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Zsófia Lendek





Preface
This collection of exercises is used to familiarize students with the numerical methods
taught in the framework of the Optimization course at the Department of Automation,
Technical University of Cluj-Napoca.

As usual, Optimization is quite involved from a mathematical point of view,
therefore, in many cases, it is required that the algorithms are implemented on a
computer, using Matlab, Mathematica or a similar environment. Here, references are
made to Matlab. The exercises go in parallel with the course, from function approxi-
mation, through analytical methods, to numerical methods.

Each chapter is structured as follows: an Introduction to the method, an Example,
and finally the Exercises. The exercises in a given chapter are quite similar to each
other and are solved using the same method.

I hope that this collection will help you better use optimization methods.

Lendek Zsófia
Cluj, 2013
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Chapter 1

Function approximation

1.1 Introduction

Probably the most frequently encountered optimization problem – even though one
might not think about it like optimization – is the approximation of a function. Prob-
lems that are in this category range from system identification to parameter estimation
and can be found in almost every field: control engineering (Khalil, 2002; Narendra
and Annaswamy, 1989), mechanical engineering, (Rao et al., 2011; Beck and de San-
tana Gomes, 2012), civil engineering (Perez and Behdinan, 2007; Kitayama et al.,
2011), medicine (Amarantini et al., 2010), geology (Afshari et al., 2011), etc.

Depending on the exact problem formulation and the known part of the problem,
e.g., the context of the problem, the structure of the function to be approximated,
available data, etc., different methods can be applied. For instance, in system iden-
tification frequently used methods are the least squares or recursive least squares,
Box-Jenkins (Eykhoff, 1974; Rao, 1978), etc. If a parameter of a dynamic system
needs to be determined, observers such as Kalman filters, Luenberger observers, Par-
ticle filters (Kalman, 1960; Luenberger, 1966; Arulampalam et al., 2002; Ristic et al.,
2004) may represent a solution.

Here, we consider the problem of determining the parameters of a function with
a known structure from measured data. Let us consider a discrete-time time-varying
function f(x, k), where k denotes the time and x = [x1, x2, · · · , xn]T is the vector
of unknown parameters, n being the number of parameters. A number m of mea-
surements – usually not precise – of the value of the function f(x, ki) are available
for different time indices i = 1, 2, . . . , m. Our objective is to determine the pa-
rameters x̂ such that the function values best approximate the measurements, that is,
f(x̂, k) ≈ f(x, k).

First of all, the parameter estimation problem has to be formulated as an opti-
mization problem. This can be done by defining an error function that has to be
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CHAPTER 1. FUNCTION APPROXIMATION

minimized. Several error functions can be used, among which the squared error:

ese(x, x̂) =
m∑
i=1

(f(x, ki)− f(x̂, ki))
2 (1.1)

mean squared error

emse(x, x̂) =
1

m

m∑
i=1

(f(x, ki)− f(x̂, ki))
2 (1.2)

absolute error

eae(x, x̂) =
1

m

m∑
i=1

|f(x, ki)− f(x̂, ki)| (1.3)

Depending on the properties of the function, different methods can be used to
minimize the error function. Some of these methods will be discussed in later chap-
ters. Here, we will use available already implemented methods to minimize an error
function and consequently determine the parameters.

1.2 Example

Consider the function
f(x, k) = x1k

x2 + 3k2 (1.4)

where x1 and x2 are unknown parameters, and the measured values of f are shown
in Figure 1.1.
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Figure 1.1: Measured values of the function f .
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1.2 EXAMPLE

Our objective is to determine the unknown parameters x1 and x2. To define the
optimization problem, we use e.g., the squared error, i.e., the function to be mini-
mized is

ese(x, x̂) =
m∑
i=1

(f(x, ki)− f(x̂, ki))
2

Most mathematics-oriented programming languages have several optimization
methods implemented. We use Matlab’s fminunc and fminsearch functions. fminunc
is a trust-region/line-search based method, while fminsearch uses the Nelder-Mead
method. These methods will be presented later on. They are local optimization meth-
ods and require defining the objective function and an initial point around which to
search for a solution.

Starting from the initial parameter values x̂0 = [0 0]T , both Matlab functions
obtain the parameter values x̂0 = [0.5118 − 0.1172]T . The squared error is e =

0.1988. The comparison of the function values is presented in Figure 1.2.
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Figure 1.2: Measured and approximated values of the function f .

In many cases, the solution that is obtained is not unique. For instance, consider
the function

f(x, k) = sin(x1 + k) + cos(x2 + k) (1.5)

with the measured values shown in Figure 1.3.
For the initial condition [0 0]T the obtained parameters are x = [0.7272 0.7788]T ,

for [3 3]T we obtain [2.3496 5.4396], etc. However, the squared error in all cases is
e = 0.0365, so these solutions are equivalent. The comparison of the function values
is shown in Figure 1.4.

In general, depending on the initial condition and the method used several solu-
tions can be obtained.
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CHAPTER 1. FUNCTION APPROXIMATION

0.2 0.4 0.6 0.8 1
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

k

f(
k
)

Figure 1.3: Measured values of the function sin(x1 + k) + cos(x2 + k).

1.3 Exercises

Consider the following functions:

1. f(x, k) = x1k
x3e−x4k + x2

2. f(x, k) = x1

1+e
− k−x2

x3

+ x4

3. f(x, k) = x1e
−x3k + x2

where x are the unknown parameters, and the measured data from the electronic
appendix. The first index in the name of each data file indicates which function
should be considered. For instance, trace1 25 contains the 25th data set for the first
function. Determine the parameters of the functions.
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k).

5



6



Chapter 2

Analytical methods

2.1 Introduction

Analytical methods are classical optimization methods that are used in general for
the optimization of continuous and differentiable functions. Consider the twice dif-
ferentiable function f : Rn → R.

Stationary points of this function are those points xs for which the first derivative

∂f

∂x
|xs =


∂f
∂x1

∂f
∂x2

. . .

∂f
∂xn

 |xs = 0

For a point x∗ to be a local extremum (maximum or minimum) of this function,
it is necessary that x∗ is a stationary point. A sufficient condition (Rao, 1978) for x∗

to be a local minimum (maximum) is that the second order derivative (the Hessian)

∂2f

∂x2
=


∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xn

...
... . . .

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n


evaluated in x∗ is positive (negative) definite. If the Hessian is indefinite (it has both
positive and negative eigenvalues) in xi, then xi is a saddle point. If the Hessian is
positive or negative semidefinite, no conclusion can be drawn and higher order tests
have to be used.

For functions that are not differentiable in every point, an extremum might be
located in a point where the function is not differentiable.

7



CHAPTER 2. ANALYTICAL METHODS

In many cases, the objective function has to be optimized in the presence of con-
straints (Rao, 1978; Raica, 2009). Depending on the constraints, one can use direct
substitution, Lagrange multipliers, or, in case of inequality constraints, the Karush-
Kuhn-Tucker conditions. Of these, here we consider Lagrange multipliers for equal-
ity constraints.

Consider the twice differentiable function f : Rn → R, with the equality con-
straints gi(x) = 0, i = 1, 2, . . . ,m, corresponding to the optimization problem

min(max)f(x)

subject to

gi(x) = 0, i = 1, 2, . . . ,m

The Lagrangian associated to this optimization problem is

L(x,λ) = f(x) + λTg(x)

= f(x) +

m∑
i=1

λigi(x)

Similarly to unconstrained optimization, the necessary condition for a point xs

to be the extremum of the function f in the presence of equality constraints is that
the first-order derivative of L wrt. x and λ, evaluated in this point is 0, i.e.,

∂L

∂[xT λT ]T
|xs = 0

The sufficient condition (Hancock, 1960) for a point x∗ to be a local minimum
(maximum) is that the roots zi of the determinant equation

det

(
∂2L
∂x2 − zI ∂g

∂x
∂g
∂x

T
0

)∣∣∣∣∣
x∗

= 0

are all positive (negative). If there are both positive and negative roots, the point is
not an extremum.

2.2 Example

Consider the twice differentiable function f : Rn → R, f(x) = (x1−1)2+(x2−2)2.
This function has a minimum in x∗ = [1 2]T , as can be seen in Figure 2.1.

To prove that this is indeed the minimum of the function, let us calculate the
derivatives:

∂f

∂x1
= 2(x1 − 1)

∂f

∂x2
= 2(x2 − 2)

8



2.2 EXAMPLE
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Figure 2.1: The function (x1 − 1)2 + (x2 − 2)2.

From ∂f
∂x = 0 we obtain x1 = 1, x2 = 2. The Hessian is

∂2f

∂x2
=

(
2 0

0 2

)

which is positive definite (since it has the eigenvalues 2 and 2) and thus the point
x∗ = [1 2]T is a local minimum.

Consider now the function f(x) = x21 − x22. The function is illustrated in Fig-
ure 2.2. As can be seen, the point [0 0]T is a saddle point.
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Figure 2.2: The function x21 − x22.
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CHAPTER 2. ANALYTICAL METHODS

The derivatives of the function are

∂f

∂x1
= 2x1

∂f

∂x2
= −2x2

and we obtain x1 = 0, x2 = 0. The Hessian is

∂2f

∂x2
=

(
2 0

0 −2

)
which is indefinite (has a positive and a negative eigenvalue) and thus the point x∗ =

[0 0]T is a saddle point.
Consider now the following constrained optimization problem:

Maximize f(x) = x21x2
subject to x21 + x22 = 1

The function is represented in Figure 2.2, while the contour plot of the function,
together with the constraint is illustrated in Figure 2.2. The Lagrangian is written as
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(a) The function x2
1x2.
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(b) Contour plot of the function x2
1x2 and the

constraint x2
1 + x2

2 = 16.

L(x, λ) = x21x2 + λ(x21 + x22 − 1)

The first derivatives are
∂L

∂x1
= 2x1x2 + 2λx1 = 0

∂L

∂x2
= x21 + 2λx2 = 0

∂L

∂λ
= x21 + x22 − 1 = 0

(2.1)
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2.3 EXERCISES: STATIONARY POINTS

while the second derivatives and the derivatives of the constraint are

∂2L

∂x21
= 2x2 + 2λ

∂2L

∂x1∂x2
= 2x1

∂2L

∂x22
= 2λ

∂g

∂x1
= 2x1

∂g

∂x2
= 2x2

(2.2)

To determine the maximum of the function subject to the constraint we have to
evaluate for each solution xi of (2.1) the solution of the determinant equation

det

2x2i + 2λi − zi 2x1i 2x1i
2x1i 2λi − zi 2x2i
2x1i 2x2i 0

 = 0 (2.3)

The solutions of (2.1), the corresponding z and the types of the points are given
in Table 2.1. As can be seen, there are in total 6 extrema, out of which 3 are local
maxima and 3 are local minima. The maximum value of f is 0.38 and can be obtained
either for x1 =

√
6
3 and x2 =

√
3
3 or for x1 = −

√
6
3 and x2 =

√
3
3 .

Table 2.1: Extreme points and their type.
x1 x2o λ z Type f(x)

0 1 0 2 min 0

0 −1 0 −2 max 0√
6
3

√
3
3 −

√
3
3 −2.3 max 0.38√

6
3 −

√
3
3

√
3
3 2.3 min −0.38

−
√
6
3

√
3
3 −

√
3
3 −2.3 max 0.38

−
√
6
3 −

√
3
3

√
3
3 2.3 min −0.38

2.3 Exercises: stationary points

This exercise consists in determining the stationary points and their type of a given
function.

