
Chapter 2

State-space and transfer functions

TODO: include examples and simulations

2.1 State-space transformations

Recall that the standard state-space description of a linear continuous system is given
by a state equation that relates the rate of change of the state of the system to the
state of the system and the input signals and the output equation where the outputs
are related to the state variables and the input signals. The state-space model is a set
of two matrix equations written in the compact form as:

{
ẋ = Ax + Bu
y = Cx + Du

(2.1)

where the state vector x, the input vector u and the output vector y are:

x =




x1

x2
...

xnx


 , u =




u1

u2
...

unu


 , y =




y1

y2
...

yny


 (2.2)

In equations (2.1):

• x is an (nx × 1) state vector, where nx is the number of states or system order

• u is an (nu × 1) input vector, where nu is the number of input functions

• y is a (ny × 1) output vector where ny is the number of outputs

• A is an (nx × nx) square matrix called the system matrix or state matrix

• B is an (nx × nu) matrix called the input matrix
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CHAPTER 2. STATE-SPACE AND TRANSFER FUNCTIONS

• C is a (ny × nx) matrix called the output matrix

• D is a (ny × nu) matrix which represents any direct connection between the
input and the output. It as called the feedthrough matrix.

It has been already shown in the previous chapter that the definition of a state in
a state-space description is not unique. This can be seen by considering the linear
time-invariant system

ẋ = Ax + Bu

y = Cx + Du
(2.3)

where x denotes the state vector, u is the input vector, y is the output (measurement
vector), A is the state matrix, B is the input matrix, C is the output and D is the
feedthrough matrix, and a linear transformation of x to x̄ defined as

x̄ = T−1x x = T x̄

where T is any nonsingular matrix of appropriate dimensions. Substituting the new
variables into (2.3) we obtain

˙̄x = Āx̄ + B̄u

y = C̄x̄ + D̄u
(2.4)

with Ā = T−1AT , B̄ = T−1B, C̄ = CT , D̄ = D.
Note that only the state vector and the matrices have changed, the input and output

remain the same. Since the transfer function does not depend on the state vector, the
same transfer function is obtained, given by

H(s) =
Y (s)
U(s)

(2.5)

H(s) denotes the transfer function in the s-domain, and Y (s) and U(s) are the
Laplace transform of y(t) and u(t), assuming zero initial conditions.

2.2 From state-space to transfer matrix

To see how the transfer function is obtained, consider the Laplace transform of (2.3):

sX(s)−X(0) = AX(s) + BU(s)

Y (s) = CX(s) + DU(s)

Reordering the terms we get:

(sI −A)X(s) = BU(s) + X(0)

X(s) = (sI −A)−1(X(0) + BU(s))
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and the output can be written as

Y (s) = C(sI −A)−1(X(0) + BU(s)) + DU(s)

or
Y (s) = C

(
(sI −A)−1B + D

)
U(s) + C(sI −A)−1X(0)

which, as can be seen, depends on the initial conditions. In zero initial conditions,
we obtain the well-known expression

Y (s) = C
(
(sI −A)−1B + D

)
︸ ︷︷ ︸

H(s):=

U(s)

and the transfer function

H(s) = C(sI −A)−1B + D

Now, if the transfer function is computed using the transformed matrices Ā, B̄,
C̄, and D̄, we get

H̄(s) = CT (sI − T−1AT )−1T−1B + D

= CTT−1(sI −A)−1TT−1B + D

= C(sI −A)−1B + D

i.e., the same transfer function has been obtained as before.
Note that since

H(s) =
C Adj(sI −A)B

det(sI −A)
+ D

the system poles are given by solution of the characteristic equation det(sI−A) = 0,
are also the eigenvalues of A.

2.3 From transfer function to state-space

This section is taken from Chapter 2 of ?.
Although the transformation from transfer function to a state-space model is not

unique, here we present a method to obtain the state variables in the form of phase
variables. The state variables are phase variables when each subsequent state is de-
fined to be the derivative of the previous state variable.

Consider a system with the input u(t) and the output y(t) described by the n-th
order linear differential equation:

dny(t)
dtn

+ an−1
dn−1y(t)
dtn−1

+ · · ·+ a1
dy(t)
dt

+ a0y(t) = b0u(t) (2.6)
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A convenient way to chose the state variables is to choose the output y(t) and its
n− 1 derivatives as the state variables. They are called phase variables:

x1 = y

x2 =
dy

dt
...

xn =
dn−1y

dtn−1

(2.7)

Differentiating both sides of the system (2.7) yields:

ẋn =
dny

dtn
(2.8)

If we denote ẋi = dix
dti

the system (2.7) can be written also as:

x1 = y

x2 =
dy

dt
=

dx1

dt
= ẋ1

x3 =
d2y

dt2
=

dx2

dt
= ẋ2

...

xn =
dn−1y

dtn−1
=

dxn−1

dt
= ẋn−1

(2.9)

Substituting the definitions (2.7) and (2.8) into (2.6) we obtain:

ẋn + an−1xn + · · ·+ a1x2 + a0x1 = b0u (2.10)

The n-th order differential equation (2.6) is equivalent to a system of n first or-
der differential equations obtained from the definitions of the derivatives from (2.9)
together with the ẋn that results from (2.10):

ẋ1 = x2

ẋ2 = x3

...

