the sum of all individual fitness

F =
N∑

i=1

f(xi)

Generate a random number r ∈ [0, F/N]
Compute the pointers Pi = r + (i− 1)F/N, i = 1 : N
Set i = 0, S = 0
for j=1:N do

Set S ← S + f(xj)
while i ≤ N and Pi ≤ S do

Set i ← i + 1
Return xj

end while
end for

1.6.3 Rank-based selection

Consider the case when the fitness of one individual in a population is very
large. In the roulette wheel selection, the other individuals have a very small
probability to be selected. This situation usually leads to a premature conver-
gence, which means that the population is loosing diversity quickly and the
solutions may converge to a local optimum.

In rank-based selection, each individual is assigned a rank based on its
fitness. If the size of the population is N , the best individual receives the
rank N , the second best, N − 1, and the assignments continue until the worst
will have the rank 1. The method is the same as roulette wheel selection when
using the ranks instead of the fitness values.

1.6.4 Tournament selection

The tournament selection procedure follows two steps which are to be re-
peated N times:

15

Chapter 1. Genetic algorithms for numerical optimization

• A group of T ∈ [2, N] individuals are chosen randomly from the cur-
rent population.

• The best individual from the group is selected for the mating pool.

The number T is known as the tournament size. If it has a large value,
the least fit individuals have very few chances to be selected. In practice, a
small tournament size is preferred, as this will maintain the diversity in the
population and avoids the premature convergence.

1.7 Genetic operators

The selection procedure of a genetic algorithm produces a mating pool of size
N . Genetic operators, crossover and mutation, are applied to individuals from
this intermediate population with probabilities pc and pm, as detailed in the
subsequent sections.

1.7.1 Crossover

The probability of crossover pc gives the expected number pcN of chromo-
somes that undergo the crossover operation, according to the following pro-
cedure, (Michalewicz, 1996)

For each chromosome:

• Generate a random number r ∈ [0, 1]

• If r < pc select the chromosome for crossover

Two parent chromosomes are then chosen randomly to mate and produce
two new offspring.

1.7.1.1 Binary crossover

One point crossover
A random number between 1 and the length of the chromosome is gen-

erated (the crossover point). The offspring chromosomes will have the first
part copied, and the last part switched between the parents (Figure 1.7).

16

1.7. Genetic operators

Figure 1.7: One point crossover

Example 1.5 The crossover operation applied to two binary chromosomes is given
below. The crossover point is a random number between 1 and 10 (the length of a
chromosome) and, in this case, is equal to 4.

Parent 1: 1101|001110

Parent 2: 0100|101101

Offspring 1: 1101|101101

Offspring 2: 0100|001110

Multi-point crossover
Multiple crossover points can be randomly selected and the genes be-

tween them are interchanged to produce the offspring. Figures 1.8 and 1.9
show the two-point and the three-point crossover.

Figure 1.8: Two-point crossover

Uniform crossover
This strategy allows the offspring to have any combination of the parent

chromosomes. A random binary mask of the same length as a parent chro-
mosome is generated with a probability usually set to 0.5. The first offspring
will inherit the genes of the first parent in the positions for which the mask
is 0 and the genes of the second parent for the positions where the mask is 1.

17

Chapter 1. Genetic algorithms for numerical optimization

Figure 1.9: Three-point crossover

The other offspring is generated in the same manner: it will have the bits of
the first parent where the mask is 1 and those of the second parent where the
mask is 0 (Figure 1.10).

Figure 1.10: Uniform crossover

1.7.1.2 Real-valued crossover

Arithmetic crossover
If x and y are two selected parents, a random number a ∈ [0, 1] is gener-

ated for each crossover operation and the offspring (x′ and y′) are calculated
according to the relations:

x′ = a · x + (1− a) · y (1.11)

y′ = (1− a) · x + a · y

Example 1.6 Let x = 0.3 and y = 1.4 be the parent individuals. If a = 0.2 was
randomly generated in the range [0, 1], the following two offspring are produced:

x′ = 0.2 · 0.3 + (1− 0.2) · 1.4 = 1.18 (1.12)

y′ = (1− 0.2) · 0.3 + 0.2 · 1.4 = 0.52

Heuristic crossover
The heuristic crossover is the only operator that uses fitness information

18

1.7. Genetic operators

and produces a linear extrapolation of the parents.
The offspring are created according to the following procedure:

1. Compute the fitness of the parents and denote xbest the best individual
and xworst the other one.

2. Generate a random number r ∈ [0, 1] and compute the offspring:

x′ = xbest + r · (xbest − xworst) (1.13)

y′ = xbest

3. If x′ is feasible (i.e. it is between the allowable upper and lower bounds
of the variables) return the individuals calculated from (1.13)

4. If y′ is not feasible, go to step 2 until the offspring is feasible or the
failures exceed a number n set a priori. In this last case, return the
offspring equal to the parents.