Consider the following functions f : Rn → R:

11



CHAPTER 2. ANALYTICAL METHODS

1. f(x1, x2) = x21 + 2x1x2 + x22

2. f(x1, x2) = 3x21 + 2x1 − x2 + x22 + 1

3. f(x1, x2) = (x1 − x2)2 + (2x1 + x2)
2

4. f(x1, x2) = ex
2
1 + x22 − 3 + 2x2

5. f(x1, x2) = 2x21 + 3x1x2 + x2 + x22 − 1

6. f(x1, x2) = (x21 − 1)2 + x22 − 3x2 + 1

7. f(x1, x2) = x21e
x1 + 51x2 + x42 + 3

8. f(x1, x2) = x41 + 2x21x2 + x22 + 3

9. f(x1, x2) = ex
2
1−3 + x22 − 3x2

10. f(x1, x2) = x1x
3
2 + 2x21 + 2x42 − 5

11. f(x1, x2) = x21x2 + 6x22 − 3x1x2 + 4x41 + 3x21

12. f(x1, x2, x3) = 2x21 + 3x22 + x2x3 + 6x23

13. f(x1, x2) = x61 + 3x1x2 + x22

14. f(x1, x2) = 18x21 + 20x2 + x1x2 + x22

15. f(x1, x2) = 5x41 + x21x2 + x22 − 3x2 + 1

16. f(x1, x2) = (cos(2π))x1 + x1x2 + x22 + x21

17. f(x1, x2) = 32x1x
2
2 + 9x22 + 18x21 + 3

18. f(x1, x2) = x31 + 3x41 + 31x1x2 + x22

19. f(x1, x2) = 6x21x
2
2 + 3x1x2 − 1

20. f(x1, x2) = 4x31 + 6x41 + 3x1x
2
2 + x42

21. f(x1, x2) = x41 + 2x21x2 + x62 + 6x1x
2
2 + 3

22. f(x1, x2) = x1x2 + x22 + x42 + 3x21 − 1

23. f(x1, x2) = 2x21x2 + 31x41 + 18x22 + 3

24. f(x1, x2) = 11x1 + 22x21x2 + x22 + 31x21

25. f(x1, x2) = x21x2 + 5x32 + x42 + 3x21

12



2.3 EXERCISES: STATIONARY POINTS

26. f(x1, x2) = x1x2 + 3x22 + 4x42 + x21

27. f(x1, x2) = x21 + x2 + 3x1 + 6

28. f(x1, x2) = 64x21 + 64x22 + 128x1x2 − 16

29. f(x1, x2) = 10x21 + 6x22 + 8x41x
4
2 + 24

30. f(x1, x2) = 81x21 + 27x1x2 + 18x22 + x42 − 9

31. f(x1, x2) = x1x
3
2 + 9x21 − 3x22 + 8

32. f(x1, x2) = x21 − x22 + 8x1x2 − x42 + 1

33. f(x1, x2) = −x21 − x22 + 18x1x2 − 3

34. f(x1, x2) = 1024x1 − 512x1x2 + 2x22 + 2x1

35. f(x1, x2) = 5x21 + 3x1x2 − x22 + x42

36. f(x1, x2) = x31 + 6x41 − 3x22 + 2x62

37. f(x1, x2, x3) = x22 + x23 + 3x1x2 − x3

38. f(x1, x2) = (x1 + 43x2)
3 + 3x21 − 5

39. f(x1, x2, x3) = (x1 + x2 + x3)
2 − (x1 + x2)

2

40. f(x1, x2, x3) = 33x21 + (x2 − x3)2 + x1x2

41. f(x1, x2, x3) = x1x3 + 3x2 + x23 + x21 + x22

42. f(x1, x2, x3) = x1x2x3 + x21x
2
2 + 5x23 + 1

43. f(x2, x4) = x22 + x34 + x62x
2
4

44. f(x1, x2) = ex
2
1 + 3x21 + 1

45. f(x1, x2) = 2x22 + 3x42 + 5x21 + 3

46. f(x1, x2) = −x31 + x41 + x2 + x22

47. f(x1, x2) = x21x
2
2 + 113x1x2 − 1

48. f(x1, x2) = x31 + 6x41 + x22 + x42

49. f(x1, x2) = x41 + 2 + x62 + x1x2 − 10

50. f(x1, x2) = −10x2 + x22 + x42 + 3x21 − 1

51. f(x1, x2) = x21x2 + 11x41 + 18x22 − 15

52. f(x1, x2) = x1 + 2x21x2 + 2x22 + 4x21

13
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2.4 Exercises: Lagrange multipliers

Consider now the functions from Section 2.4 and the following equality constraints.
Determine the minima or maxima of the functions subject to the constraint(s).

1. x1 + x2 = 1

2. x21 + x2 = 1

3. 2x1 − 3x2 = 2

4. x1 = 5x2

5. ex1 = 1

6. x1 + 2x2 = 3

7. x1 + 3x2 = 2

8. x1 − 2x2 = 5

9. x1 + x22 = 3

10. 2x1 − 3x2 = 5

11. x1 − 2x2 = 0

12. 2x1 − x21 = −5

13. x21 + x22 = 0

14. x1x2 + 3x22 + 1 = 0

15. x1 + 5x2 = 2

16. 5x1 + 3x2 = 10

17. 6x1 + 4x2 = 12

18. 21x1 − 3x2 = 5

19. x1 + 10x2 = 1

20. x1 + 8x2 = 0

21. 3x1 + 5x2 = 3

22. 8x1 + 15x2 − x3 = 0

14



2.4 EXERCISES: LAGRANGE MULTIPLIERS

23. x21 = x2

24. x22 = x1

25. x1 − x2 + 1 = 0

26. x1x2 + x2 = 0

27. x1 + 15x2 = 3

28. x21 + x22 = 1

29. (x1 − 1)2 + (x2 − 1)2 = 1

30. 64x21 + 16x1 + 1 = 0

31. 4x1 + 3x2 = 1

32. x1 + 6x2 = 15

33. x1 + 6x2 = 10

34. 15x1 − x2 = 1

35. 6x1 − 7x2 = 8

36. 5x1 − 25x2 = 1

37. 4x1 + 7x2 = 11

38. x21 + 2x22 = 3

39. 11x1 + 19x2 = 23

40. 3x1 + 9x2 = 13

41. 3x1 + 5x2 = 1

42. 50x1 + 125x2 = 25

43. x1 + 10x2 = 11

44. 7x1 − x2 = 3

45. 8x1 − 4x2 = 1

46. x1 + 6x2 = −5

47. 25x1 − x2 + 3 = 0

15
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48. x1 + 16x2 = 1

49. x1 + 3x2 = 100

50. 31x1 + 19x2 = 2

51. 2x1 + 8x2 = 16x3

52. 3x1 + x2 + x3 = 0

53. 118x1 + 59x2 = 236

54. x1 + 5x2 − x3 = 1

55. x1 + x2 + x3 + x4 = 5

56. x2 + x3 = −x1

57. x1 − 2x2 = 3x3

58. x1 − x2 + 3x3 = 6

59. 10x1 + 5x2 + x3 = 1

60. 3x2 + 5x3 = 0

16



Chapter 3

Optimization of single variable
functions: elimination methods

3.1 Introduction

Although analytical methods are able to provide an exact minimum or maximum,
their use can be cumbersome, in particular for nonlinear functions and constraints.
This is why numerical methods are widely used. In this chapter, we consider the
simplest case of numerical optimization, when the function to be optimized depends
on a single variable and is unimodal, i.e., it has a unique extremum on a given interval.
Our goal is to find this unique extremum.

Consider the function f : [a, b] → R. Without loss of generality, let us assume
that the function f has a unique minimum on [a, b] (see e.g., Figure 3.1). The follow-
ing methods find this minimum with a tolerance ε by eliminating parts of the interval
in several steps.

−2 −1.5 −1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

x

f(
x
)

Figure 3.1: A function with a unique minimum on the interval [−2, 1].

For the elimination, one has to define two, partly overlapping intervals. The func-
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tion is evaluated in the endpoints of the intervals. Since there is a unique minimum,
one of the intervals contains a point with smaller function value. This interval is
retained, while the remaining part is eliminated.

For instance, for the function in Figure 3.1, if one chooses the points x1 = −1.5

and x2 = 0.5, corresponding to the intervals [−2, 0.5] and [−1.5, 1] the values of the
function in these points are f(x1) = 2.25 and f(x2) = 0.25. Since f(x2) < f(x1),
the interval [−1.5, 1] is retained, and the part [−2, −1.5] is eliminated.

Two methods for choosing the intervals (or points) are summarized in the Algo-
rithms 3.1 and 3.2. Algorithm 3.1 is based on the “golden ratio”, while Algorithm 3.2
uses the ratio of consecutive Fibonacci numbers to determine the points where the
function should be evaluated.

Algorithm 3.1 Golden section
Input: Objective function f(x), boundaries a and b, and tolerance ε
d = b− a
while b− a ≥ ε do
d← 0.618× d
x1 ← b− d
x2 ← a+ d

if f(x1) ≤ f(x2) then
b← x2

else
a← x1

end if
end while

Output: Reduced interval [a, b]

Remarks: Elimination methods cannot be used if there are several minima or
maxima. These methods do not find an exact value of the extremum, only an interval
in which the extremum lies.

3.2 Example

Consider the function f : [−2, 1] → R, f(x) = x2, represented in Figure 3.1. As
can be seen, this function has a unique minimum on the interval [−2, 1]. Our goal is
to find this minimum with a tolerance ε = 0.3, using Algorithm 3.1. Algorithm 3.2
can be similarly employed.

1. Inputs: f(x) = x2, a = −2, b = 1, ε = 0.3. It follows that d = 1− (−2) = 3

18
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Algorithm 3.2 Fibonacci search
Input: Objective function f(x), boundaries a and b, and tolerance ε
F1 = 2 F2 = 3

n = 2

while b− a ≥ ε do
d = b− a
x1 ← b− dFn−1

Fn

x2 ← a+ dFn−1

Fn

if f(x1) ≤ f(x2) then
b← x2

else
a← x1

end if
n = n+ 1

Fn = Fn−1 + Fn−2
end while

Output: Reduced interval [a, b]

2. Step 1:
d = (1− (−2))0.618 = 1.8540

x1 = 1− 1.8540 = −0.8540

x2 = −2 + 1.8540 = −0.1460

f(x1) = 0.7293

f(x2) = 0.0213

Since f(x2) < f(x1), the retained interval is [−0.8540, 1] (see Figure 3.2)
and a and b are modified accordingly: a = −0.8540, b = 1. The remaining
part has been eliminated.

3. Step 2:
d = 0.618d = 1.1458

x1 = b− d = −0.1458

x2 = a+ d = 0.2918

f(x1) = 0.0212

f(x2) = 0.0851

Since f(x1) < f(x2), the retained interval is [−0.8540, 0.2918] (see Fig-
ure 3.3) and a and b are modified accordingly: a = −0.8540, b = 0.2958.
The remaining part has been eliminated.
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Figure 3.2: After Step 1.
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Figure 3.3: After Step 2.

4. Step 3:

d = 0.618d = 0.7081

x1 = b− d = −0.4163

x2 = a+ d = −0.1459

f(x1) = 0.1733

f(x2) = 0.0212

Since f(x2) < f(x1), the retained interval is [−0.4163, 0.2918] (see Fig-
ure 3.4) and a and b are modified accordingly: a = −0.4163, b = 0.2958.
The remaining part has been eliminated.
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Figure 3.4: After Step 3.

5. Step 4:

d = 0.618d = 0.4376

x1 = b− d = −0.1458

x2 = a+ d = 0.0213

f(x1) = 0.0213

f(x2) = 4.5 · 10−4

Since f(x2) < f(x1), the retained interval is [−0.1458, 0.2918] (see Fig-
ure 3.5) and a and b are modified accordingly: a = −0.1458, b = 0.2958.
The remaining part has been eliminated.
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Figure 3.5: After Step 4.
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6. Step 5:
d = 0.618d = 0.2704

x1 = b− d = 0.0213

x2 = a+ d = 0.1246

f(x1) = 4.5 · 10−4

f(x2) = 0.0155

Since f(x1) < f(x2), the retained interval is [−0.1458, 0.1246] (see Fig-
ure 3.6) and a and b are modified accordingly: a = −0.1458, b = 0.1246.
The remaining part has been eliminated. The length of the remaining interval
is less than the tolerance ε = 0.3, therefore the algorithm stops here. Any point
taken from the interval [−0.1458, 0.1246] can be considered the minimum of
the function f with tolerance ε.
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Figure 3.6: After Step 5.

3.3 Exercises

Consider the following single variables functions f : [a, b] → R. Verify whether
they have a unique minimum or a maximum on the given interval. Implement the
Fibonacci and the Golden Section method and find the unique extremum on the given
interval.

1. f(x) = x2 − 2x− 5, a = 0, b = 2

2. f(x) = 3x+ x3 + 5, a = −4, b = 4

3. f(x) = sin(x) + 3x2, a = −2, b = 2

4. f(x) = ex
2

+ 3x, a = −1, b = 1
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5. f(x) = x3 − 3x, a = −3, b = 0

6. f(x) = x3 − 3x, a = 0, b = 3

7. f(x) = sin(x), a = 0, b = π

8. f(x) = sin(2x), a = 0, b = 2

9. f(x) = cos(x), a = π/2, b = 3π/2

10. f(x) = tan2(x), a = −π/4, b = π/4

11. f(x) = ex sin(x), a = 0, b = π

12. f(x) = x4 − 3x2, a = −4, b = 0

13. f(x) = x4 − 3x2, a = 0, b = 4

14. f(x) = x5 − 5x3, a = −4, b = 0

15. f(x) = x5 − 5x3, a = 0, b = 4

16. f(x) = x6 + 5x2, a = −1, b = 1

17. f(x) = x3 − 9x, a = −3, b = 0

18. f(x) = x3 − 9x, a = 0, b = 3

19. f(x) = x3 + 9x, a = −1, b = 1

20. f(x) = 3x4 − 6x2, a = −3, b = 0

21. f(x) = 3x4 − 6x2, a = 0, b = 3

22. f(x) = ex + e−x, a = −2, b = 2

23. f(x) = ex − e−x, a = −2, b = 2

24. f(x) =

{
sin(x)

x , if x 6= 0

1, otherwise
, a = −π/2, b = π/2

25. f(x) = sin2(x), a = −π/2, b = π/2

26. f(x) = ex−e−x

ex+e−x , a = −1, b = 1

27. f(x) = 6x2 − 12x, a = −4, b = 0

28. f(x) = 6x2 − 12x, a = 0, b = 4
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ELIMINATION METHODS

29. f(x) = sin(x)(6x2 − 12x), a = −4, b = −1

30. f(x) = sin(x)(6x2 − 12x), a = 0, b = 2

31. f(x) = cos(x)(x2 − 5), a = −3, b = −1

32. f(x) = cos(x)(x2 − 5), a = −1, b = 1

33. f(x) = cos(x) + sin(x), a = −1, b = 3

34. f(x) = |x|, a = −1, b = 1

35. f(x) = sign(x)(x2 − 3x), a = −4, b = 0

36. f(x) = |x|(x2 − 3x), a = 0, b = 4

37. f(x) = x4 − 3x2 − 2, a = −2, b = 0

38. f(x) = (x6 − 2x2) sin(x), a = −2, b = 0

39. f(x) = (6x3 − 3x) cos(x), a = 0.5, b = 2

40. f(x) = (35x3 − x)sign(x), a = −1, b = 0

41. f(x) = (35x3 − x)sign(x), a = 0, b = 2

42. f(x) = x4 − 2x3, a = 0, b = 2

43. f(x) = (6x7 − 42x) sin(x), a = 0, b = 2

44. f(x) = (3x5 − 16x)sign(x), a = −1, b = 1

45. f(x) = x4 − 3x2 + 5, a = 0, b = 2

46. f(x) = 6x8 + 9x2 − 1, a = −2, b = 2

47. f(x) = 12x2 − 8x, a = −2, b = 2

48. f(x) = 5x6 − 3x, a = 0, b = 2

49. f(x) = (5x6 − 8x) sin(x), a = 0, b = 2

50. f(x) = (3x4 − 12x) cos(x), a = −2, b = 0

51. f(x) = (3x2 + 2x)atan(x), a = −0.5, b = 2
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Chapter 4

Newton and gradient methods

4.1 Introduction

Let us consider now unconstrained optimization of multivariable functions, i.e., opti-
mization problems of the form

min
x∈Rn

f(x)

Newton and gradient methods are widely used for solving this minimization prob-
lem when the gradient and/or the Hessian can be computed relatively easy. Newton
methods are based on the quadratic approximation of the objective function, while
gradient methods rely on determining the best direction and a step-size for finding
the minimum, i.e., on a linear approximation.

