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Chapter 1

Dynamic models - recapitulation

TODO: include values and simulations

1.1 System models

A mathematical model is an equation or set of equations that adequately describe
the behavior of a system. A model is always an approximation of the real system.
System models can be obtained in two ways:

• Identification: given sufficient data from experiments, a mathematical model
can be found from the results =⇒ System identification.

• From first-principle: the model is built form physical/ chemical/ etc. laws =⇒
System modeling.

Some classification of models are:

• Linear: they are homogeneous and obey the principle of superposition, i.e.,
Σ(au1 + bu2) = aΣ(u1) + bΣ(u2).

• Nonlinear: most system model, in particular those obtained by first principles
modeling are nonlinear. For instance, in case of a hardening spring, the reso-
nant frequency increases with the oscillation amplitude.

Example 1.1 Consider the usual spring-mass damper system in Figure 1.1, which is
generally used to model a shock absorber of a car. The model of the system is derived
from Newton’s second law, and the force equation is usually written as:

M
d2y(t)
dt2

= −f
dy

dt
− ky(t) + τ(t) (1.1)
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Figure 1.1: A spring-mass-damper system.

where M is the mass, f is the friction coefficient, k is the stiffness of the linear spring,
d2y(t)

dt2
is the acceleration, dy

dt is the velocity, y(t) is the displacement, τ(t) is the input
(force). Note that this system is linear.

If a so-called hardening spring is used, then the model is (see also Duffing equa-
tion):

M
d2y(t)
dt2

= −f
dy

dt
− kly(t)− kny3(t) + τ(t) (1.2)

where the restoring force provided by the spring is given by kly(t) + kny3(t), which
is nonlinear.

Models can be described by:

• Input-output models: a relationship between the input and output of the system.
For linear, time-invariant systems classically transfer functions are used.

• State-space models: a relationship between the inputs, states (usually variables
that have a physical meaning), and outputs (measurements). The description is
usually in the form of system of differential (in continuous time) or difference
(in discrete time) equations.

Recall that

Definition 1.1 The transfer function of a linear system is defined as the ratio of the
Laplace transform of the output variable to the Laplace transform of the input vari-
able, with all the initial conditions assumed to be zero.
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1.1 SYSTEM MODELS

Example 1.2 Consider the spring-mass damper system in Example 1.1.
The output variable is y – since the displacement is measured – and the (control)

input variable is u := τ . Applying the Laplace transform in zero initial conditions
gives

Ms2Y (s) = −fsY (s)− kY (s) + U(s)

where s denotes the Laplace variable and Y (s) and U(s) are the Laplace transform
of y(t) and τ(t), respectively.

A transfer function description of the (1.1) is obtained as

H(s) =
Y (s)
U(s)

=
1

Ms2 + fs + k

Usually the state-space system model is expressed as a set of first order differen-
tial equations. Denoting x1 = y, x2 = dy

dt = ẋ1, we have

ẋ1(t) = x2(t)

ẋ2(t) = − k

M
x1(t)− f

M
x2(t) +

1
M

u(t)
(1.3)

where x = [x1, x2]T is the vector of the state variables and u is the control input. Let
us now see how the usual matrix form can be obtained. Model (1.3) can be written
as

ẋ1(t) = [0, 1] [x1(t), x2(t)]T + 0u(t)

ẋ2(t) = [− k

M
− f

M
] [x1(t), x2(t)]T +

1
M

u(t)

i.e., ẋ = Ax + Bu, with x =
(

x1(t)
x2(t)

)
, ẋ =

(
ẋ1(t)
ẋ2(t)

)
, A =

(
0 1
− k

M − f
M

)
, and

B =
(

0
1
M

)
. For this system, the output – which is generally the measured variable(s)

– is the displacement, y(t) = x1(t). Therefore, we have

y(t) = x1(t) = [1, 0]x = Cx

with C = [0 1].
The final description of the system is

ẋ = Ax + Bu

y = Cx

which is the usual state-space model of the system. Note that for this particular case
the throughput term – the D matrix – is zero, i.e., the input does not affect directly
the output.
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Remark: Note that the state-space description (1.1) is not unique: choosing x1 =
y, x2 = M dy

dt we get

ẋ1(t) =
1
M

x2(t)

ẋ2(t) = −kx1(t)− fx2(t) + u(t)

which will lead to different matrices.
Remark: transfer functions are classically used for linear, time-invariant sys-

tems. Although for nonlinear system sequences of transfer functions may be defined,
the analysis is cumbersome and the results are scarce.

