
Chapter 6

Linear regression and least
squares estimation

Up until now, we have dealt with deterministic systems. In this part we consider
estimation of variables if the measurements are affected by noise/uncertainties, etc.
First, we consider a static problem and then the dynamic one.

6.1 Linear regression

The regression problem can be formulated as identify the unknown parameters θ,
given a collection of known samples and a linear model that relates the samples to
the parameters. The known samples, generally denoted by y(k), k = 1, 2, . . . , N

are the regressed variables, a known vector ϕ(k) =
(
ϕ1(k) ϕ2(k) . . . ϕn(k)

)
for k = 1, 2, . . . , N contains the regressors, and the model relating them to the
unknown parameter vector θ is given by

y(k) = ϕT (k)θ

Such model are often used in function fitting, function approximation, time-series
prediction, supervised learning, system identification, etc.

Writing the model for each data point, the system of equations becomes

y(1) = ϕ1(1)θ1 + ϕ2(1)θ2 + . . . ϕn(1)θn

y(2) = ϕ1(2)θ1 + ϕ2(2)θ2 + . . . ϕn(2)θn

...

y(N) = ϕ1(N)θ1 + ϕ2(N)θ2 + . . . ϕn(N)θn

or, in a vector notation,
y = Φθ (6.1)
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If the number of data point N is equal to the number of unknown parameters n

and the equations are linearly independent, then the system (6.1) has a unique so-
lution. However, this is rarely the case, as 1) usually there are more measurements
than parameters; 2) the model is un general not exact, but only an approximation;
and 3) the samples (measurements) are affected by noise/uncertainties, etc. There-
fore, the problem of determining the unknown parameters θ becomes an optimization
problem: find θ that minimizes

∑N
k=1 ε2(k) , where ε(k) = y(k)− ϕT (k)θ.

The solution of this problem can be computed as follows. Note that F (N) =∑N
k=1 ε2(k) can be written as F (N) = (y−Φθ)T (y−Φθ). Computing the gradient

with respect to θ we obtain

∂F (N)
∂θ

= −2ΦT (y − Φθ)

i.e., the minimum of the function F (N) is given by θ for which ΦT y = ΦT Φθ. If
ΦT Φ is invertible, then θ is given by θ = (ΦT Φ)−1ΦT y.

Example 6.1 Consider the case of obtaining several (noisy) measurements of e.g.,
the distance from a given object, y =

(
1 1.3 0.8 1.1 0.9

)
. Our objective is to

estimate the distance based on these noisy measurements, i.e., find θ, that minimizes∑5
k=1(y(k)− theta)2. Note that for this particular case, the regressor ϕ = 1. Thus,

we have
y(1) ≈ ϕ(1)θ = θ = 1

y(2) ≈ ϕ(1)θ = θ = 1.3

y(3) ≈ ϕ(1)θ = θ = 0.8

y(4) ≈ ϕ(1)θ = θ = 1.1

y(5) ≈ ϕ(1)θ = θ = 0.9

We have Φ =
(
1 1 1 1 1

)T , ΦT Φ = 5, and θ estimated as

θ =
1
5

(
1 1 1 1 1

)




1
1.3
0.8
1.1
0.9




= 1.02

In general, when a constant has to be estimated from direct measurements, the
problem is reduced to computing the mean of the measurements.

6.2 Mathematical intermezzo: notions of statistics

A random variable is a mapping from a set of experimental outcomesX to a set of real
numbers. Note that, a random variable X is a function defined on a sample space. A
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specific value x is called a realization of the random variable. The fundamental prop-
erty of a random variable X is its probability distribution function (PDF), defined
as

Consider a set X containing possible outcomes x for an event. A corresponding
discrete random variable X is described by the probability mass function that lists
the probabilities of all individual values p(xi), xi ∈ X . The probabilities sum up to
1, i.e., P (X ) =

∑
x∈X p(x) = 1.

Consider now an interval X . The corresponding continuous-valued random vari-
able X is described the by probability density functions that defines the probability
of obtaining a value in some sub-interval [a, b] ⊂ X , P (X ∈ [a, b]) =

∫ b
a f(x)dx.