Since these are iterative methods, it is important to define suitable stopping con-
ditions. Generally used stopping criteria are:

• Variation in successive points: ‖xk+1 − xk‖ < ε

• Variation in the value of the function: |f(xk+1)− f(xk)| < ε

• Gradient: ‖ ∂f∂x(xk)‖ < ε

where ε represents the desired tolerance. In what follows, unless otherwise specified,
the stopping criteria above will be used.

The Newton method is summarized in Algorithm 4.1. As already mentioned,
this method relies on a second-order approximation of the objective function, and
necessitates the computation of both the gradient and the Hessian of the function in
each iteration. When it is computationally expensive to invert (or even compute) the
Hessian in each step, but convergence speed is not an issue, the modified Newton
method can be used. The modified Newton method uses the inverse of the Hessian in
the initial point in every step, i.e., instead of H−1(xk), H−1(x0) is used throughout
the algorithm (see Algorithm 4.2).
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Algorithm 4.1 Newton method

Input: Objective function f(x), gradient ∂f
∂x , Hessian H(x) = ∂2f

∂x2

Input: Initial point x0, tolerance ε
Set k = 0

while Stopping criterion is not satisfied do
Compute a new point xk+1 = xk −H−1(xk) ∂f

∂x(xk)

Set k ← k + 1

end while
Output: Minimum x∗ with tolerance ε

Algorithm 4.2 Modified Newton method

Input: Objective function f(x), gradient ∂f
∂x , Hessian H(x) = ∂2f

∂x2

Input: Initial point x0, tolerance ε
Set k = 0

while Stopping criterion is not satisfied do
Compute a new point xk+1 = xk −H−1(x0)

∂f
∂x(xk)

Set k ← k + 1

end while
Output: Minimum x∗ with tolerance ε

It has to be noted that the Newton method stops in stationary points, not necessar-
ily minima. Once the algorithm stops, the type of the point has to be determined by
evaluating the eigenvalues of the Hessian in the point found, as explained in Chap-
ter 2.

A possible problem in the implementation of the Newton method is represented
by the Hessian becoming singular, or, in case of the modified Newton method, the ini-
tial Hessian having the same problem. A solution for this problem is the Levenberg-
Marquardt algorithm (see Algorithm 4.3), which, instead of the Hessian H(xk), uses
λI + H(xk), where λ is a suitable chosen parameter. If λ is much smaller than
the eigenvalues of the Hessian, then the Hessian dominates, well illustrating the nice
properties of the Newton method. On the other hand, if λ is much larger than the
eigenvalues of the Hessian, the latter can be neglected, leading in effect to a gradient
method, as described below.

Gradient methods (see Algorithm 4.4) only use the gradient of the objective func-
tion, and search for the extremum of the function along a direction given by this gra-
dient. If one searches for maxima, the direction is the gradient (the steepest ascent
method), while if one searches for minima, the direction is the negative of the gra-
dient (the steepest descent method). For both cases, a step size has to be chosen or
computed. If a constant step-size is chosen, a possible problem that has to be over-
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Algorithm 4.3 Levenberg-Marquardt algorithm

Input: Objective function f(x), gradient ∂f
∂x , Hessian H(x) = ∂2f

∂x2

Input: Initial point x0, tolerance ε, constant λ
Set k = 0

while Stopping criterion is not satisfied do
Compute a new point xk+1 = xk − (λI +H(xk))−1 ∂f

∂x(xk)

Set k ← k + 1

end while
Output: Minimum x∗ with tolerance ε

come is oscillation around the minimum. When oscillation is detected, the step-size
can be reduced, or the algorithm stopped. The step size can also be computed using
an elimination method. Once the direction is determined, the next point only depends
on the step-size. Thus, in order to find the optimal step-size, one can implement ei-
ther the golden section or the Fibonacci method and minimize the objective function
as a function of the step-size. It must be kept in mind that the step size has to be
positive in order to not to change the direction.

Algorithm 4.4 Steepest descent

Input: Objective function f(x), gradient ∂f
∂x

Input: Initial point x0, tolerance ε
Set k = 0

repeat
Find the step length sk > 0 by minimizing

f

(
xk − sk

∂f
∂x(xk)

‖ ∂f∂x(xk)‖

)

Compute new point:

xk+1 = xk − sk
∂f
∂x(xk)

‖ ∂f∂x(xk)‖

Set k ← k + 1

until Stopping criterion is satisfied
Output: Minimum x∗ with tolerance ε

The convergence of the steepest descent method can be quite slow, if the problem
is poorly scaled, but it can be greatly improved if one uses conjugate gradient meth-
ods. These use a “conjugate direction” instead of the gradient of the function. The
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search direction in each step is given by

dk+1 = −∂f
∂x

(xk+1) + βkdk

where dk is the current direction and βk is computed in each step using either

• Fletcher-Reeves formula

βk =
‖ ∂f∂x(xk+1)‖2

‖ ∂f∂x(xk)‖2
(4.1)

• Polak-Ribière formula:

βk =

∂f
∂x(xk+1)

T
(

∂f
∂x(xk+1)− ∂f

∂x(xk)
)

∂f
∂x(xk)T ∂f

∂x(xk)
(4.2)

• Hestenes-Stiefel formula:

βk =

∂f
∂x(xk+1)

T
(

∂f
∂x(xk+1)− ∂f

∂x(xk)
)

dTk

(
∂f
∂x(xk+1)− ∂f

∂x(xk)
) (4.3)

The steps of the conjugate gradient method are given in Algorithm 4.5.
A shortcoming of conjugate gradient methods is that if the step size computed

in each iteration is not precise, the errors accumulate. To overcome this, the method
may be restarted after every n steps, n being the number of variables. This means
that after n steps, the direction is reset to the gradient in the current point.

Even more efficient than conjugate gradient methods are the so-called quasi-
Newton methods. These can be regarded as approximations of the Newton method,
as they use the information of the gradient to approximate the second order derivative,
e.g., by using the Davidon-Fletcher-Powell or Broyden-Fletcher-Goldfarb-Shanno
formulas. However, they also compute a step-size as gradient methods do. The
general algorithm is described in Algorithm 4.6.

The Davidon-Fletcher-Powell (DFP) formula is given by:

Bk+1 = Bk +
∆xk∆xT

k

∆xT
k ∆Gk

− Bk∆Gk(Bk∆Gk)T

∆GT
kBk∆Gk

(4.4)

while the Broyden-Fletcher-Goldfarb-Shanno (BFGS) relation is

Bk+1 = Bk +
∆Gk∆GT

k

∆GT
k ∆xk

− Bk∆xk(Bk∆xk)T

∆xT
kBk∆xk

(4.5)

where Bk is the approximation of the inverse of the Hessian in the kth step, ∆xk =

xk+1 − xk, and ∆Gk = ∂f
∂x(xk+1)− ∂f

∂x(xk).
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Algorithm 4.5 Conjugate gradient method for minimization

Input: Objective function f(x), gradient ∂f
∂x

Input: Initial point x0, tolerance ε
First direction d0 = − ∂f

∂x(x0)

repeat
Find the step length sk > 0 by minimizing

f(xk + skdk)

Compute
xk+1 = xk + skdk

Compute βk using (4.1), (4.2) or (4.3).
Compute the new direction

dk+1 = −∂f
∂x

(xk+1) + βkdk

Set k ← k + 1

until Stopping criterion is satisfied.
Output: Minimum x∗ with tolerance ε

4.2 Example

Consider the function f : R2 → R, f(x) = x41 + 2x21x2 + 2x22− x2 + 3, represented
in Figure 4.1. This function has a local minimum in

(
0 1

4

)T , verifiable using ana-
lytic methods. Here, we attempt to find this minimum using the numerical methods
described above, with the stopping criterion being ‖ ∂f∂x(xk)‖ < 0.001. In all cases,

we start the search from the initial point
(
2 2

)T .
The gradient of the function is

∂f

∂x
=

(
4x31 + 4x1x2

2x21 + 4x2 − 1

)
and the Hessian is

∂2f

∂x2
=

(
12x21 + 4x2 4x1

4x1 4

)
The trajectories given by the successive points found by the Newton and modified

Newton method are presented in Figure 4.2. As can be seen, both methods converge
to the same point, the local minimizer of the function. However, while the Newton
method requires only 9 steps, the modified Newton method takes 352 steps. The com-
putation time is 0.01sec for the Newton method and 0.40sec for the modified Newton
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Algorithm 4.6 Quasi-Newton method for minimization

Input: Objective function f(x), gradient ∂f
∂x

Input: Initial point x0, tolerance ε
Set k = 0 and B0 = I

repeat
Compute the search direction:

dk = −Bk
∂f

∂x
(xk)

Find the step length sk > 0 by minimizing f(xk + skdk)

Compute a new point xk+1 = xk + skdk
Compute the differences:

∆xk = xk+1 − xk

∆Gk =
∂f

∂x
(xk+1)−

∂f

∂x
(xk)

Update Bk+1 using DFP (4.4) or BFGS (4.5).
Set k ← k + 1

until Stopping criterion is satisfied.
Output: Minimum x∗ with tolerance ε

method. This is because, although the Hessian does not have to be evaluated after the
first step, the number of iterations increases by almost two orders of magnitude.

Let us now exemplify the steepest descent methods with constant and computed
step-size, using un-normalized gradients. The trajectories given by the successive
points found by the two methods are presented in Figure 4.3. Both methods converge
to the same point. For this specific example, the steepest descent with variable step re-
quires 9 steps, 0.0sec, and with fixed step size s = 0.05, 97 steps are made in 0.06sec.
For computing the step size, the golden section method has been implemented, and a
step-size smaller than 2 has been searched for with tolerance ε = 0.001.

Consider now the conjugate gradient method using the Fletcher-Rieves formula.
The trajectory is shown in Figure 4.4. The method required 11 steps and the elapsed
time was 0.02sec.

Finally, let us see the quasi-Newton method with the Davidon-Fletcher-Powell
formula. The trajectory is shown in Figure 4.5. The method required 6 steps and the
elapsed time was 0.01sec.

For this particular example all the methods perform is a similar way, the perfor-
mance differences being very small. However, in general, different methods may
converge to different local minimizers, or even diverge. This also holds if different
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Figure 4.1: Graphical representation of the function f(x) = x41 + 2x21x2 + 2x22 −
x2 + 3.
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Figure 4.2: Trajectories obtained using the Newton and modified Newton methods.

stopping criteria are used.

4.3 Exercises

Consider the following functions f : Rn → R. Implement and compare the Newton,
modified Newton, fixed-step gradient, variable-step gradient methods, conjugate gra-
dient and quasi-Newton methods for finding a local minima. Use the golden section
or the Fibonacci method to determine the step-size at each step.

1. f(x1, x2) = x61 + 3x1x2 + x22

2. f(x1, x2) = 18x21 + 20x42 + x1x2 + x22

3. f(x1, x2) = 5x41 + x21x2 + x22 − 3x2 + 1
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Figure 4.3: Trajectories obtained by the steepest descent method with fixed and vari-
ables step-sizes.
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Figure 4.4: Trajectory obtained by a conjugate gradient method.

4. f(x1, x2) = (cos(2π))x1 + x1x2 + x22 + x21

5. f(x1, x2) = 32x1x
2
2 + 9x22 + 18x21 + 3

6. f(x1, x2) = x31 + 3x41 + 31x1x2 + x22

7. f(x1, x2) = 10x21 + 6x22 + 8x41x
4
2 + 24

8. f(x1, x2) = 81x21 + 27x1x2 + 18x22 + x42 − 9

9. f(x1, x2) = x1x
3
2 + 9x21 − 3x22 + 8

10. f(x1, x2) = x21 − x22 + 8x1x2 − x42 + 1

11. f(x1, x2) = −x21 − x22 + 18x1x
3
2 − 3

12. f(x1, x2) = 5x21 + 3x1x2 − x22 + x42
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Figure 4.5: Trajectory obtained by a quasi-Newton method.