1.7.2 Mutation

Mutation is the genetic operation that changes randomly a part of the off-
spring resulted from crossover. It prevents the algorithm falling into a local
optimum.

1.7.2.1 Binary mutation

A binary mutation (or a bit-flip mutation) is a bit-by-bit operation with prob-
ability pm. Every bit in the current population (after crossover) has an equal
chance to be mutated, i.e. changed from 0 to 1 or vice versa. The mutation can
be implemented according to the following procedure, (Michalewicz, 1996):

For each chromosome in the current population and for each bit within
the chromosome:

• Generate a random number r ∈ [0, 1]

• If r < pm mutate the bit.

The probability of mutation is usually chosen as a very small number,
otherwise the algorithm may become a random search. Typically it is chosen
between 1/population size and 1/chromosome length.

19

Chapter 1. Genetic algorithms for numerical optimization

Example 1.7 Consider the binary individuals given below. For all genes of all chro-
mosomes in a population a random number r is generated between 0 and 1. If
r < pm = 0.15 the gene is switched from 0 to 1 and vice versa.

Individual 1 Individual n
Before mutation 1 1 0 1 . . . 1 1 0 0

r 0.41 0.22 0.09 0.9 . . . 0.25 0.13 0.34 0.95
After mutation 1 1 1 1 . . . 1 0 0 0

1.7.2.2 Real-valued mutation

Uniform mutation
In a uniform mutation, an individual, chosen with the probability pm, is

replaced by another randomly chosen value from the search space.

Boundary mutation
Boundary mutation selects an individual (with probability pm) and sets it

equal to either the upper of lower bound of the search space [a, b]. For each
individual selected for mutation, a random number r ∈ [0, 1] is generated.
The mutated individual is set equal to a if r < 0.5 and to b if r ≥ 0.5, (Houck
et al., 1995)

Non-uniform mutation
The non-uniform mutation operator increases the probability that the

amount of the mutation will be close to 0 as the generation number increases.
If xi is a selected individual, the result of the non-uniform mutation, de-

noted x′i is calculated from, (Houck et al., 1995):

x′i =

{
xi + (b− xi)F (G), if r1 < 0.5
xi − (xi + a)F (G), if r1 ≥ 0.5

(1.14)

where:
a and b are the bounds of the search space,

F (G) =
[
r2

(
1− G

Gmax

)]r2

(1.15)

G is the current generation,
Gmax is the maximum number of generations,

20

1.8. Elitism

r1, r2 ∈ [0, 1] are two random numbers,
b is a shape parameter.

1.8 Elitism

Elitism is the method that copies the best individual directly to the new pop-
ulation. It prevents loosing the best solution found to date.

Any genetic algorithm is said to be elitist if the following condition holds
for all generations, (Reeves and Rowe, 2003):

Let xk be the best individual at the generation t. Then at generation t + 1
either:

• xk is in the population, or

• something better than xk is in the population

A genetic algorithm can be made elitist by the following adaptation,
(Reeves and Rowe, 2003):

• record the current best individual xk in the population

• generate the next population as usual

• if there is nothing better than xk, add xk to the new population, replac-
ing some other individual (for example the worst individual in the new
population).

Elitism may be implemented with more than one individuals, according
to the same procedure. A number Ne of best individuals can be selected to
survive in the new population in exchange of the worst ones. In usual im-
plementations, Ne is small (e.g. between 1 and 7) to prevent the premature
convergence.

1.9 Termination criteria

The genetic algorithms compute new generations until a termination crite-
rion is met. Most frequently, the following stop conditions are used:

21

Chapter 1. Genetic algorithms for numerical optimization

Generation number. The evolution is stopped when a user-specified maxi-
mum number of generations is reached.

Evolution time. The algorithm stops after running for a time that exceeds a
user-specified limit.

Fitness threshold. When the fitness of the best individual in the current
population is greater than a specified threshold, the algorithm can be
terminated.