The probabilities of the random variable having a value in the whole interval X is 1,
i.e., P (X ) =

∫
x∈X f(x)dx = 1.

Example 6.2 todo: uniform, Gauss

The mean or expected value of a random variable is defined as

E(X) =

{∑
x∈X p(x)x discrete∫

x∈X f(x)dx continuous

A function g : X → R that depends on a random variable X is itself a random
variable, and its expected value is

E(g(X)) =

{∑
x∈X p(x)g(x) discrete∫

x∈X f(x)g(x)dx continuous

The variance can be considered as the “spread” around the expected value and is
given by

V ar(X) = E
(
(X −E(X))2

)
= E(X2)− (E(X))2

The standard deviation σ is the square root of the variance, i.e., σ =
√

V ar(X).
Two events are independent if the occupance of one event has no effect on the

probability of the occurrence of the other event. The joint probability density or
mass function, as it may be the case, if fXY (x, y). Two random variables X and Y

are independent if P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y). This implies that
fXY (x, y) = fX(x)fY (y).

The covariance of two random variables X and Y is

Cov(X,Y ) = E
(
(X − E(X))(Y −E(Y ))T

)
= E(XY T )−E(X)E(Y )T

A covariance matrix is positive semidefinite.
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The correlation of X and Y is E(XY T ) and is defined as (assuming both X and
Y column vectors)

E(XY T ) =




E(X1Y1) . . . E(X1Ym)
...

...
...

E(XnY1) . . . E(XnYm)




Two random variables are uncorrelated if E(XY T ) = E(X)E(Y )T .
Let us consider now two stochastic processes X(t) and Y (t). The cross-correlation

of X(t) and Y (t) is defined as E(X(t1)Y (t2)T ). The random processes X(t) and
Y (t) are uncorrelated if E(X(t1)Y (t2)T ) = E(X(t1))E(Y (t2)), ∀t1, t2. The
cross-covariance of X(t) and Y (t) is

CovXY (t1, t2) = E
(
(X(t1)−E(X(t1)))(Y (t2)− E(Y (t2)))T

)

X(t) is called white noise if the random variable X(t1) is independent from the
random variable X(t2), ∀t1 6= t2.

6.3 Least-squares estimation

6.3.1 Batch least-squares estimation

Let us now return to the problem of estimating a constant x, under the assumption
that each element of the measurement vector y is a linear combination of the elements
of x, with the addition of some measurement noise v, i.e.,

y(1) = C11x1 + C12x2 + · · ·+ C1nxn + v1

y(2) = C21x1 + C22x2 + · · ·+ C2nxn + v2

...

y(k) = Ck1x1 + Ck2x2 + · · ·+ Cknxn + vk

or, in matrix form
y = Cx + v

The measurement residual (measurement error in previous chapters) is defined as
ey = y − Cx̂. The most probable value of x is the vector x̂ that minimizes eT

y ey,
leading to the solution in Section 6.1.

Consider now the case when the variance of the measurement noise may be dif-
ferent for each measurement, i.e., E(v2

i ) = σ2
i , i = 1, 2, . . . , k. The measurement

covariance matrix is

R = E(vvT ) =




σ2
1 0 . . . 0
...

...
0 0 . . . σ2

k




64



6.3 LEAST-SQUARES ESTIMATION

In such a case, one may exploit this knowledge and minimize the weighted sum of
squares,

F =
e2
y1

σ2
1

+ · · ·+ e2
yk

σ2
k

= eT
y R−1ey

= (y − Cx̂)T R−1(y − Cx̂)

= yT R−1y − 2x̂T CT R−1y + x̂T CT R−1Xx̂

The partial derivative of F wrt. x̂ is

∂F

∂x̂
= 2x̂T CT R−1C − 2yT R−1C

resulting in
CT R−1y = CT R−1Cx̂

x̂ = (CT R−1C)CT R−1y

Note that the above computations require that 1) there are enough measurements
– at least as many as unknowns to be estimated and 2) the measurement noise matrix
R is nonsingular, i.e., each measurement is corrupted by some noise.