13. f(x1, x2) = x31 + 6x41 − 3x22 + 2x62

14. f(x1, x2) = (x1 + 43x2)
3 + 3x21 − 5

15. f(x1, x2) = (x1 + x2)
4 − (x1 + x2)

2

16. f(x1, x2) = 33x21 + (x2 − x1)2 + x1x2

17. f(x1, x2) = x1x2 + 3x2 + x21 + x21 + x22

18. f(x1, x2) = x1x2 + x21x
2
2 + 5x21 + 1

19. f(x2, x4) = x22 + x34 + x62x
2
4

20. f(x1, x2) = x21 + 2x1x
3
2 + x22

21. f(x1, x2) = 3x21 + 2x41 − x2 + x22 + 1

22. f(x1, x2) = (x1 − x2)3 + (2x1 + x2)
2

23. f(x1, x2) = x41 + 2x21x2 + x62 + 6x1x
2
2 + 3

24. f(x1, x2) = x1x2 + x22 + x42 + 3x41 − 1

25. f(x1, x2) = 2x21x2 + 31x41 + 18x22 + 3

26. f(x1, x2) = 11x1 + 22x21x2 + x22 + 31x21

27. f(x1, x2) = 2x22 + 3x42 + 5x21 + 3

28. f(x1, x2) = −x31 + x41 + x2 + x22

29. f(x1, x2) = x21x
2
2 + 113x1x2 − 1
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30. f(x1, x2) = x31 + 6x41 + x22 + x42

31. f(x1, x2) = x41 + x62 + x1x2 − 8

32. f(x1, x2) = −10x2 + x22 + x42 + 3x21 − 1

33. f(x1, x2) = x21x2 + 11x41 + 18x22 − 15

34. f(x1, x2) = x1 + 2x21x2 + 2x22 + 4x21

35. f(x1, x2) = x21x2 + 5x32 + x42 + 3x21

36. f(x1, x2) = x1x2 + 3x22 + 4x42 + x21

37. f(x1, x2) = ex
2
1 + x22 − 3 + 2x2

38. f(x1, x2) = 2x21 + 3x1x2 + x32 + x22 − 1

39. f(x1, x2) = (x21 − 1)2 + x22 − 3x2 + 1

40. f(x1, x2) = x21e
x1 + 51x2 + x42 + 3

41. f(x1, x2) = 6x21x
2
2 + 3x1x2 − 1

42. f(x1, x2) = 4x31 + x41 + x1x
2
2 + x42

43. f(x1, x2) = x41 + x2 + 3x1 + 6

44. f(x1, x2) = x41 + 2x21x2 + x22 + 3

45. f(x1, x2) = ex
2
1−3 + x22 − 3x2

46. f(x1, x2) = x1x
3
2 + 2x21 + 2x42 − 5

47. f(x1, x2) = x21x2 + 6x22 − 3x1x2 + 4x41 + 3x21

48. f(x1, x2, x3) = 2x21 + 3x22 + x2x3 + 6x23

49. f(x1, x2) = −2x21 + x1x
3
2 − x22

50. f(x1, x2) = 3x21 − x41 + x2 + x22 + 1

51. f(x1, x2) = (x1 − x2)2 + (x1 + x2)
2

52. f(x1, x2) = x21 + 2x21x2 + x126 + 6x1x
2
2 + 3

53. f(x1, x2) = x1x2 + x22 − x42 + 3x41 + 21

54. f(x1, x2) = 2x21x2 + 25x41 + 9x22 + 13
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Chapter 5

Derivative-free methods

5.1 Introduction

The methods presented in Chapter 4 are first and second order methods, i.e., they
make use of the gradient and the Hessian of the objective function. In many cases,
the objective function may not be differentiable. In these cases, a zero-order or
derivative-free method has to be used. Two such methods are the Nelder-Mead and
the Rosenbrock methods.

The Nelder-Mead (also called simplex or amoeba) method, developed by Nelder
and Mead in 1965 (see (Rao, 1978)), is based on the iterative modification of a sim-
plex. A simplex is a geometric figure formed by a set of n + 1 points in the n-
dimensional space. For instance, in 2 dimensions, a simplex is a triangle, while in the
3-dimensional space, a simplex is a tetrahedron. The method replaces one point of
the simplex in each iteration, such that the new simplex is gradually moved towards
the optimum point. The movement of the simplex is achieved by using four opera-
tions: reflection, expansion, contraction, and shrinking. The algorithm stops when all
edges of the simplex become smaller than a predefined tolerance or when the simplex
degenerates (e.g., in 2 dimensions, the vertices of the triangle become co-linear).

For the two-dimensional case, the details are given in Algorithm 5.1.
It has been recently proven that for the 2-dimensional case, the Nelder-Mead

method converges to a local optimum. For higher-dimensions, no convergence results
exist yet.

A derivative-free method whose convergence to a local optimum has been proven,
is the Rosenbrock method. The Rosenbrock method (also called the method of ro-
tating coordinates) is based on rotating the coordinates such that the first one is
oriented towards a locally estimated minimum while the rest are orthogonal to it
and are normalized. To rotate the coordinates, the so-called Gramm-Schmidt ortho-
normalization procedure is used.

The Rosenbrock method is summarized in Algorithm 5.2. The stopping criteria
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Algorithm 5.1 Nelder-Mead method for 2 variables
Input: Objective function f(x, y), tolerance ε, initial vertices V1, V2, V3

while stop criterion not satisfied do
Compute f(V1), f(V2), f(V3) and set the labels B, G, W
Compute M = (B +G)/2 and R = 2M −W
if f(R) < f(W ) then

Compute E = 2R−M , f(E)

if f(E) < f(R) then
Replace W with E

else
Replace W with R

end if
else

Compute C1 = (M +W )/2

Compute C2 = (M +R)/2

Choose C = argminC1,C2
(f(C1), f(C2))

if f(C) < f(W ) then
Replace W with C

else
Compute S = (B +W )/2

Replace W with S
Replace G with M

end if
end if
Set V1 = B

Set V2 = G

Set V3 = W

end while
Output: Minimum with tolerance ε
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are those specified in Chapter 4, except for the norm of the gradient.
It should be noted that the Gramm-Schmidt ortho-normalization procedure is nu-

merically unstable and if the new coordinates are not orthogonal, the errors accumu-
late and the method may diverge.

5.2 Example

Consider the function f : R2 → R, f(x) = x41 + 2x21x2 + 2x22− x2 + 3, represented
in Figure 5.1. This function has a local minimum in

(
0 1

4

)T , verifiable using ana-
lytical methods. Here, we attempt to find this minimum using the Nelder-Mead and
Rosenbrock methods described above.

Figure 5.1: Graphical representation of the function f(x) = x41 + 2x21x2 + 2x22 −
x2 + 3.

Let us use the Nelder-Mead method first. The initial points are taken as [0, 0]T ,
[0, 1]T , [1, 0]T (represented in Figure 5.2), and the tolerance is chosen as ε = 0.0001.

After the first step, this simplex is contracted, see Figure 5.3, the vertices becom-
ing [0, 0]T , [0, 1]T , [0.5, 0.25]T .

The simplex obtained after 10 steps in presented in Figure 5.4, the vertices be-
coming [0.002, 0.194]T , [0.037, 0.307]T , [−0.057, 0.233]T .

After 37 steps, the lengths of the edges of the simplex become less than the chosen
tolerance ε, the vertices being [0.12 · 10−4, 0.25]T , [−0.65 · 10−4, 0.25]T , [0.3 ·
10−4, 0.25]T , which can be well approximated by [0, 0.25], see Figure 5.5.

Let us now see the Rosenbrock method. To compare it with the Nelder-Mead
method, we choose the initial point [0, 0]T (one of the vertices used by the Nelder-
Mead method) and the same tolerance ε = 0.0001 on the distance between two
consecutive points.The initial stepsize is [0.5, 0.5]T , α = 3, and β = −0.8. The
resulting trajectory is shown in figure 5.6, and the final value is [−0.00, 0.25]T . The
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Algorithm 5.2 Rosenbrock method
Input: Objective function f(x), initial point x0, n orthogonal directions d10, d20,

..., dn0
Input: Initial step lengths s = [s10 s20 . . . sn0]

T , α > 1 and−1 < β < 0, tolerance
ε

Set k = 1

while stop criterion not satisfied do
Initialize the vector of successful steps for all directions c = [0 0 . . . 0]

Initialize flag for oscillation: oscillation = false

Initialize a vector to store successes on each direction: success = [0 0 . . . 0]

Initialize a vector to store failures on each direction: fail = [0 0 . . . 0]

while oscillation = false do
for all directions i = 1, 2, . . . , n do

if f(xk + sidi) ≤ f(xk) then
Compute xk+1 = xk + sidi
Set k ← k + 1

Mark a success on direction di. Set success(i) = 1

Add the step length to ci. Set ci ← ci + si
Increase the step length. Set si ← si · α

else
Mark a failure on direction di. Set fail(i) = 1

Decrease the step length. Set si ← si · β
end if

end for
if all sucess(i) = 1 and all fail(i) = 1 then

Set oscillation = true

end if
end while
a1 = c1d1 + c2d2 + · · ·+ cndn
a2 = c2d2 + · · ·+ cndn
. . .

an = cndn
Compute the new directions using the Gramm-Schmidt procedure from a

b1 = a1, d1 = b1
‖b1‖

b2 = a2 −
aT2 b1
‖b1‖2 b1, d2 = b2

‖b2‖

b3 = a3 −
aT3 b1
‖b1‖2 b1 −

aT3 b2
‖b2‖2 b2, d2 = b3

‖b3‖
...
bn = an −

∑n−1
i=1

aTn bi
‖bi‖2 bi, dn = bn

‖bn‖
end while

Output: Minimum with tolerance ε
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Figure 5.2: Original simplex for the Nelder-Mead method.
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Figure 5.3: Simplex after the first step using the Nelder-Mead method.

Gramm-Schmidt orthonormalization has been performed only once, and 8 successful
steps were taken.

For the initial point [2, 2]T , tolerance ε = 10−5, initial stepsize [0.5, 0.5]T , α =

3, β = −0.8, the same result of [0.00, 0.25]T is obtained, but in this case after 51

successful steps and performing 23 times the Gramm-Schmidt orthonormalization.
The trajectory is presented in Figure 5.7.

It has to be noted that although for this particular example both methods found
the local minimum, for objective functions with several minima, they may converge
to different points.

5.3 Exercises

Consider the following functions f : Rn → R. Implement the Nelder-Mead and
Rosenbrock methods and find the minima of the functions.
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Figure 5.4: Simplex after 10 steps using the Nelder-Mead method.
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Figure 5.5: Simplex after 37 steps using the Nelder-Mead method.

1. f(x1, x2) = x21 + x22 − 4x1 − 4x2

2. f(x1, x2) = 3x21 + 2x41 − x2 + x22 + 1

3. f(x1, x2) = ex
2
1 + x22 − 3 + 2x2

4. f(x1, x2) = (x21 − 1)2 + x22 − 3x2 + 1

5. f(x1, x2) = x21e
x1 + 51x2 + x42 + 3

6. f(x1, x2) = x41 + 2x21x2 + x22 + 3

7. f(x1, x2) = ex
2
1−3 + x22 − 3x2

8. f(x1, x2) = x1x
3
2 + 2x21 + 2x42 − 5

9. f(x1, x2) = x21x2 + 6x22 − 3x1x2 + 4x41 + 3x21
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Figure 5.6: Trajectory from [0, 0]T using the Rosenbrock method.
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Figure 5.7: Trajectory from [2, 2]T using the Rosenbrock method.