ẋn−1 = xn

ẋn = −a0x1 − a1x2 − · · · − an−1xn + b0u
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In a matrix-vector form equations (2.11) become:



ẋ1

ẋ2

ẋ3
...

ẋn−1

ẋn




=




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...
0 0 0 0 · · · 1
−a0 −a1 −a2 −a3 · · · −an−1







x1

x2

x3
...

xn−1

xn




+




0
0
0
...
0
b0




u

(2.11)
Equation (2.11) is the phase-variable form of the state equation. This form is

easily recognized by the pattern of 1’s above the main diagonal and 0’s for the rest of
the state matrix, except for the last row that contains the coefficients of the differential
equation written in reverse order, (Nise, 2004).

The output equation is:
y = x1

or, in a vector form:

y =
[

1 0 0 0 · · · 0
]




x1

x2

x3
...

xn−1

xn




+ 0 · u (2.12)

2.3.1 Converting a transfer function with constant term at numerator

For a system with an input u and an output y consider a general transfer function with
constant term at numerator:

H(s) =
b0

sn + an−1sn−1 + · · ·+ a1s + a0
=

Y (s)
U(s)

Cross-multiplying the relation above yields:

(sn + an−1s
n−1 + · · ·+ a1s + a0)Y (s) = b0U(s)

and by taking the inverse Laplace transform we get:

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y = b0u

This is exactly the equation (2.6) for which the phase-variable form was obtained
above. The state equation is then (2.11) and the output equation is (2.12). Note that
the matrix D = 0.
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Example 2.1 Consider a system with the input u and an output y described by the
transfer function:

H(s) =
2

s3 + 2s2 + 3s + 4

The transfer function written as the ratio of the Laplace transform of the output to
the Laplace transform of the input, with all the initial conditions assumed to be zero
is:

Y (s)
U(s)

=
2

s3 + 2s2 + 3s + 4
or

(s3 + 2s2 + 3s + 4)Y (s) = 2U(s)

Taking the inverse Laplace transform we obtain the differential equation:

d3y

dt3
+ 2

d2y

dt2
+ 3

dy

dt
+ 4y = 2u (2.13)

Choosing the state variables as successive derivatives (phase variable form) we get:

x1 = y

x2 =
dy

dt
=

dx1

dt
= ẋ1

x3 =
d2y

dt2
=

dx2

dt
= ẋ2

and the derivative of the last state variable is:

ẋ3 =
d3y

dt3

All the above definitions are now replaced into (2.13):

ẋ3 + 2x3 + 3x2 + 4x1 = 2u

This last relation and the definitions of the phase variables will give the state equation
in the phase variable form:

ẋ1 = x2

ẋ2 = x3

ẋ3 = −4x1 − 3x2 − 2x3 + 2u

and the output equation:
y = x1
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In the matrix-vector form, the state-space model is:




ẋ1

ẋ2

ẋ3


 =




0 1 0
0 0 1
−4 −3 −2







x1

x2

x3


 +




0
0
2


u (2.14)

y =
[

1 0 0
]



x1

x2

x3


 (2.15)

If the vector of state variables is denoted by

x =




x1

x2

x3




the state-space model is:

ẋ =




0 1 0
0 0 1
−4 −3 −2


x +




0
0
2


u

y =
[

1 0 0
]
x

2.3.2 Converting a transfer function with polynomial at numerator

Although the method presented below can be applied for systems of any order, to
simplify the demonstration, consider a third-order transfer function with a second-
order polynomial in the numerator:

H(s) =
b2s

2 + b1s + b0

s3 + a2s2 + a1s + a0

Notice that the denominator is a monic polynomial (the leading coefficient or the
coefficient of highest degree is equal to 1). If the polynomial in the numerator is of
order less than the polynomial in the denominator, the numerator and denominator
can be handled separately. First, separate the transfer function into two cascaded
transfer functions, as shown in Figure 2.1: the first is the denominator and the second
one is just the numerator, (Nise, 2004).