6.3.2 Recursive least-squares estimation

A problem presented by the previous approach is that if the measurements are ob-
tained sequentially, the matrix C has to be augmented for each measurement and the
estimate needs to be recomputed. This may even be computationally unfeasible for a
very large number of measurements.

In what follows, we present a recursive estimator that updates the estimate after
obtaining a new measurement y.

A linear recursive estimator has the form

y(k) = Ckx + v(k)

x̂(k) = x̂(k − 1) + Kk(y(k)− Ckx̂(k − 1))

i.e., the estimate x̂(k) is computed based on the previous estimate and the new mea-
surement. Kk is the estimator gain matrix and y(k) − Cx̂(k − 1) is the correction
term.

The estimation error mean can be computed as – note that we are estimating a
constant x –

E(e(k)) = E(x− x̂(k))

= E(x− x̂(k − 1)−Kk(Ckx + v(k)− Ckx̂(k − 1)))

= E(e(k − 1)−KkCk(x− x̂(k − 1))−Kkv(k))

= (I −KkCk)E(e(k − 1))−KkE(v(k))
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If E(e(k − 1)) = 0 and E(v(k)) = 0, then E(e(k)) = 0. This means that if the
noise is zero-mean and the initial estimate x̂(0) is equal to the expected value of x,
then the expected value of x̂(k) will be equal to x, i.e., on average the estimate x̂

will be equal to x. Such an estimator is called unbiased. Note that this property holds
independently of the value of Kk.

Next, we determine the optimal Kk that minimizes the sum of the variances of the
estimation errors at step k, E(e(k)T e(k)). The estimation error covariance matrix is
defined as

Pk = E(e(k)e(k)T )

Note that trace(Pk) = E(e(k)T e(k)).
A recursive expression of Pk can be obtained as

Pk = E(e(k)e(k)T )

= E
(
((I −KkCk)e(k − 1)−Kkv(k)) ((I −KkCk)e(k − 1)−Kkv(k))T

)

= (I −KkCk)E(e(k − 1)e(k − 1)T )(I −KkCk)

−KkE(v(k)e(k − 1)T )(I −KkCk)− (I −KkCk)E(e(k − 1)v(k)T )KT
k

+ KkE(v(k)v(k)T )KT
k

Since the estimation error at time k−1, e(k−1) is independent of the noise at time
k, v(k), E(e(k−1)v(k)T ) = E(e(k−1))E(v(k)) = 0, and E(v(k)e(k−1)T ) = 0.
Furthermore, E(e(k − 1)e(k − 1)T ) = Pk−1 and E(v(k)v(k)T ) = Rk. Thus, we
obtain

Pk = (I −KkCk)Pk−1(I −KkCk) + KkRkK
T
k

Note that this form of Pk guarantees that – assuming it has been initialized at a
positive definite matrix and Rk is positive – it will be positive definite. It is also
consistent with the intuition that if the uncertainty in the measurement increases, i.e.,
Rk increases, then the uncertainty of the estimate also increases.

Let us now compute Kk that minimizes the sum of the variances of the estimation
errors at step k, i.e., the trace of Pk. Note that

∂trace(ABAT )
∂A

= 2AB

where A and B = BT are matrices of appropriate dimensions. Thus,

∂Pk

∂Kk
= 2(I −KkCk)Pk−1(−CT

k ) + 2KkRk

Setting the above equal to zero results in

Kk(Rk + CkPk−1Ck) = Pk−1C
T
k

Kk = Pk−1C
T
k (Rk + CkPk−1Ck)−1

Thus, the recursive least square estimator can be summarized as:
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1. Initialize the estimate x̂(0) and its covariance matrix P0. If x is perfectly
known, then P0 = 0; if no knowledge is available, then P0 = ∞I .

2. At each step

• Obtain the measurement, assuming that it is given by y(k) = Cx+v(k),
where v(k) is a white noise, with covariance Rk.