The state-space model for (1.2) can be obtained similar to (1.1):

ẋ1(t) = x2(t)

ẋ2(t) = − kl

M
x1(t)− kn

M
x3

1(t)−
f

M
x2(t) +

1
M

u(t)

Note however, that due to the nonlinear term kn
M x3

1(t), this system cannot be
expressed in the usual matrix form with constant matrices.

Deterministic nature:

• Deterministic: the output of the system can be determined at any time from
the knowledge of the inputs up to that time. Both models (1.1) and (1.2) are
deterministic.

• Stochastic: there is random behavior in the system, which will affect the output.

Variation with respect to time:

• Time invariant: the model does not depend on time. Models (1.1) and (1.2) are
time invariant.

• Time-varying: if the mass M is considered to be the total mass of the car,
including the fuel that is gradually burned, the models become time-varying
(in fact parameter-varying).

Time-dependence:

• Continuous-time: most models developed from first principles are continuous
time.

• Discrete-time: if the measurements are taken in discrete time and the control
input is applied in discrete time (usual case in digital control), a discrete-time
model of the system considered may be adequate.
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1.2 Mathematical intermezzo

1.2.1 Linearization - Taylor series expansion

The easiest type of models to handle is the linear model. For such models, suffi-
cient and necessary conditions for stability, stabilization, estimation, performance
measures, etc. exist, together with a number of analysis and design conditions to
establish the desired performances. Although most physical models are nonlinear, a
linear approximation may be sufficient if the important variables (state, input, output)
vary in a restricted domain. Such an approximation can be obtained using the Taylor
series expansion.

Consider a continuous and differentiable function f : Rn → R. The Taylor series
expansion around an operating point x0 = [x10, x20, . . . , xn0]T is

f(x) ≈ f(x0) +
∂f

∂x

∣∣∣∣
x=x0

(x− x0) +
1
2!

(x− x0)T ∂2f

∂x2

∣∣∣∣
x=x0

(x− x0) + h.o.t.

Since we are interested in a linear approximation, the Taylor series above is trun-
cated after the first term:

f(x) ≈ f(x0) +
∂f

∂x

∣∣∣∣
x=x0

(x− x0) (1.4)

From here, we have

f(x)− f(x0)︸ ︷︷ ︸
δy

≈ ∂f

∂x

∣∣∣∣
x=x0︸ ︷︷ ︸
A

(x− x0)︸ ︷︷ ︸
δx

i.e.,
δy = Aδx

which is a linear expression.

Example 1.3 Consider the nonlinear state-space model for (1.2), repeated here for
convenience:

ẋ1(t) = x2(t)

ẋ2(t) = − kl

M
x1(t)− kn

M
x3

1(t)−
f

M
x2(t) +

1
M

u(t)

The first equation is linear. The second one is nonlinear, but for a small enough x1(t)
it can be approximated by a linear model. This model will be obtained by the Taylor
series expansion. The operating point around which the linearization is performed is
x1 = 0, x2 = 0, u = 0, ẋ2 = 0.
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Remark: x1 = 0, x2 = 0, u = 0, and ẋ1 satisfy the second equation, thus this
point is indeed an operating point.

The nonlinear function that will be linearized is the second equation of (1.2), i.e.,

f2(x1, x2, u, ẋ2) = − kl

M
x1 − kn

M
x3

1 −
f

M
x2 +

1
M

u− ẋ2 = 0 (1.5)

Since for linearization the time-dependence of the variables is not of interest, to
simplify the notation, the time-dependence in (1.5) is omitted.