The first transfer function will be converted to the phase-variable representation
in state-space as demonstrated in the previous subsection 2.3.1. Hence, phase variable
x1 is the output and the rest of the phase variables are the internal variables of the
first block as shown in Figure 2.1.
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Figure 2.1: Decomposing a transfer function

The first transfer function is:

X1(s)
U(s)

=
1

s3 + a2s2 + a1s + a0
(2.16)

and the second one:
Y (s)
X1(s)

= b2s
2 + b1s + b0 (2.17)

Following the procedure described in the previous section, the state equation re-
sulting from (2.16) will be:




ẋ1

ẋ2

ẋ3


 =




0 1 0
0 0 1
−a0 −a1 −a2







x1

x2

x3


 +




0
0
1


u (2.18)

The second transfer function with just the numerator yields:

Y (s) = (b2s
2 + b1s + b0)X1(s)

where, after taking the inverse Laplace transform with zero initial conditions:

y = b2
d2x1

dt2
+ b1

dx1

dt
+ b0x1

But the derivative terms are the definitions of the phase variables obtained in the first
block. Thus, writing the terms in reverse order, the output equation is:

y = b0x1 + b1x2 + b2x3

or, in a matrix form:

y =
[

b0 b1 b2

]



x1

x2

x3


 (2.19)

Hence, the second block simply forms a specified linear combination of the state
variables developed in the first block.

From another perspective, the denominator of the transfer function yields the state
equations while the numerator yields the output equation.
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If the order of the polynomial in the numerator is equal to the order of the poly-
nomial in the denominator, the third-order transfer function will be written in the
general form:

H(s) =
b3s

3 + b2s
2 + b1s + b0

s3 + a2s2 + a1s + a0

and the numerator resulted from the decomposition is:

Y (s)
X1(s)

= b3s
3 + b2s

2 + b1s + b0 or Y (s) = (b3s
3 + b2s

2 + b1s + b0)X1(s)

After taking the inverse Laplace transform with zero initial conditions:

y = b3
d3x1

dt3
+ b2

d2x1

dt2
+ b1

dx1

dt
+ b0x1

Using the definitions of the state variables resulted in the first block and re-arranging
the terms:

y = b0x1 + b1x2 + b2x3 + b3ẋ3

The output equation must not contain any derivatives of the state variables, but we
can replace ẋ3 with the last equation of the system (2.18):

ẋ3 = −a0x1 − a1x2 − a2x3 + u

so it will become:

y = b0x1 + b1x2 + b2x3 + b3(−a0x1 − a1x2 − a2x3 + u)

Re-arranging the output equation is:

y = (b0 − b3a0)x1 + (b1 − b3a1)x2 + (b2 − b3a2)x3 + b3u

or, in the matrix form:

y =
[

b0 − b3a0 b1 − b3a1 b2 − b3a2

]



x1

x2

x3


 + [b3] u (2.20)

Note that the output equation (2.19) is the same as (2.20) for b3 = 0. Also, note
that the matrix D is no longer equal to zero. If the system has one input and one
output, D is a scalar value and in this case D = b3.

If the system is represented by a transfer function, the minimum number of state
variables that have to be chosen is equal to the order of the system (or the order of
the polynomial in the denominator of the transfer function).
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Example 2.2 Consider a system with the input u and an output y described by the
transfer function:

H(s) =
s + 2

s2 + 2s + 2
Determine the state-space model in the phase variable form.

• Separate the transfer function into two cascaded blocks.

The transfer functions written as the ratio of the Laplace transform of the out-
put to the Laplace transform of the input, with all the initial conditions assumed
to be zero are:

X1(s)
U(s)

=
1

s2 + 2s + 2
,

Y (s)
X1(s)

= s + 2

• Find the state equations for the first block. From the first transfer function we
have:

(s2 + 2s + 2)X1(s) = U(s)

and the differential equation obtained by taking the inverse Laplace transform
is:

ẍ1 + 2ẋ1 + 2x1 = u

The first state variable was already chosen as the output of the first block x1

and the number of state variables is 2, equal to the order of the system. There-
fore we choose the second state in the phase variable form:

x2 = ẋ1

Replacing in the differential equation we obtain:

ẋ2 + 2x2 + 2x1 = u

Re-arranging and taking also the definition of the second state variable we
obtain the state equations:

ẋ1 = x2

ẋ2 = −2x1 − 2x2 + u

or [
ẋ1

ẋ2

]
=

[
0 1
−2 −2

] [
x1

x2

]
+

[
0
1

]
u

or

ẋ =
[

0 1
−2 −2

]
x +

[
0
1

]
u (2.21)
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• Introduce now the block with the numerator. From the transfer function we
obtain:

Y (s) = (s + 2)X1(s)

or, in time-domain:
y = ẋ1 + 2x1 = x2 + 2x1

The output equation can be written also as:

y =
[

2 1
] [

x1

x2

]

or
y =

[
2 1

]
x (2.22)
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