• Update the estimate and its covariance as:

Kk = Pk−1C
T
k (Rk + CkPk−1Ck)−1

x̂(k) = x̂(k − 1) + Kk(y(k)− Ckx̂(k − 1))

Pk = (I −KkCk)Pk−1(I −KkCk) + KkRkK
T
k

Note that there are alternative forms, see e.g., the developments in ?, for the
covariance and gain matrices. For instance, often used forms are

Pk = (I −KkCk)Pk−1

Pk = (P−1
k−1 + CT

k R−1
k Ck)−1

Kk = PkC
T
k R−1

k

6.4 Propagation of states and covariances

Consider now the discrete-time system

x(k) = Ak−1x(k − 1) + Bk−1u(k − 1) + w(k − 1)

where u is a known input and w(k − 1) is a white noise with covariance Qk−1.
It can easily be seen that the expected value of the state at time k is

E(x(k)) = E(Ax(k − 1) + Bu(k − 1) + w(k − 1))

= AE(x(k − 1)) + Bu(k − 1)

Regarding the covariance, todo:write derivation, we obtain

Pk = E((x(k)− E(x(k)))(x(k)− E(x(k)))T )

= Ak−1Pk−1A
T
k−1 + Qk−1

In many cases the noise does not enter directly the state (or measurement, as it
may be the case) equation, but is multiplied with some matrix, i.e., we have

x(k) = Ak−1x(k − 1) + Bk−1u(k − 1) + Mk−1w̃(k − 1)
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Note that if w̃(k − 1) is a white noise with covariance Qk−1 then the covariance of
Mk−1w̃(k − 1) is Mk−1Qk−1M

T
k−1. Thus, the covariance matrix of x(k) will be

Ak−1Pk−1A
T
k−1 + Mk−1Qk−1M

T
k−1.

Similarly, given the measurement equation

y(k) = Ckx(k) + Nkṽ(k)

where v(k) is a zero mean white noise with covariance Rk, then the covariance matrix
of the measurement is CkPkC

T
k + NkRkN

T
k .

Consider now the continuous-time system

ẋ = Ax + Bu

It is quite straightforward that, by taking the expectation of both sides, we have

E(ẋ) = AE(x) + Bu

For the covariance matrices, using a limiting argument based on the discrete-time
case, see ?, one can get

Ṗ = AP + PAT + Q

6.5 The discrete-time Kalman filter

With all the notions introduced until nw, we are ready to formulate the discrete-time
Kalman filter. Consider the discrete-time system

x(k) = Akx(k − 1) + Bku(k − 1) + w(k − 1)

y(k) = Ckx(k) + v(k)

where w and v are zero-mean white noises with covariance matrices Qk and Rk,
respectively.

After the estimate of the state x̂(0) and the covariance matrix P0 are initialized,
based on the state equation in (6.5) a prediction of the next state and the correspond-
ing covariance can be made, thus:

xpred = Akx(k − 1) + Bku(k − 1)

Ppred = AkPk−1A
T
k + Qk−1

The predicted state xpred is usually called the a priori (before measurement) estimate
and is sometimes denoted by x−(k), where the − denotes that a measurement is not
yet available. Similarly, Ppred can be denoted by P−

k .
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6.5 THE DISCRETE-TIME KALMAN FILTER

Once a measurement becomes available, the prior estimate can be updated ac-
cording to the derivations from Section 6.3.2, i.e.,

Kk = PpredC
T
k (CkPpredC

T
k + Rk)−1

x̂(k) = xpred + Kk(y − Ckxpred)

Pk = (I −KkCk)Ppred(I −KkCk)T + KkRkK
T
k

The updated estimate x̂(k) is the a posteriori estimate.
Note that since the system dynamics is determined by the stochastic processes w

and v, both the state x and its estimate x̂ will be random variables. If vw and w are
zero-mean, uncorrelated and white, the Kalman filter is the optimal linear solution to
the problem of minimizing the weighted norm of the estimation error e = x− x̂. In
such a case, the innovation y−Ckxpred is also zero-mean and white with covariance
CkPpredC

T
k + Rk. Since for a given application the innovation can be measured

and the mean and covariance approximated, this property can be used to verify the
model and the noise statistics. Modelling errors and numerical errors are two of
the primary causes for which the filter may diverge on a real system, even though
the theory is correct. Modelling errors may sometimes be compensated by adding
fictitious process noise.
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