10. f(x1, x2) = x61 + 3x1x2 + x22

11. f(x1, x2) = 18x21 + 20x42 + x1x2 + x22

12. f(x1, x2) = 5x41 + x21x2 + x22 − 3x2 + 1

13. f(x1, x2) = (cos(2π))x1 + x1x2 + x22 + x21

14. f(x1, x2) = x31 + 3x41 + 31x1x2 + x22

15. f(x1, x2) = 6x21x
2
2 + 3x1x2 − 1

16. f(x1, x2) = 4x31 + 6x41 + 3x1x
2
2 + x42

17. f(x1, x2) = x41 + 2x21x2 + x62 + 6x1x
2
2 + 3

18. f(x1, x2) = x1x2 + x22 + x42 + 3x41 − 1
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19. f(x1, x2) = 2x21x2 + 31x41 + 18x22 + 3

20. f(x1, x2) = x1x2 + 3x22 + 4x42 + x21

21. f(x1, x2) = x41 + x22 + 3x1 + 6

22. f(x1, x2) = 10x21 + 6x22 + 8x41x
4
2 + 24

23. f(x1, x2) = 81x21 + 27x1x2 + 18x22 + x42 − 9

24. f(x1, x2) = 5x21 + 3x1x2 − x22 + x42

25. f(x1, x2) = x31 + 6x41 − 3x22 + 2x62

26. f(x1, x2) = 33x21 + (x2 − x1)2 + x1x2

27. f(x1, x2) = ex
2
1 + 3x21 + 1

28. f(x1, x2) = x41 + 3x21x
2
2 + 5x42 + 15

29. f(x1, x2) = x61 + x41 + x21x
2
2 + x42 − 3

30. f(x1, x2) = x21x
2
2 + 6x1x

2
2 + 15x22 − 1

31. f(x1, x2) = x1x2 + 18x21 + 20x22 + x42

32. f(x1, x2) = x21 + 38x1x2 + 1024x22 + 45x62

33. f(x1, x2) = x1x
3
2 + 3x21 + 64x22 + 128x42

34. f(x1, x2) = x21x
2
2 + 6x1x

2
2 − 2x21x2 − 10x1x2 + 9x22 − 12x2 + x21 + 4x1 + 4

35. f(x1, x2) = x21 − 2x21x2 + 4x1 + x21x
2
2 − 4x1x2 + 4

36. f(x1, x2) = 1− 2x1x2 + 2x2 + x21x
2
2 − 2x1x

2
2 + x22

37. f(x1, x2) = x21x
2
2 − 2x1x

2
2 + x22

38. f(x1, x2) = 9− 18x1x2 + 6x2 + 9x21x
2
2 − 6x1x

2
2 + x22

39. f(x1, x2) = 9− 18x2 + 6x1 + 9x22 − 6x1x2 + x21

40. f(x1, x2) = 25− 10x2 + 10x21 + x22 − 2x2x
2
1 + x41

41. f(x1, x2) = x41 − x31 + x22 − 3x1

42. f(x1, x2) = 5x21 + 2x22 + 8x41x
4
2

43. f(x1, x2) = 8x21 − 2x1x2 + 18x22 + x42 − 9
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44. f(x1, x2) = x21 + 13x1x2 − 2x22 + x42

45. f(x1, x2) = x1 + x41 − 3x22 + 2x62

46. f(x1, x2) = 3x21 + (2x2 − x1)2 + x1x2

47. f(x1, x2) = x41 + 3x21 + 1 + x42

48. f(x1, x2) = x61 + x21x
2
2 + 5x42 + 15

49. f(x1, x2) = x61 + x41 − x21x22 + x42 − 3

50. f(x1, x2) = x21x
4
2 + 6x1x

2
2 + 15x22 − 1 + x21

51. f(x1, x2) = x1x2 + 8x21 + 14x22 + x42

52. f(x1, x2) = x21 + 2x1x2 + 10x22 + 45x62

53. f(x1, x2, x3) = 29− 10x2 + 10x1 + x22 − 2x2x1 + x21 + x23 − 4x3

54. f(x1, x2, x3) = x22 + 2x2x1 + x21 + x23 − 4x3 + 4

55. f(x1, x2, x3) = x22 − 2x2x1 + x21 + x23 − 4x3 + 4

56. f(x1, x2, x3) = x22 − 2x2x1 − 2x2 + x21 + 2x1 + 5 + x23 − 4x3

57. f(x1, x2, x3) = x22 − 2x2x1 + 2x2 + x21 − 2x1 + 2 + x23 − 2x3

58. f(x1, x2, x3) = x22 − 6x2x1 + 2x2 + 9x21 − 6x1 + 2 + x23 − 2x3

59. f(x1, x2, x3) = x22−6x2x1+4x2−2x2x3+9x21−12x1+6x1x3+4−4x3+x23

60. f(x1, x2, x3) = x22−2x2x1 +4x2−2x2x3 +x21−4x1 +2x1x3 +4−4x3 +x23

61. f(x1, x2, x3) = x22−2x2x1+12x2−2x2x3+x21−12x1+2x1x3+36−12x3+x23

62. f(x1, x2, x3) = x22x
2
1 − 2x2x

2
1 + 12x2x1 − 2x2x1x3 + x21 − 12x1 + 2x1x3 +

36− 12x3 + x23
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Chapter 6

Linear programming – the
simplex method

6.1 Introduction

A linear programming problem is defined as the optimization of a linear function
subject to linear constraints, i.e.,

max f(x) = cTx subject to

Ax 4 b

x < 0

(6.1)

or
min f(y) = bTy subject to

ATy < c

y < 0

(6.2)

where < (4) means that each element of the vector on the left hand side is larger
(smaller) than the corresponding element of the vector on the right-hand side. The
form (6.1) is called the standard maximization form, while (6.2) is the standard min-
imization form (Raica, 2009; Rao, 1978).

The linear programming problem has first been recognized by economists in the
1930s while developing methods for the optimal allocation of resources. A solution
to a linear programming problem can be found by the simplex method, developed by
G. Dantzig in 1947 (Rao, 1978). The method is being used in a large number of appli-
cations, such as petroleum refineries, optimal production planning, food processing,
metal working industries, etc.

Once a linear programming problem is in the standard maximization form, the
simplex method can be applied as follows (Raica, 2009):
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1. Inequality constraints (except for those that state that the variables are positive)
are converted into equalities by adding non-negative slack variables.

2. An initial basic feasible solution is chosen. A feasible solution is one that
satisfies all the constraints.

3. The initial table is written, as follows:

xb1 x1 x2 ... xn+m

xb2 a11 a12 ... a1,n+m b1
... ... ... ... ... ...
xbm am1 am2 ... am,n+m bm

objective c1 c2 ... cn+m −f
The entries on the left column indicate the basic variables, ai,j , bi, ci are ele-
ments of the matrixA and the vectors b and c, and f is the value of the function
for the chosen basic feasible solution.

4. Select the pivot column by choosing the largest positive number from the ob-
jective row, excluding −f . This step will identify the non-basic variable to
enter the basis.

If all the numbers (excluding −f ) in the last row are negative or zero the basic
solution is the optimal one and the algorithm will stop here.

5. Select the pivot row. This corresponds to the basic variable to leave the basis.
The intersection of the pivot row and the pivot column is the pivot element or
simply the pivot. It must always be a positive number.

The pivot element is the one that minimizes the ratio bk/akj over those rows
for which aij > 0.

If all elements in the pivot column are negative or zero (akj ≤ 0, k = 1,m)
then the problem is unbounded above (the maximum of the problem is infinity).

6. Perform the pivot operation, when the pivot element is aij :

• Divide the pivot row i by the pivot aij

• Add −akj/aij × row(i) to row k for each k 6= i (including the objective
row). Each element in the rows (non-pivot) will be added by the element
in the same row and pivot column divided by the pivot and multiplied by
the element in the same column and pivot row.

7. Repeat the operations above until the basic feasible solution is optimal. The al-
gorithm will stop when all the elements in the last row (objective) are negative
or zero. The bottom right entry, which is −f will not be included in this test.
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8. The optimal value of the objective function is obtained as minus the bottom-
right entry of the table, and is expressed in terms of the basic variables.

6.2 Examples

Consider the following linear programming problem:
max f(x1, x2) = 3x1 + 3x2, subject to

9x1 + 2x2 ≤ 196 (C1)

8x1 + 10x2 ≤ 105 (C2)

x1 ≥ 0

x2 ≥ 0

(6.3)

The constraints and the feasible set are presented in Figure 6.1.
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Figure 6.1: Constraints and feasible set for (6.3).

It is quite clear from Figure 6.1 that the constraint (C1) is unnecessary. However,
let us proceed with solving the linear programming problem. The problem is in
standard maximization form. We will follow the steps described in Section 6.1.

1. The constraints (C1) and (C2) are converted to equalities by introducing the
slack variables x3 and x4. Consequently, the constraints become

9x1 + 2x2 + x3 = 196

8x1 + 10x2 + x4 = 105

2. We choose the initial basic feasible solution x3 = 196 and x4 = 105.

3. The initial table is:
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x1 x2 x3 x4
x∗3 9 2 1 0 196
x∗4 8 10 0 1 105

3 3 0 0 0

4. Select the pivot column: in the last line of the table, both the first and the
second columns have the value 3 (maximum of the row), so any of them can
be selected. Here, we select the first column. This means that the variable that
will enter the basis is x1.

5. Select the pivot row. For this, we first divide the last column of the table with
the pivot column:

x1 x2 x3 x4
x∗3 9 2 1 0 196 196

9

x∗4 8 10 0 1 105 105
8

3 3 0 0 0

Since 105
8 < 196

9 , the pivot row is the second one, and x∗4 leaves the basis. The
pivot element is 8.

6. Pivot operation: the pivot row is divided by the pivot element, and for the other
elements on the pivot column zeros are introduced, by adding −akj/aij ×
row(i) to row k for each k 6= i (including objective row). This means that the
pivot row is multiplied by −9

8 and added to first row, and is multiplied by −3
8

and is added to the last row in the table. The new table is:

x1 x2 x3 x4
x∗3 0 -9.2500 1 -1.1250 77.8750
x∗1 1.0000 1.2500 0 0.1250 13.1250

0 -0.7500 0 -0.3750 -39.3750

7. All the elements in the last row are 0 or negative, thus the algorithm stops. We
read the results in terms of the basic variables from the table above:

x3 = 77.8750

x1 = 13.125

max
x1,x2

f(x1, x2) = 39.3750

As can be seen, the maximum of the function is obtained only in terms of x1
and x3. From the constraints we obtain: x2 = 0 and x4 = 0.

Consider now the following linear programming problem:
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min f(y1, y2) = 173y1 + 182y2, subject to

3y1 + 2y2 ≥ 5

3y1 + 8y2 ≥ 2

y1 ≥ 0

y2 ≥ 0

The problem above is in standard minimization form, thus we first rewrite it in
standard maximization form:

max f(x1, x2) = 5x1 + 2x2, subject to

3x1 + 3x2 ≤ 173 (C1)

2x1 + 8x2 ≤ 182 (C2)

x1 ≥ 0

x2 ≥ 0

(6.4)

The constraints and the feasible set are presented in Figure 6.2.
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Figure 6.2: Constraints and feasible set for (6.4).

Let us proceed with solving the linear programming problem.

1. The constraints (C1) and (C2) are converted to equalities by introducing the
slack variables x3 and x4. Consequently, the constraints become

3x1 + 3x2 + x3 = 173

2x1 + 8x2 + x4 = 182

2. We choose the initial basic feasible solution x3 = 173 and x4 = 182.
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3. The initial table is:

x1 x2 x3 x4
x∗3 3 3 1 0 173
x∗4 2 8 0 1 182

5 2 0 0 0

4. Select the pivot column: in the last line of the table, the largest value corre-
sponds to the first column. Thus, the first column is the pivot column, and the
variable that will enter the basis is x1.

5. Select the pivot row. For this, we first divide the last column of the table with
the pivot column:

x1 x2 x3 x4
x∗3 3 3 1 0 173 173

3

x∗4 2 8 0 1 182 91
5 2 0 0 0

Since 173
3 < 91, the pivot row is the first one, and x∗3 leaves the basis. The

pivot element is the 3.

6. Pivot operation. The new table is:

x1 x2 x3 x4
x∗1 1.0000 1.0000 0.3333 0 57.6667
x∗4 0 6.0000 -0.6667 1.0000 66.6667

0 -3.0000 -1.6667 0 -288.3333

7. All the elements in the last row are 0 or negative, thus the algorithm stops. We
read the results in terms of the basic variables from the table above:

x1 = 57.6667

x4 = 66.6667

max
x1,x2

f(x1, x2) = 288.33

As can be seen, the maximum of the function is obtained only in terms of x1
and x4. From the constraints we obtain: x2 = 0 and x3 = 0.

6.3 Exercises

Consider the following linear programming problems and solve them using the sim-
plex method.
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1. max f(x1, x2, x3) = x1 + x2 + x3, subject to

x3 + x2 ≤ 1

14x1 + x3 ≤ 4

x1 + x2 − 2x3 = 0

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

2. max f(x1, x2, x3 = x1 + x3, subject to

4x2 + x3 ≤ 50

4x1 + x3 ≤ 10

x1 + x2 − x3 = 0

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

3. max f(x1, x2) = 2x1 + x2, subject to

x1 + 4x2 ≤ 20

5x1 + x2 ≤ 10

x1 ≥ 0

x2 ≥ 0

4. max f(x1, x2) = 4x1 + 3x2, subject to

x1 + 4x2 ≤ 10

5x1 + 3x2 ≤ 10

x1 ≥ 0

x2 ≥ 0

5. max f(x1, x2) = 6x1 + 3x2, subject to

10x1 + 4x2 ≤ 10

5x1 + 10x2 ≤ 10

x1 ≥ 0

x2 ≥ 0
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6. max f(x1, x2) = 5x1 + 3x2, subject to

6x1 + 12x2 ≤ 50

5x1 + x2 ≤ 20

x1 ≥ 0

x2 ≥ 0

7. max f(x1, x2) = 4x1 + 3x2, subject to

x1 + 15x2 ≤ 100

5x1 + x2 ≤ 20

x1 ≥ 0

x2 ≥ 0

8. max f(x1, x2) = 4x1 + 3x2, subject to

3x1 + 15x2 ≤ 70

5x1 + x2 ≤ 20

x1 ≥ 0

x2 ≥ 0

9. max f(x1, x2) = 4x1 + 3x2, subject to

5x1 + 15x2 ≤ 100

5x1 + 2x2 ≤ 20

x1 ≥ 0

x2 ≥ 0

10. max f(x1, x2) = 4x1 + 5x2, subject to

10x1 + 15x2 ≤ 150

6x1 + 2x2 ≤ 20

x1 ≥ 0

x2 ≥ 0

11. max f(x1, x2) = 2x1 + 3x2, subject to

10x1 + 20x2 ≤ 200

3x1 + x2 ≤ 10

x1 ≥ 0

x2 ≥ 0
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12. max f(x1, x2) = 4x1 + 3x2, subject to

