
Chapter 5

Luenberger and reduced-order
observers

Remark: Although the developments below are presented for continuous-time sys-
tems, the results also hold for discrete-time ones.

5.1 Luenberger observer

In what follows, we discuss observer design with a somewhat different description
than in Chapter 4 and the idea that “almost any system is an observer”.

Consider the unforced system

ẋ = Ax

and a driven system
ż = Fz + Hx

Assume that there exists a transformation matrix T such that TA − FT = H .
Then, we have

ż − T ẋ = Fz + Hx− TAx

= Fz − FTx

= F (z − Tx)

The solution of this equation is

z − Tx = eFt(z(0)− Tx(0)) (5.1)

or
z = Tx + eFt(z(0)− Tx(0))

55



CHAPTER 5. LUENBERGER AND REDUCED-ORDER OBSERVERS

Thus, if z(0) = Tx(0), then z = Tx, ∀t ≥ 0. Furthermore, if z(0) 6= Tx(0),
but all the eigenvalues of F have negative real parts, then z → x as t →∞.

Remark: The linear matrix equality TA− FT = H has a unique solution if the
matrices A and F have no common eigenvalues.

Remark: In case of input, i.e.,

ẋ = Ax + Bu

it can also be included in the driven system:

ż = Fz + Hx + TBu

leading to the same equations:

ż − T ẋ = Fz + Hx + TBu− TAx− TBu

= Fz − FTx

= F (z − Tx)

Let us now consider the general case:

ẋ = Ax + Bu

y = Cx
(5.2)

and the driven system
ż = Fz + Gy + TBu

Then we have

ż − T ẋ = Fz + GCx + TBu− TAx− TBu

= Fz + (GC − TA)x

If T is such that GC − TA = −FT , then

ż − T ẋ = Fz + (GC − TA)x

= Fz − FTx

= F (z − Tx)

which has the solution (5.1).
Note that up until this point, it is not even required that the dimensions of the

observed system (5.2) and that of the driven system (5.1) is the same. This fact can
be exploited to design reduced order observers for the case when only some of the
states need to be estimated.

A convenient observer is the identity observer, i.e., when the objective is to es-
timate the whole state vector x and T = I . In such a case, consider the dynamic
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system (5.2) and the observer (5.1). Since TA − FT = GC, and the matrix T is
fixed, T = I , we have F = A−GC and the dynamics of z are given by

ż = (A−GC)z + Gy

i.e., it will only depend on the matrix G.
Naturally, all the above are possible if and only if the observability matrix Γo has

full column rank.

Example 5.1 Consider a dynamic system of the form (5.2), with the matrices

A =



−1 1 2
2 1 3
1 3 −4


 B =




0
0
1




C =
(
1 0 0

)

todo

todo: compare with the observer in the previous chapter

5.2 Reduced order observers

The previous idea can also be used to design reduced-order observers, i.e., observers
that do not reconstruct the whole state vector, but only a part of it. Such a reconstruc-
tion can be easily motivated when some states are measured, i.e., the output matrix is
of the form C =

(
I 0

)
. It is then convenient to reconstruct those states that are not

measured.
Remark: If C is not of the form C =

(
I 0

)
, an appropriate change of coordi-

nated M =
(

C

D

)
, with the matrix D selected such that M nonsingular and x̄ = Mx

can be used to transform it.
Consider then the system

ẋ = Ax + Bu

y = Cx =
(
I 0

)(
x1

x2

)
= x1

which is assumed to be observable, i.e., the observability matrix Γo has full rank.
The system can be partitioned as:

ẋ1 = A11x1 + A12x2 + B1u

ẋ2 = A21x1 + A22x2 + B2u

y = x1
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leading to
ẏ = A11y + A12x2 + B1u

ẋ2 = A21y + A22x2 + B2u
(5.3)

Note that if (A,C) is an observable pair, then (A22, A12) is also observable.
The main idea is that since y is known, then v̇y is known, thus A12x2 is known,

and x2 could be estimated from the second equation of (5.3). In fact, one can rewrite
(5.3) as

A12x2 = ẏ −A11y −B1u

ẋ2 = A21y + A22x2 + B2u
(5.4)

Define the observer as

˙̂x2 = A22x̂2 + B2u + A21y + L(ẏ −A11y −B1u−A12x̂2) (5.5)

with L the observer gain to be designed and the estimation error e2 = x2 − x̂2. The
estimation error dynamics are given by

ė2 = A21y + A22x2 + B2u−

−

A22x̂2 + B2u + A21y + L(ẏ −A11y −B1u︸ ︷︷ ︸

A12x2

−A12x̂2)




= (A22 − LA12)e2

Thus, if L is chosen such that (A22−LA12) is Hurwitz, then the estimation error
dynamics are asymptotically stable.

Note however, that this observer requires the derivative of the output, ẏ, which
may be problematic to obtain. A way to avoid the derivative is presented in what
follows.

Let us reorder the terms in (5.5) and rewrite ˙̂x2 as

˙̂x = (A22 − LA12)x̂2 + (B2 − LB1)u + (A21 − LA11)y + Lẏ

and define z = x̂2 − Ly. Then,

ż = ˙̂x2 − Lẏ

= (A22 − LA12) x̂2︸︷︷︸
z+Ly

+(B2 − LB1)u + (A21 − LA11)y + Lẏ − Lẏ

= (A22 − LA12)z + (B2 − LB1)u + (A21 − LA11)y + (A22 − LA12)Ly

i.e., it does not depend on v̇y.
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Exploiting this fact, the observer can be written as

ż = (A22 − LA12)z + (B2 − LB1)u + (A21 − LA11)y + (A22 − LA12)Ly

x̂2 = z + Ly
(5.6)

and therefore the differentiation of y is avoided.

Example 5.2 Consider the dynamic system in Example 5.1. Since the first state is
measured, we design an observer that estimates the remaining ones. The system can
be partitioned as

A =



−1 1 2
2 1 3
1 3 −4


 =

(
A11 A12

A21 A22

)

B =




0
0
1


 C =

(
1 0 0

)

The system is observable, and the (A22, A12) is also observable, Γo(A22, A12) =(
1 2
7 −5

)
, rank (Γo(A22, A12)) = 2. Let us choose L =

(
2
3

)
. With this observer

gain, the error dynamics are

˙̂x =
(−1 −1

0 −10

)

having the poles −1, −10, i.e., it is asymptotically stable. The observer is given by

ż =
(−1 −1

0 −10

)
z +

(
0
1

)
u +

( −1
−26

)
y

x̂2 = z +
(

2
3

)
y

todo: sim

59