Population convergence. If the difference between the average fitness and
the best fitness of the current population, is less than a specified
amount, the algorithm stops.

1.10 Parameters of a genetic algorithm

The results returned by a genetic algorithm are very much dependent of the
parameters it uses. Many authors proposed sets of parameters like: the pop-
ulation size, maximum number of generations, crossover and mutation prob-
abilities, type of crossover and mutation, but they are not guaranteed to give
very good results for any problem.

For example, a well known set is, (DeJong and Spears, 1990; Grefenstette,
1986):

• Population size: 50

• Number of generations: 1000

• Probability of crossover: 0.6

• Probability of mutation: 0.001

When the objective function is computationally expensive, Grefenstette
(1986) proposed:

• Population size: 30

• Probability of crossover: 0.9

• Probability of mutation: 0.01

22

1.11. Genetic algorithms for multivariable function optimization

Most studies in the field of GAs do not recommend a large population
size. Generally, it may be chosen between 20 and 100 individuals. The prob-
ability of crossover is typically chosen between 0.6 and 0.8 by the most au-
thors, and the probability of mutation is recommended to be set somewhere
between 0.05 and 0.1.

1.11 Genetic algorithms for multivariable function op-
timization

The general problem of maximizing a function of n variables can be solved
using the same general framework of a genetic algorithm as described in the
previous sections. Only the specific issues related to the number of variables
will be addressed in this section.

The problem to be solved is:

max
x

f(x) = f(x1, x2, . . . , xn), x ∈ [a, b] (1.16)

where a = [a1 a2 . . . an]T and b = [b1 b2 . . . bn]T are n×1 vectors containing
the lower and upper bounds of the variables.

1.11.1 Solution representation and the initial population

1.11.1.1 Binary representation

Consider a function f(x1, x2, . . . , xn) where the variables are constrained to
be within [ai, bi], i = 1, n, and the required precision is ε.

The same procedure as the one presented in section 1.4.1 can be applied
for each variable taken separately. If the ranges [ai, bi] have various lengths,
the number of bits required for the representation of each variable are differ-
ent.

A chromosome will be a binary string of a length, m, equal to the sum of
the number of bits, of all variables.

The initial population is generated as N random binary strings of length
m.

23

Chapter 1. Genetic algorithms for numerical optimization

Example 1.8 Consider the problem of maximizing a function of two variables
f(x1, x2), where x1 ∈ [−2, 2] and x2 ∈ [−1, 1]. The required precision is ε = 10−2.

The number of bits (m1 and m2) necessary for the representation of the variables
are obtained from:

2m1 − 1 ≥ 4
10−2

= 400 (1.17)

2m2 − 1 ≥ 2
10−2

= 200 (1.18)

Because

29 − 1 = 511 > 400 > 28 − 1 = 255 (1.19)

28 − 1 = 255 > 200 > 27 − 1 = 127 (1.20)

we obtain: m1 = 9 and m2 = 8. A chromosome will have a total length of 17 bits
where the first 9 represent the variable x1 and the last 8, the variable x2.

1.11.1.2 Floating-point representation

For the floating-point representation, the chromosomes are represented by
real-valued vectors. Each element of the vectors are within given ranges
[ai, bi], i = 1, n.

An initial population is obtained by generating N random vectors of n

variables in the given search space.

1.11.2 Selection

Since the selection uses only the fitness function to choose the best fit indi-
viduals, any of the previously described strategies can be applied unchanged
for multivariable problems.

1.11.3 Genetic operators

The genetic operators for binary encoded solutions can be applied in the same
manner as in the case of single variable functions. For the floating-point rep-
resentation of solutions, the operations are presented in the followings.

24

1.11. Genetic algorithms for multivariable function optimization

1.11.3.1 Crossover

If the selected individuals for crossover are x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn), the operation may be implemented in several variants, (Eiben
and Smith, 2003):

Simple crossover. A crossover point k is chosen randomly between 1 and
the length of the individual (i.e. the number of variables). The offspring
x′ and y′ will inherit the first k elements of the parents and the rest are
calculated as the arithmetic average of the parents:

x′ = (x1, x2, . . . xk, axk+1 + (1− a)yk+1,

. . . , axn + (1− a)yn) (1.21)

y′ = (y1, y2, . . . yk, ayk+1 + (1− a)xk+1,

. . . , ayn + (1− a)xn) (1.22)

where a ∈ [0, 1] is a random number.