3x1 + 20x2 ≤ 100

4x1 + 2x2 ≤ 20

x1 ≥ 0

x2 ≥ 0

13. max f(x1, x2) = 2x1 + 3x2, subject to

33x1 + 50x2 ≤ 300

4x1 + x2 ≤ 20

x1 ≥ 0

x2 ≥ 0

14. max f(x1, x2) = 3x1 + 3x2, subject to

18x1 + 40x2 ≤ 250

2x1 + x2 ≤ 20

x1 ≥ 0

x2 ≥ 0

15. max f(x1, x2) = 2x1 + 2x2, subject to

20x1 + 30x2 ≤ 300

4x1 + 3x2 ≤ 30

x1 ≥ 0

x2 ≥ 0

16. max f(x1, x2) = 4x1 + 3x2, subject to

13x1 + 20x2 ≤ 150

40x1 + 20x2 ≤ 200

x1 ≥ 0

x2 ≥ 0

17. max f(x1, x2) = x1 + x2, subject to

17x1 + 31x2 ≤ 300

2x1 + x2 ≤ 20

x1 ≥ 0

x2 ≥ 0
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18. max f(x1, x2) = 2x1 + 2x2, subject to

23x1 + 31x2 ≤ 300

2x1 + x2 ≤ 15

x1 ≥ 0

x2 ≥ 0

19. max f(x1, x2) = 4x1 + 3x2, subject to

19x1 + 27x2 ≤ 150

33x1 + 18x2 ≤ 200

x1 ≥ 0

x2 ≥ 0

20. max f(x1, x2) = x1 + x2, subject to

42x1 + 51x2 ≤ 500

2x1 + x2 ≤ 20

x1 ≥ 0

x2 ≥ 0

21. min f(x1, x2) = 500x1 + 20x2, subject to

42x1 + 2x2 ≥ 1

51x1 + x2 ≥ 1

x1 ≥ 0

x2 ≥ 0

22. min f(x1, x2) = 150x1 + 200x2, subject to

19x1 + 33x2 ≥ 4

27x1 + 18x2 ≥ 3

x1 ≥ 0

x2 ≥ 0

23. min f(x1, x2) = 300x1 + 15x2, subject to

23x1 + 2x2 ≥ 2

31x1 + x2 ≥ 2

x1 ≥ 0

x2 ≥ 0
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24. min f(x1, x2) = 300x1 + 20x2, subject to

17x1 + 2x2 ≥ 1

31x1 + x2 ≥ 1

x1 ≥ 0

x2 ≥ 0

25. min f(x1, x2) = 150x1 + 200x2, subject to

13x1 + 40x2 ≥ 4

20x1 + 20x2 ≥ 3

x1 ≥ 0

x2 ≥ 0

26. min f(x1, x2) = 300x1 + 30x2, subject to

20x1 + 4x2 ≥ 2

30x1 + 3x2 ≥ 2

x1 ≥ 0

x2 ≥ 0

27. min f(x1, x2) = 250x1 + 20x2, subject to

18x1 + 2x2 ≥ 3

40x1 + x2 ≥ 3

x1 ≥ 0

x2 ≥ 0

28. min f(x1, x2) = 300x1 + 20x2, subject to

33x1 + 4x2 ≥ 2

50x1 + x2 ≥ 3

x1 ≥ 0

x2 ≥ 0

29. min f(x1, x2) = 100x1 + 20x2, subject to

3x1 + 4x2 ≥ 4

20x1 + 2x2 ≥ 3

x1 ≥ 0

x2 ≥ 0
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30. min f(x1, x2) = 200x1 + 10x2, subject to

10x1 + 3x2 ≥ 2

20x1 + x2 ≥ 3

x1 ≥ 0

x2 ≥ 0

31. min f(x1, x2) = 150x1 + 20x2, subject to

10x1 + 6x2 ≥ 4

15x1 + 2x2 ≥ 5

x1 ≥ 0

x2 ≥ 0

32. min f(x1, x2) = 100x1 + 20x2, subject to

5x1 + 5x2 ≥ 4

15x1 + 2x2 ≥ 3

x1 ≥ 0

x2 ≥ 0

33. min f(x1, x2) = 70x1 + 20x2, subject to

3x1 + 5x2 ≥ 5

15x1 + x2 ≥ 3

x1 ≥ 0

x2 ≥ 0

34. min f(x1, x2) = 100x1 + 20x2, subject to

x1 + 5x2 ≥ 4

15x1 + x2 ≥ 3

x1 ≥ 0

x2 ≥ 0

35. min f(x1, x2) = 50x1 + 20x2, subject to

6x1 + 5x2 ≥ 5

12x1 + 1x2 ≥ 3

x1 ≥ 0

x2 ≥ 0
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36. min f(x1, x2) = 10x1 + 10x2, subject to

10x1 + 5x2 ≥ 6

4x1 + 10x2 ≥ 3

x1 ≥ 0

x2 ≥ 0

37. min f(x1, x2) = 10x1 + 10x2, subject to

x1 + 5x2 ≥ 4

4x1 + 3x2 ≥ 3

x1 ≥ 0

x2 ≥ 0

38. min f(x1, x2) = 20x1 + 10x2, subject to

x1 + 5x2 ≥ 2

4x1 + x2 ≥ 1

x1 ≥ 0

x2 ≥ 0

39. min f(x1, x2) = 50x1 + 10x2, subject to

2x1 + 5x2 ≥ 2

6x1 + x2 ≥ 1

x1 ≥ 0

x2 ≥ 0

40. min f(x1, x2) = x1 + 2x2, subject to

2x1 + 8x2 ≥ 1

3x1 + x2 ≥ 1

x1 ≥ 0

x2 ≥ 0

41. max f(x1, x2) = 175x1 + 78x2, subject to

202x1 + 143x2 ≤ 243

393x1 + 137x2 ≤ 442

x1 ≥ 0

x2 ≥ 0
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42. max f(x1, x2) = 494x1 + 68x2, subject to

180x1 + 7x2 ≤ 21

81x1 + 216x2 ≤ 176

x1 ≥ 0

x2 ≥ 0

43. max f(x1, x2) = 116x1 + 192x2, subject to

45x1 + 183x2 ≤ 146

100x1 + 8x2 ≤ 151

x1 ≥ 0

x2 ≥ 0

44. max f(x1, x2) = 59x1 + 30x2, subject to

76x1 + 187x2 ≤ 166

104x1 + 27x2 ≤ 187

x1 ≥ 0

x2 ≥ 0

45. max f(x1, x2) = 94x1 + 150x2, subject to

41x1 + 145x2 ≤ 18

147x1 + 28x2 ≤ 4

x1 ≥ 0

x2 ≥ 0

46. max f(x1, x2) = 85x1 + 166x2, subject to

63x1 + 8x2 ≤ 11

20x1 + 46x2 ≤ 11

x1 ≥ 0

x2 ≥ 0

47. max f(x1, x2) = 174x1 + 73x2, subject to

116x1 + 22x2 ≤ 32

92x1 + 186x2 ≤ 141

x1 ≥ 0

x2 ≥ 0
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48. max f(x1, x2) = 117x1 + 151x2, subject to

35x1 + 129x2 ≤ 96

100x1 + 50x2 ≤ 196

x1 ≥ 0

x2 ≥ 0

49. max f(x1, x2) = 148x1 + 188x2, subject to

18x1 + 131x2 ≤ 87

102x1 + 108x2 ≤ 124

x1 ≥ 0

x2 ≥ 0

50. max f(x1, x2) = 84x1 + 121x2, subject to

143x1 + 136x2 ≤ 145

18x1 + 82x2 ≤ 83

x1 ≥ 0

x2 ≥ 0

51. max f(x1, x2) = 30x1 + 17x2, subject to

22x1 + 149x2 ≤ 138

97x1 + 5x2 ≤ 43

x1 ≥ 0

x2 ≥ 0

52. max f(x1, x2) = 99x1 + 13x2, subject to

64x1 + 4x2 ≤ 158

41x1 + 110x2 ≤ 164

x1 ≥ 0

x2 ≥ 0

53. max f(x1, x2) = 95x1 + 87x2, subject to

46x1 + 26x2 ≤ 98

3x1 + 52x2 ≤ 160

x1 ≥ 0

x2 ≥ 0
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54. max f(x1, x2) = 192x1 + 188x2, subject to

97x1 + 186x2 ≤ 88

195x1 + 134x2 ≤ 81

x1 ≥ 0

x2 ≥ 0
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Chapter 7

Quadratic programming – the
active set method

7.1 Introduction

A quadratic programming problem is an optimization problem where the objective
function is quadratic and the constraints are linear:

min f(x) =
1

2
xTQx+ cTx

A1x = b1

A2x 4 b2

with f : Rn → R, Q ∈ Rn×n, c ∈ Rn, n being the number of variables.

Here we assume that Q = QT ≥ 0 (positive semi-definite), so that the problem
to be solved is a convex quadratic problem. We have m equality constraints corre-
sponding to A1x = b1 and p inequality constraints, corresponding to A2x 4 b2. To
solve the above problem, the method of Lagrange multipliers can be used. Recall that
the Lagrangean of the problem can be written as

L(x,λ) =
1

2
xTQx+ cTx+

m∑
i=1

λi(aix− bi) +

m+p∑
j=m+1

λj(ajx− bj) (7.1)

where ai (aj) denotes the ith (j−mth) row of the matrixA1 (A2) and λ is the vector
of m+ p Lagrange multipliers.
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We can write the Karush-Kuhn-Tucker (KKT) conditions for this problem:

∂L

∂x
= 0 (7.2)

aTi x = bi, i = 1, . . . , m (7.3)

aTj x ≤ bj , j = m+ 1, . . . , m+ p (7.4)

λj(a
T
j x− bj) = 0, j = m+ 1, . . . , m+ p (7.5)

λj ≥ 0, j = m+ 1, . . . , m+ p (7.6)

λi , i = 1, . . . , m unrestricted in sign (7.7)

Since the objective function is convex and the constraints are linear, the KKT condi-
tions are both necessary and sufficient for a point x∗ to be an optimum.

One method to solve a convex quadratic problem is the active set method. An
active set is the set of constraints that are active (i.e., they are satisfied as equalities)
at a certain point. Let us assume now that there are no equality constraints, i.e., the
constraints are Āx 4 b̄. The algorithm for the active set method is described in
Algorithm 7.1. In the method below ai denotes the ith row of the constraint matrix
Ā and λi are the Lagrange multipliers corresponding to the active constraints. The
number of active constraint may vary throughout the steps from 0 to m, m being the
number of constraints.

7.2 Example

Consider the following convex quadratic programming problem:

min f(x1, x2) =
1

2

(
x1
x2

)T (
8 5.5

5.5 13

)(
x1
x2

)
+
(
−7 2

)(x1
x2

)
subject to

x1 + 10x2 ≤ 25 C1

x1 − x2 ≤ 3 C2

−x1 + 3x2 ≤ 4 C3

−x1 − 3x2 ≤ −6 C4

(7.13)

i.e., Q =

(
8 5.5

5.5 13

)
, c =

(
−7

2

)
, Ā =


1 10

1 −1

−1 3

−1 −3

, b =


25

3

4

−6

.

The constraints (7.13) and the resulting feasible set, together with the contour
plot of the objective function are illustrated in Figure 7.1.
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Algorithm 7.1 Active set method
Input: Parameters of the quadratic objective function: Q and c
Input: Constraints: Ā and b̄, initial feasible point x0, initial working set W0

Compute the gradient at the current point: g0 = Qx0 + c

Compute the matrix A having the rows ai, i ∈Wk

Solve the linear system (
Q AT

A 0

)(
d0
λ

)
=

(
−g0

0

)
(7.8)

Set k = 0

while (not all λi ≥ 0) or (dk 6= 0) do
if dk = 0 then

Check optimality:
if all λi ≥ 0 then

Stop and return the current point xk

else
Find j = argminj∈Wk

(λj)

Remove constraint j from the working set Wk

Keep the same point for the next step: xk+1 = xk

end if
else

Compute the step length αk from:

αk = min
i/∈Wk, aidk>0

(
1,
bi − aixk

aidk

)
(7.9)

Compute the new point: xk+1 = xk + αkdk
if αk < 1 then

Find the blocking constraint with index

ib = argmini/∈Wk, aidk>0

(
1,
bi − aixk

aidk

)
(7.10)

Add the constraint ib to the working set Wk

end if
end if
Set k ← k + 1

Compute the gradient of the objective function at the current point:

gk = Qxk + c (7.11)

Compute the matrix A having the rows ai, i ∈Wk

Solve the linear system (
Q AT

A 0

)(
dk
λ

)
=

(
−gk

0

)
(7.12)

end while
Output: Minimum point
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Figure 7.1: The constraints (7.13) and the feasible set.

As can be seen, the unconstrained minimum of the objective function is outside
the feasible set. Let us proceed with the active set method, as described by Algorithm
7.1.

A feasible initial point can be chosen e.g., as the intersection of C1 and C3,
x10 = 35

13 , x20 = 29
13 . The corresponding working set is W0 = {1, 3}, as C1 and C3

are active at this point. The gradient at this point is1
(

26.8

45.8

)
, and the linear matrix

equation 
8 5.5 1 −1

5.5 13 10 3

1 10 0 0

−1 3 0 0

(d1λ
)

=


−26.80

−45.80

0

0


has to be solved. Since there are 2 active constraints, 2 Lagrange multipliers have to
be computed. The solution is

d1 =

(
0

0

)
λ =

(
−9.71

17.10

)
As can be seen, the new directions are 0, but one of the Lagrange multipliers is

negative. Thus, the corresponding constraint (C1) is removed from the working set,
which becomes W (1) = {3}. The new point is the same as the previous.