Applying the Taylor series expansion, we get

f2(x1, x2, u, ẋ2) ≈ f(0, 0, 0, 0) +
∂f

∂[x1, x2, u, ẋ2]T

∣∣∣∣
x1=0, x2=0, u=0,ẋ2=0




x1 − 0
x2 − 0
u− 0
ẋ2 − 0




f2(x1, x2, u, ẋ2) ≈ 0 +
(
− kl

M − 3kn
M x2

1 − f
M

1
M −1

)∣∣∣
x1=0, x2=0, u=0 ẋ2=0




x1

x2

u

ẋ2




f2(x1, x2, u, ẋ2) ≈
(
− kl

M − f
M

1
M −1

)



x1

x2

u

ẋ2




f2(x1, x2, u, ẋ2) ≈ − kl

M
x1 − f

M
x2 +

1
M

u− ẋ2

i.e.,

ẋ2 = − kl

M
x1 − f

M
x2 +

1
M

u

Finally, the linearized model of (1.2) can be expressed as

ẋ1(t) = x2(t)

ẋ2(t) = − kl

M
x1 − f

M
x2 +

1
M

u

Note that linearization can be performed in any other point, but the state vari-
ables of the linearized model may differ from those of the original variables, which
must be taken into account when returning – for analysis, estimation or control –
to the original nonlinear system. To show this, let us linearize the model (1.2)
in the point x1 = 1, x2 = 1, u = 2. For this point, we have ẋ1 = 1 and
ẋ2 = − kl

M − kn
M − f

M + 2 1
M = ẋ20. Applying the Taylor series expansion for

f2(x1, x2, u, ẋ2) = − kl

M
x1 − kn

M
x3

1 −
f

M
x2 +

1
M

u− ẋ2 = 0
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we get

f2(x1, x2, u, ẋ2) ≈ f2(1, 1, 2, ẋ20) +
∂f2

∂[x1, x2, u, ẋ2]T

∣∣∣∣
x1=1, x2=1, u=2,ẋ2=ẋ20




x1 − 1
x2 − 1
u− 2

ẋ2 − ẋ20




f2(x1, x2, u, ẋ2) ≈ 0 +
(
− kl

M − 3kn
M x2

1 − f
M

1
M −1

)∣∣∣
x1=1, x2=1, u=2 ẋ2=ẋ20




x1 − 1
x2 − 1
u− 2

ẋ2 − ẋ20




f2(x1, x2, u, ẋ2) ≈
(
− kl

M − 3kn
M − f

M
1
M −1

)



x1 − 1
x2 − 1
u− 2

ẋ2 − ẋ20




Recall that f2(x1, x2, u, ẋ2) = 0, thus we have

ẋ2 − ẋ20︸ ︷︷ ︸
δẋ2

=
(
− kl

M − 3kn
M − f

M
1
M

)



x1 − 1
x2 − 1
u− 2




︸ ︷︷ ︸
δax

(1.6)

Note however that these variables are not consistent with those in the first equa-
tion, thus those also need to be changed. One can also “linearize” the first equation
in a similar way in the corresponding operating points, i.e., x1 = 1, x2 = 1, u = 2,
and ẋ1 = 1. The function is

f1(x1, x2, u, ẋ1) = x2 − ẋ1 = 0

and we obtain

f1(x1, x2, u, ẋ1) ≈ f1(1, 1, 2, 1) +
∂f1

∂[x1, x2, u, ẋ1]T

∣∣∣∣
x1=1, x2=1, u=2,ẋ1=1




x1 − 1
x2 − 1
u− 2
ẋ1 − 1




f1(x1, x2, u, ẋ1) ≈ 0 +
(
0 1 0 −1

)∣∣
x1=1, x2=1, u=2 ẋ1=1




x1 − 1
x2 − 1
u− 2
ẋ1 − 1




Since f1(x1, x2, u, ẋ1) = 0, we have

ẋ1 − 1︸ ︷︷ ︸
δẋ1

=
(
0 1 0

)



x1 − 1
x2 − 1
u− 2




︸ ︷︷ ︸
δx

(1.7)
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Combining (1.7) and (1.6), one obtains:

ẋ1 − 1 =
(
0 1 0

)



x1 − 1
x2 − 1
u− 2




ẋ2 − ẋ20 =
(
− kl

M − 3kn
M − f

M
1
M

)



x1 − 1
x2 − 1
u− 2




i.e.,

δẋ =
(

0 1 0
− kl

M − 3kn
M − f

M
1
M

)
δx

1.2.2 Discretization - forward Euler difference

The simplest – although not always adequately precise – way to obtain an approx-
imate discrete-time model when given a continuous-time one is using the forward
Euler difference. This difference can also be derived based on the Taylor series ex-
pansion.

Consider at this point a function f(t). The first order Taylor series expansion
around a point t0 is:

f(t) ≈ f(t0) +
df

dt

∣∣∣∣
t=t0

(t− t0)

and assume that the time instants t and t0 correspond to two consecutive sampling
instants, i.e., t0 = kTs, t = (k+1)Ts, thus the difference t− t0 = Ts is the sampling
period. Then,

f(t)− f(t0) =
df

dt

∣∣∣∣
t=t0

(t− t0)

i.e, the derivative df
dt

∣∣∣
t=t0

can be approximated as:

df

dt

∣∣∣∣
t=t0

=
f(t)− f(t0)

(t− t0)
=

f((k + 1)Ts)− f(kTs)
Ts

(1.8)

Remark: note that the geometrical interpretation of the Euler discretization is
that the slope of the line that is tangent to a curve at a given point is equal to the
derivative.

Remark: when choosing the sampling period Ts or the frequency ωs, Shannon’s
sampling theorem should be kept in mind, which states that “A function f(t) that has
a bandwidth ωb is uniquely determined by a discrete set of sample values provided
that the sampling frequency is greater than ωs = 2ωb. The sampling frequency ωs =
2ωb is the Nyquist frequency. In applications, a useful rule is to sample the signal at
about 10 times higher than the highest frequency thought to be present.
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Example 1.4 Recall the model in Example 1.1, which is a continuous-time one. If
a digital controller is used or an observer is needed to estimate the sates, it may be
advantageous to design them based on a discrete-time model instead of a continuous
one. Thus, the model needs to be discretized. In this example, we consider the linear
model (1.1). The nonlinear one (1.2) can be similarly discretized.

For easier reference, recall that the model is

ẋ1(t) = x2(t)

ẋ2(t) = − k

M
x1(t)− f

M
x2(t) +

1
M

u(t)

Based on (1.8), the derivatives are approximated as:

ẋ1(t) =
x1((k + 1)Ts)− x1(kTs)

Ts

ẋ2(t) =
x2((k + 1)Ts)− x2(kTs)

Ts

leading to – in what follows, the argument kTs will simply be denoted by k –:

x1(k + 1)− x1(k)
Ts

= x2(k)

x2(k + 1)− x2(k)
Ts

= − k

M
x1(k)− f

M
x2(k) +

1
M

u(k)

Keeping on “next” state on the left-hand side gives

x1(k + 1) = Tsx2(k) + x1(k)

x2(k + 1) = Ts(− k

M
x1(k)− f

M
x2(k)) + x2(k) + Ts

1
M

u(k)

i.e.,
x1(k + 1) =

(
1 Ts

)
x(k)

x2(k + 1) =
(
−Ts

k
M 1− Ts

f
M

)
x(k) + Ts

1
M

u(k)

or, in matrix form
x(k + 1) = Adx(k) + Bdu(k)

with Ad =
(

1 Ts

−Ts
k
M 1− Ts

f
M

)
and Bd =

(
0

Ts
1
M

)
.