Single arithmetic crossover. A crossover point k is generated between 1
and the length of an individual. At that position take the arithmetic
average of the parents. The offspring will be calculated as:

x′ = (x1, x2, . . . xk, axk+1 + (1− a)yk+1, xk+1, . . . , xn) (1.23)

y′ = (y1, y2, . . . yk, ayk+1 + (1− a)xk+1, yk+1, . . . , yn) (1.24)

with a being a random number in the range [0, 1].

Whole arithmetic crossover. The offspring is calculated from:

x′ = ax + (1− a)y (1.25)

y′ = ay + (1− a)x (1.26)

where a ∈ [0, 1] is a random number.

1.11.3.2 Mutation

Mutation for multivariable problems is a generalization of the single-variable
case, (Houck et al., 1995):

25

Chapter 1. Genetic algorithms for numerical optimization

Uniform mutation. If k ∈ [1, n] is selected randomly for an individual x =
(x1, x2, . . . , xn), the elements of the mutated vector are:

x′i =

{
random number in [ai, bi], for i = k

xi, for i 6= k
(1.27)

Boundary mutation. One randomly selected variable xk is replaced by the
upper or lower bound:

x′i =





ai, for i = k and r < 0.5
bi, for i = k and r ≥ 0.5
xi for i 6= k

(1.28)

Non-uniform mutation. One randomly selected variable xk is replaced by
an expression similar to (1.14). For the same notation as the one used
in (1.14) and (1.15), the elements of the mutated vector are computed
from:

x′i =





xi + (b− xi)F (G), for r1 < 0.5 and i = k

xi − (xi + a)F (G), if r1 ≥ 0.5 and i = k

xi, for i 6= k

(1.29)

1.12 Conclusions

Although sometimes genetic algorithms are considered ”methods of last re-
sort”, they have major advantages including:

• GAs are flexible and robust as global search methods

• They do not use gradient information

• GAs can deal with highly nonlinear or non-differentiable functions, as
well as with multimodal functions

• GAs can solve problems with a large number of variables

• GAs are well suited for parallel implementation

• They make very few assumptions about the problem to be solved

26

1.12. Conclusions

Genetic algorithms are not the best approach to the solution of any prob-
lem. For example, when the problem is to find the optimum of a convex or
a quadratic function, traditional methods behave much better and may com-
pute the solution in only a few steps.

However, many problems are complicated and the usefulness of genetic
algorithms has made them a good choice among the classical optimization
methods.

27

Chapter 1. Genetic algorithms for numerical optimization

28

Bibliography

Baker, J. E. (1987). Reducing bias and inefficiency in the selection algorithm.
In Proceedings of the Second International Conference on Genetic Algorithms and
their Application, pages 14 – 21. L. Erlbaum Associates Inc, Hillsdale, NJ,
USA.

DeJong, K. and Spears, W. (1990). An analysis of the interacting roles of pop-
ulation size and crossover in genetic algorithms. In Proceedings of the First
Workshop Parallel Problem Solving from Nature, pages 38–47. Springer-Verlag.

Eiben, D. A. E. and Smith, J. E. (2003). Introduction to Evolutionary Computing.
Springer.

Grefenstette, J. (1986). Optimization of control parameters for genetic algo-
rithms. IEEE Transactions Systems, Man and Cybernetics, SMC-16(1):122–128.

Houck, C. R., Joines, J. A., and Kay, M. G. (1995). A Genetic Algorithm
for Function Optimization: A Matlab Implementation. Technical Report
NCSU-IE TR 95-09, North Carolina State University.

Kwong, S., Man, K. F., and Tang, K. S. (1999). Genetic Algorithms: Concepts and
Designs. Springer.

Marco-Blaszka, N. and Désidéri, J.-A. (1999). Numerical solution of opti-
mization test-cases by genetic algorithms. Technical Report 3622, Institut
National de Recherche en informatique et en Automatique, Sophia Antipo-
lis.

29

Bibliography

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures: Evolution Pro-
grams. Springer.

Mitchell, M. (1998). An Introduction to Genetic Algorithms. MIT Press.

Obitko, M. (1998). Introduction to genetic algorithms. URL
http://www.obitko.com/tutorials/genetic-algorithms/.

Reeves, C. R. and Rowe, J. E. (2003). Genetic Algorithms: Principles and Perspec-
tives : a Guide to GA Theory. Springer.

30