The new linear matrix equation to be solved is: 8 5.5 1

5.5 13 3

−1 3 0

(d2
λ

)
=

−26.80

−45.80

0


1Values are truncated to two decimal places.
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with only one active constraint. The solution is

d2 =

(
−3.20

−1.07

)
λ =

(
−4.75

)
The direction is no longer 0, therefore we move along the new direction. We

compute the stepsize αk as

αk = min
i/∈Wk, a

T
i dk>0

(
1,
bi − aTi xk

aTi dk

)
The last constraint (C4) blocks the direction, with a α = 0.52. Therefore, the new

point is x1 = x0 + αd2 =

(
1

1.66

)
and the new working set becomes W = {3, 4}.

The new matrix equation is
8 5.5 −1 −1

5.5 13 3 −3

−1 3 0 0

−1 −3 0 0

(d3λ
)

=


−10.16

−29.16

0

0


where g1 =

(
−10.16

−29.16

)
is the gradient of the function in the new point. The solution

of the matrix equation above is

d3 =

(
0

0

)
λ =

(
0.22

9.94

)
The directions are 0 and both λs are positive, thus the algorithm stops. The

minimum point is x∗ =

(
1

1.66

)
. The function’s value in this point is f(x) = 27.55.

7.3 Exercises

Solve the following quadratic programming problems:

min f(x) = 1
2x

TQx+ cTx subject to
Āx � b̄

with Q, c, Ā, and b̄ given as
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1.

Q =

(
1 0

1 6

)
c =

(
−1

−2

)
Ā =


1 2

−4 −1

−1 0

0 −1

 b̄ =


2

−2

0

0


2.

Q =

(
1 4

1 6

)
c =

(
−1

2

)
Ā =


1 2

−3 −0.5

−1 0

0 −1

 b̄ =


2

−2

0

0


3.

Q =

(
1 2

1 6

)
c =

(
−1

−2

)
Ā =


1 2

−2 −0.5

−1 0

0 −1

 b̄ =


2

−2

0

0


4.

Q =

(
1 2

1 6

)
c =

(
−1

−2

)
Ā =


1 −2

−2 .5

1 2

2 1

 b̄ =


2

2

1

1


5.

Q =

(
1 1

1 4

)
c =

(
−1

−2

)
Ā =


1 −2

−4 .5

1 3

2 1

 b̄ =


2

2

1

1


6.

Q =

(
1 3

1 6

)
c =

(
−1

−2

)
Ā =


1 −1

−4 5

1 3

−2 −1

 b̄ =


2

2

1

−1


7.

Q =

(
1 3

1 6

)
c =

(
4

−4

)
Ā =


1 −1

−4 5

1 3

−2 −1

 b̄ =


2

2

1

−1
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8.

Q =

(
1 3

1 6

)
c =

(
−4

−6

)
Ā =


1 −1

−4 5

1 3

−2 −1

 b̄ =


2

2

1

−1


9.

Q =

(
1 0

1 6

)
c =

(
−4

−2

)
Ā =


1 −1

−2 3

1 3

−2 −1

 b̄ =


2

2

1

−1


10.

Q =

(
1 0

1 4

)
c =

(
−6

−6

)
Ā =


1 −5

−2 3

1 3

−2 1

 b̄ =


2

2

2

1


11.

Q =

(
2 0

3 10

)
c =

(
−6

−6

)
Ā =


1 −5

−2 3

1 3

−2 1

 b̄ =


2

2

2

2


12.

Q =

(
1 2

3 7

)
c =

(
−2

−3

)
Ā =


1 −0.66

1 2

−1 0.66

−1 −2

 b̄ =


1.33

4

1.33

4


13.

Q =

(
1 2

3 7

)
c =

(
−2

−3

)
Ā =


1 −1

1 2

−1 0.5

−1 −1

 b̄ =


1

4

1

4


14.

Q =

(
1 2

3 7

)
c =

(
−2

−3

)
Ā =


1 −0.41

1 2

−1 0.5

−1 −1

 b̄ =


1.58

4

1

4
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15.

Q =

(
1 2

3 7

)
c =

(
−2

−3

)
Ā =


1 −0.62

1 0.16

−1 0.28

−1 −0.16

 b̄ =


1.37

2.16

1

1


16.

Q =

(
1 0

4 8

)
c =

(
−5

−3

)
Ā =


1 −0.35

1 0.16

−1 0.33

−1 −0.07

 b̄ =


11.64

2.16

1.33

0.92


17.

Q =

(
1 3

0 8

)
c =

(
−5

−3

)
Ā =


1 −0.35

1 0.16

−1 0.33

−1 −0.07

 b̄ =


11.64

2.16

1.33

0.92


18.

Q =

(
1 3

0 8

)
c =

(
−5

3

)
Ā =


1 −0.5

1 0.33

−1 2

−1 −0.07

 b̄ =


2.5

1.66

3

0.92


19.

Q =

(
2 3

0 5

)
c =

(
5

3

)
Ā =


1 −1.25

1 0.5

−1 2

−1 −0.16

 b̄ =


2

2

3

0.83


20.

Q =

(
2 3

0 5

)
c =

(
5

3

)
Ā =


1 −1

1 0.12

−1 0.6

−1 −0.4

 b̄ =


2

2

3.8

0.8


21.

Q =

(
2 1

0 5

)
c =

(
−2

−3

)
Ā =


1 −0.16

1 0.16

−1 0.42

−1 −0.18

 b̄ =


1.66

2.33

2.42

1.81
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22.

Q =

(
2 0

3 5

)
c =

(
−2

3

)
Ā =


1 −0.22

1 0.14

−1 0.42

−1 −0.22

 b̄ =


1.77

2.14

2.42

1.77


23.

Q =

(
1 −1

−3 5

)
c =

(
2

4

)
Ā =


1 −0.2

1 0.16

−1 0.42

−1 −0.22

 b̄ =


1.6

2.33

2.42

1.77


24.

Q =

(
1 −2

−3 7

)
c =

(
2

4

)
Ā =


1 −0.18

1 1

−1 0.42

−1 −0.4

 b̄ =


0.72

9

2.42

1.6


25.

Q =

(
1 −2

−3 7

)
c =

(
2

4

)
Ā =


1 −0.28

1 0.33

−1 0.6

−1 −0.4

 b̄ =


0.57

3.66

3.8

0.8


26.

Q =

(
1 2

−3 7

)
c =

(
2

4

)
Ā =


1 −0.13

1 0.2

−1 0.6

−1 −0.13

 b̄ =


1.6

2.6

3.8

1.6


27.

Q =

(
1 2

−3 7

)
c =

(
2

−1

)
Ā =


1 −0.13

1 0.2

−1 0.6

−1 −0.13

 b̄ =


1.6

2.6

3.8

1.6


28.

Q =

(
1 1

−3 5

)
c =

(
2

−1

)
Ā =


1 −0.13

1 0.2

−1 0.6

−1 −0.13

 b̄ =


1.6

2.6

3.8

1.6
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29.

Q =

(
1 4

3 15

)
c =

(
−5

−1

)
Ā =


1 −0.13

1 0.2

−1 0.6

−1 −0.13

 b̄ =


1.6

2.6

3.8

1.6


30.

Q =

(
1 4

3 15

)
c =

(
−5

−1

)
Ā =


1 −0.26

1 0.2

−1 0.8

−1 −0.06

 b̄ =


2.2

3.6

4.4

1.8


31.

Q =

(
1 4

3 15

)
c =

(
−5

−1

)
Ā =


1 −0.5

1 0.2

−1 0.8

−1 −0.75

 b̄ =


1.5

3.6

4.4

−0.25


32.

Q =

(
1 4

3 15

)
c =

(
−5

−1

)
Ā =


1 −1

1 0.6

−1 1

−1 −0.6

 b̄ =


2

6.8

6

−0.4


33.

Q =

(
1 4

1 15

)
c =

(
−5

−1

)
Ā =


1 −0.4

1 0.25

−1 1

−1 −0.6

 b̄ =


1.4

4

6

−0.4


34.

Q =

(
1 4

1 15

)
c =

(
5

−1

)
Ā =


1 −0.28

1 0.25

−1 1

−1 −0.42

 b̄ =


1.85

4

6

0.28


35.

Q =

(
1 4

1 15

)
c =

(
25

−1

)
Ā =


1 −0.28

1 0.25

−1 1

−1 −0.42

 b̄ =


1.85

4

6

0.28
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36.

Q =

(
1 −4

−1 15

)
c =

(
3

−1

)
Ā =


1 −0.25

1 0.66

−1 0.75

−1 −0.42

 b̄ =


1.75

6.33

5

0.28


37.

Q =

(
1 −4

−1 15

)
c =

(
−3

−1

)
Ā =


1 −0.4

1 0.66

−1 0.75

−1 −0.11

 b̄ =


1

6.33

5

1.55


38.

Q =

(
1 −4

−1 15

)
c =

(
−15

−1

)
Ā =


1 −0.3636

1 1

−1 1

−1 −0.1

 b̄ =


0.81

9

7

1.5


39.

Q =

(
1 −4

−1 15

)
c =

(
−15

−1

)
Ā =


1 −0.28

1 1

−1 4

−1 −0.5

 b̄ =


1.28

9

31

−0.5


40.

Q =

(
1 −4

−1 15

)
c =

(
−10

−1

)
Ā =


1 −0.25

1 3

−1 3

−1 −0.5

 b̄ =


1.25

24

24

−0.5


41.

Q =

(
8 5

6 13

)
c =

(
−1

−8

)
Ā =


1 10

−1 1.33

1 −3

−1 −3

 b̄ =


82

−2.66

−4

−26


42.

Q =

(
6 10

9 19

)
c =

(
−5

−17

)
Ā =


1 −12

1 0.45

−1 0

1 −1.4

 b̄ =


−23

14.36

−8

−1.8
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43.

Q =

(
10 1

7 18

)
c =

(
0

−8

)
Ā =


−1 2

1 −0.57

−1 −5

1 2.25

 b̄ =


20

1.42

−46

26.75


44.

Q =

(
14 6

0 12

)
c =

(
−3

1

)
Ā =


1 0.36

1 3.66

−1 1.3

−1 −2

 b̄ =


5

41.33

−1.75

−5


45.

Q =

(
8 5

4 17

)
c =

(
12

8

)
Ā =


1 2

−1 0.66

−1 0.09

1 0.84

 b̄ =


17

−1

−2.72

15.85


46.

Q =

(
6 0

5 20

)
c =

(
−2

−6

)
Ā =


1 2

1 0.33

1 −0.3750

1 0

 b̄ =


26

9.33

8.6250

12


47.

Q =

(
13 2

3 20

)
c =

(
10

0

)
Ā =


1 −3

1 0.57

−1 −2

−1 1

 b̄ =


−39

11

−21

20


48.

Q =

(
14 5

1 15

)
c =

(
3

−8

)
Ā =


−1 0.75

1 1.33

−1 −0.2

−1 4

 b̄ =


1.25

21.66

−5.8

11


49.

Q =

(
14 7

6 17

)
c =

(
−7

2

)
Ā =


−1 0.25

−1 −1.33

1 1.5

−1 0

 b̄ =


−8.75

1

33

−12
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50.

Q =

(
12 6

7 13

)
c =

(
−17

8

)
Ā =


1 7

−1 −1.1

1 0.2

−1 2

 b̄ =


86

−15.2

13.4

13
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Appendix A

Introduction to MATLAB

A.1 Introduction

MatLab (The Mathworks Inc.) is a commercial “Matrix Laboratory” package which
operates as an interactive programming environment for scientific and engineering
calculations.

Matlab is a command-driven, interactive language, aimed at solving mathemati-
cal problems involving vectors and matrices. The only data structure which Matlab
uses is a non-dimensional matrix (or array), the dimensions being adjusted automati-
cally by Matlab as required.

A.2 Statements and variables

Statements have the form:

>> variable = expression

The command prompt is represented by two right arrows “�”. Equality “=” implies
the assignment of the expression to the variable.

The assignment of value 1 to the variable a is executed after the enter key is
pressed.

>> a = 1
a =

1

The value of the variable is automatically displayed after the statement is executed.
If the statement is followed by a semicolon “;” the output is suppressed.

>> a = 1;
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The usual mathematical operators can be used in expressions. The common op-
erators are “+”(addition), “-”(subtraction), “\” (division), “*” (multiplication), “ˆ”
(power). The order of arithmetic operations can be altered by using parentheses.

Matlab can be used in “calculator mode”. When the variable name and “=” are
omitted from an expression, the result is assigned to the generic variable ans.

>> 3.7*3
ans =

11.1000

A.3 Entering vectors and matrices

A row (line) vector can be created by entering each element (separated by space or
comma) between brackets.