Note that the system matrices are obtained as Ad = I + TsA, Bd = TsB, where
A and B are the continuous-time state and input matrices, respectively. The output
matrix Cd is the same as the continuous-time output matrix C, only the sampling of
the measurements is realized in discrete-time, i.e.,

y(k) = Cdx(k)

9
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1.3 State-space models

A standard methodology to formulate models of dynamical systems is by using linear
vector spaces and first order differential equations. The essential idea behind this
formulation is the concept of state, which represents the memory the dynamic system
has of its past ?. The state of a dynamic system is the minimum set of variables
that fully describe the system and its response to any given set of inputs or initial
conditions.

The state variables completely characterize the system’s state at any time and
based on these any set of output variables may be computed. Although the actual state
variables are not unique, the number of states describing a given system is unique –
barring model reduction techniques. State-space descriptions resulting from system
modeling are usually formulated in terms of physical and measurable variables. One
set of state variables may be transformed into another – with the price of using their
physical meaning –, for instance in order to facilitate stability analysis or controller
or observer design.

In the standard form the dynamical system is described by a set of first order
differential (or difference equations in discrete-time), in which the time-derivative of
each state is expressed as a function of other state variables, i.e.,

ẋ1(t) = f1(x1(t), x2(t), . . . , xnx(t), u1(t), u2(t), . . . , unu(t), t)

ẋ2(t) = f2(x1(t), x2(t), . . . , xnx(t), u1(t), u2(t), . . . , unu(t), t)
... =

...

ẋnx(t) = fnx(x1(t), x2(t), . . . , xnx(t), u1(t), u2(t), . . . , unu(t), t)

(1.9)

where t is the time, xi, i = 1, 2, . . . , nx denote the state variables – usually chosen
as variables with physical meaning – and ui, i = 1, 2, . . . , nu denote the input
variables, including the control variables. A set of output variables is also defined as

y1(t) = h1(x1(t), x2(t), . . . , xnx(t), u1(t), u2(t), . . . , unu(t), t)

y2(t) = h2(x1(t), x2(t), . . . , xnx(t), u1(t), u2(t), . . . , unu(t), t)
... =

...

yny(t) = hny(x1(t), x2(t), . . . , xnx(t), u1(t), u2(t), . . . , unu(t), t)

(1.10)

These are usually the measured variables.
Remark: In the sequel, whenever evident, the time-dependence of the variables

will be omitted.
Equations (1.9) together with (1.10) are usually written shortly as

ẋ = f(x, u, t)

y = h(x, u, t)
(1.11)

10



1.3 STATE-SPACE MODELS

which is a state-space description of the considered system. Note that a system de-
scribed by a higher-order differential equation can always be written as a set of first-
order differential equations, thus the form (1.11) can be considered standard.

In discrete time, the general expression of the dynamics is

x(k + 1) = f(x(k), u(k), k)

y(k) = h(x(k),u(k), k)
(1.12)

where k denotes the current sample.
Remark: Although the next descriptions are given in continuous time, the same

definitions are valid for discrete-time systems.
A dynamic system is autonomous if its dynamics only depends on the states, i.e.,

ẋ = f(x)

y = h(x)
(1.13)

and non-autonomous otherwise.
A special case arises when the functions f and h are affine in u and (1.11) can

be written in the matrix form

ẋ = A(x, t, θ)x + B(x, t, θ)u

y = C(x, t, θ)x + D(x, t, θ)u
(1.14)

where θ denotes the vector of parameters.
Depending on the exact dependencies, we can distinguish, among others, between

linear parameter varying systems when the matrices depend on the parameters θ

ẋ = A(θ)x + B(θ)u

y = C(θ)x + D(θ)u
(1.15)

linear time varying systems when the matrices depend on the time t

ẋ = A(t)x + B(t)u

y = C(t)x + D(t)u
(1.16)

linear time invariant (LTI) systems when the system matrices are constant:

ẋ = Ax + Bu

y = Cx + Du
(1.17)

This course in principle concerns observer design for LTI systems.
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