>> a = [1 2 3 4 5 6 9 8 7]

Matlab returns:

a =
1 2 3 4 5 6 9 8 7

A vector with elements evenly spaced between 0 and 20 in increments of 2 (this
method is frequently used to create a time or index vector) can be created as follows:

>> t = 0:2:20
t =

0 2 4 6 8 10 12 14 16 18 20

Individual items within the vector can be referenced. To change the fifth element
in the t vector:

>> t(5) = 23
t =

0 2 4 6 23 10 12 14 16 18 20

Suppose that we want to add 2 to each of the elements in vector a:

>> b = a + 2
b =

3 4 5 6 7 8 11 10 9

Adding two vectors of the same length:
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>> c = a + b
c =

4 6 8 10 12 14 20 18 16

Subtraction of vectors of the same length works exactly the same way.
Entering matrices into Matlab is done by entering each row separated by a semi-

colon “ ;” or a return:

>> B = [1 2 3 4;5 6 7 8;9 10 11 12]
B =

1 2 3 4
5 6 7 8
9 10 11 12

>> B = [ 1 2 3 4
5 6 7 8
9 10 11 12]

B =
1 2 3 4
5 6 7 8
9 10 11 12

Matrices in Matlab can be manipulated in many ways. The transpose of a matrix
is obtained by using the “ ’” key:

>> C = B’
C =

1 5 9
2 6 10
3 7 11
4 8 12

It should be noted that if C is complex, the apostrophe results in the complex conju-
gate transpose. To obtain the transpose, use “.’” (the two commands are the same
if the matrix is not complex). Now we might multiply the two matrices B and C.
Remember that order matters when multiplying matrices.

>> D = B * C
D =

30 70 110
70 174 278
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110 278 446
>> D = C * B

D =
107 122 137 152
122 140 158 176
137 158 179 200
152 176 200 224

Element-wise multiplication is obtained using the “.*” operator (for matrices of the
same sizes).

>> E = [1 2;3 4], F = [2 3;4 5], G = E .* F
E =

1 2
3 4

F =
2 3
4 5

G =
2 6
12 20

Square matrices can also be raised to a given integer power.

>> Eˆ3
ans =

37 54
81 118

Element-wise power is obtained by using “.ˆ”

>> E.ˆ3
ans =

1 8
27 64

A.4 Matlab functions

Matlab includes many standard functions. Each function is a block of code that
accomplishes a specific task. Commonly used constants such as “pi” (π), and “i”
or “j” for the square root of −1, are also incorporated into Matlab. e (the base of
natural logarithm) is not included, to obtain e one should use exp(1) (exponent of 1).
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Table A.1: Trigonometric and elementary math functions
sin(x) Sine of the elements of x
cos(x) Cosine of the elements of x
asin(x) Arcsine of the elements of x
acos(x) Arccosine of the elements of x
tan(x) Tangent of the elements of x
atan(x) Arctangent of the elements of x
abs(x) Absolute value of the elements of x
sqrt(x) Square root of x
imag(x) Imaginary part of x
real(x) Real part of x
conj(x) Complex conjugate of x
log(x) Natural logarithm of the elements of x
log10(x) 10 based logarithm of the elements of x
exp(x) Exponential of the elements of x
sign(x) Sign of x

Matlab has available most trigonometric and elementary math functions as shown
in Table A.1.

Some functions for matrix properties and manipulation are given in Table A.2. To
see how a function should be used, type help function name at the Matlab command
window.

Table A.2: Matrix manipulation
inv(x) Inverse of a matrix x
eig(x) Eigenvalues of the matrix x
det(x) Determinant of matrix x
rank(x) Rank of matrix x
eye, ones, zeros, diag Matrix building functions

A.5 Polynomials

A polynomial is represented by a vector. To create a polynomial in Matlab, the
coefficients of the polynomial should be entered in descending order. For instance,
to enter the following polynomial:

p(s) = s4 + 3s3 − 15s2 − 2s+ 9

enter it as a vector in the following manner:
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>> p = [1 3 -15 -2 9]

Matlab can interpret a vector of length n + 1 as an nth order polynomial. Thus,
also zero coefficients must be entered in the proper places. For instance

p(s) = s4 + 1

would be represented in Matlab as:

>> p = [1 0 0 0 1];

Some functions to be used for polynomials are given in Table A.3:

Table A.3: Functions for polynomials
roots(p) Roots of polynomial p
polyval(p,value) Value of polynomial p at value
conv(p,q) Polynomial multiplication
deconv(p,q) Divide two polynomials

A.6 Loops and logical statements

Matlab provides loops and logical statements for programming, like for, while, and if
statements. The general forms are:
for variable = expression, statement, ..., statement end;
while variable, statement, ..., statement, end
if variable, statements, end

A.7 Plotting

The simple plot(x,y) function will plot the vector y versus the vector x.
Let us plot a sine wave as a function of time. First define the time vector and then

compute the sin value at each time index.

>> t=0:0.25:7; y = sin(t); plot(t,y)

The result is shown in Figure A.1.
Basic plotting is very easy in Matlab, and the plot command has extensive add-

on capabilities. These capabilities include many functions such as those presented in
Table A.5.

Let us now see 3D plotting. Consider the function f : R→ R, f(x, y) = x2+y2.
To graphically represent this function, first the values of x and y have to be defined
using meshgrid.
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Table A.4: Plotting
plot(x,y) Plots vector y versus vector x.
semilogx(x,y) Plots vector y versus vector x. The y-axis is log10,

the x-axis is linear.
semilogy(x,y) Plots vector y versus vector x. The x-axis is log10,

the y-axis is linear.
loglogx,y) Plots vector x versus vector y. Both axes are log-

arithmic.
mesh(x,y,z) Creates a 3-D mesh surface.
contour(x,y,z) Plots the countour of a function (2D).

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

Figure A.1: Plot of sin(t).

>> [x,y]=meshgrid(-1:.01:1);

Different grids can also be defined for x and y, as follows:

>> [x,y]=meshgrid(-1:.01:1,-2:.01:2);

Then, the graphic (see Figure A.2) is obtained by using mesh :

>> mesh(x,y,x.ˆ2+y.ˆ2)

This in effect means that the value of the function is computed for each point on
the grid generated by “meshgrid”. In many cases more conclusions can be drawn if,
instead of the 3D representation, one inspects the projection of the representation on
the x-y plane, specifically the contour plot, see Figure A.3:

>> contour(x,y,x.ˆ2+y.ˆ2)
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Table A.5: Plotting accessories
grid Toggles a grid on and off in the current figure.
axis Controls axis scaling and appearance
title(‘text’) Adds ‘text’ at the top of the current axis
xlabel(‘text’) Labels the x-axis with ‘text’
ylabel(‘text’) Labels the y-axis with ‘text’
subplot Creates axes in tiled positions

Figure A.2: Graphical representation of x2 + y2.

A.8 Toolboxes and m-files

The functions in Matlab are in general grouped in toolboxes. For instance, the Control
systems Toolbox contains functions of direct use in control engineering. It provides
commands for Bode plots, time responses, control design and so on. There are many
other toolboxes available for MATLAB, e.g: Optimization, Symbolic Math, Iden-
tification, Image Processing, Neural Networks, Spline Functions, Robust Control,
Adaptive Control, etc.

The toolboxes are actually written in MATLAB (that is, they use the statements
and commands of the MATLAB language). They consist of collections of files, called
m-files (since they have the filename extension .m). An m-file is an ASCII file cre-
ated using any text editor, and containing a sequence of MATLAB commands, typed
exactly as they would be from the keyboard when using MATLAB.

Example. Create an m-file called garbage.m containing nothing but the follow-
ing lines:

a=[1 2 3; 2 84; 1 7 9];
inv(a)
eig(a)
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x

y

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure A.3: Contour plot of x2 + y2.

and simply enter the filename (without the .m extension) in response to the MATLAB
prompt. This will execute the commands in the file.

>> garbage

would have exactly the same result as entering the original commands. The file
garbage.m has effectively become a new MATLAB command. Such files are called
script files.

Another type of m-file is a function file. In contrast with the script files the
function files have a name following the word “function” at the beginning of the file.
The filename has to be the same as the function name, and it must not start with
numbers or contain mathematical operations. The function statement syntax is:

function [output arguments] = function name(input arguments)
The input arguments are variables passed to the function. The output arguments

are returned.

Example. Create a m-file called myfunc.m which contains the following lines:

function [sum, product] = myfunc(x,y)
sum = x+y;
product = x*y;

The function will return the sum and product of two numbers and it can be called in
the following way:

>> a=10;
>> b=25.9;
>> [alpha,beta]=myfunc(a,b)
or simply
>> [alpha,beta]=myfunc(10, 25.9)

The variable alpha will have the value of the sum of a and b and beta the value of the
product.

83



APPENDIX

A.9 Symbolic math

The Symbolic Math toolbox allows one to work with symbolic variables. A symbolic
variable x is defined as

>> syms x

Standard Matlab operations and functions can be used on symbolic variables, and
the returned result will be symbolic, i.e., generic variables that can be used without
values.

>> syms x y z
>> f=x+y
f =
x+y
>> g=2*y+z
g =
2*y+z
>> h=f*g
h =
(x+y)*(2*y+z)
>> f=[x yˆ2 z]
f =
[ x, yˆ2, z]

To evaluate a symbolic variable at a given value, one can either use subs (for one
variable)

subs(f,x,1)
ans =
[ 1, yˆ2, z]

or eval, after specifying the values

>> x=1; y=2; z=3;
>> eval(f)
ans =

1 4 3

Symbolic functions can be differentiated or integrated, using diff or int. In gen-
eral, symbolic operations must be performed before one evaluates the variables.

The symbolic function h defined above can be differentiated wrt. one variable as
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diff(h,x)
ans =
2*y+z
diff(diff(h,x),y)
ans =
2

or wrt. all the variables as

g=jacobian(h)
g =
[ 2*y+z, 4*y+z+2*x, x+y]

the result being the vector of partial derivatives. Differentiation of a vector function
wrt. all the variables results in a symbolic matrix (function):

jacobian(g)
ans =
[ 0, 2, 1]
[ 2, 4, 1]
[ 1, 1, 0]

One can also solve symbolic equations

>> syms x
>> sol=solve(’xˆ2+3*x=2’)
sol =
-3/2+1/2*17ˆ(1/2)
-3/2-1/2*17ˆ(1/2)

or systems of equations

>> syms x y
>> sol=solve(’xˆ2+3*x=2’,’x+y=3’)
sol =

x: [2x1 sym]
y: [2x1 sym]

>> sol.x
ans =
-3/2+1/2*17ˆ(1/2)
-3/2-1/2*17ˆ(1/2)
>> sol.y
ans =
9/2-1/2*17ˆ(1/2)
9/2+1/2*17ˆ(1/2)
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The results are treated as symbolic variables. To obtain the exact value, they must
be evaluated:

>> eval(sol.x)
ans =

0.5616
-3.5616

>> eval(sol.y)
ans =

2.4384
6.5616

86



Bibliography

Afshari, S., Aminshahidy, B., and Pishvaie, M. R. (2011). Application of an im-
proved harmony search algorithm in well placement optimization using streamline
simulation. Journal of Petroleum Science and Engineering, 78:664–678.

Amarantini, D., Rao, G., and Berton, E. (2010). A two-step EMG-and-optimization
process to estimate muscle force during dynamic movement. Journal of Biome-
chanics, 43:1827–1830.

Arulampalam, S., Maskell, S., Gordon, N. J., and Clapp, T. (2002). A tutorial on
particle filters for on-line nonlinear/non-Gaussian Bayesian tracking. IEEE Trans-
actions on Signal Processing, 50(2):174–188.

Beck, A. T. and de Santana Gomes, W. J. (2012). A comparison of deterministic,
reliability-based and risk-based structural optimization under uncertainty. Proba-
bilistic Engineering Mechanics, 28:18–29.

Eykhoff, P. (1974). System identification – state and parameter estimation. John
Wiley & Sons.

Hancock, H. (1960). Theory of maxima and minima. Dover, New York.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Transactions of the ASME–Journal of Basic Engineering, 82(1):35–45.

Khalil, H. K. (2002). Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ,
USA.

Kitayama, S., Arakawa, M., and Yamazaki, K. (2011). Differential evolution as
the global optimization technique and its application to structural optimization.
Applied Soft Computing, 11:3792–3803.

Luenberger, D. G. (1966). Observers for multivariable systems. IEEE Transactions
on Automatic Control, 11(2):190–197.

87



APPENDIX

Narendra, K. S. and Annaswamy, A. M. (1989). Stable Adaptive Systems. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA.

Perez, R. and Behdinan, K. (2007). Particle swarm approach for structural design
optimization. Computers and Structures, 85:1579–1588.

Raica, P. (2009). Optimization. UT Press, Cluj-Napoca.

Rao, R., Savsani, V., and Vakharia, D. (2011). Teaching learning-based optimiza-
tion: A novel method for constrained mechanical design optimization problems.
Computer-Aided Design, 43:303–315.

Rao, S. S. (1978). Optimization – theory and applications. Wiley Eastern Limited.

Ristic, B., Arulampalam, S., and Gordon, N. (2004). Beyond the Kalman Filter:
Particle Filters for Tracking Application. Artech House.

88



Glossary

Conventions and notations

The following conventions are used:

• Capital letters denote matrices, lowercase bold letters denote vectors.

• All the vectors used (except for the derivative) are column vectors. The trans-
pose of a vector is denoted by the superscript T . For instance, the transpose of
x is xT .

Notations:

I identity matrix
0 zero matrix
A > 0 A is positive definite (matrix)
a � 0 each entry of the vector a is non-negative
ŝ estimated value
‖ · ‖ norm of a vector/ induced norm of a matrix
∂f
∂x partial derivatives of the function f
H Hessian (matrix of second-order derivatives) of a function
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