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Abstract—This paper proposes a controller design method for
time-delay Takagi-Sugeno fuzzy models with nonlinear conse-
quents. We assume that both the input and the membership
functions are affected by the delay. The nonlinearities in the
consequents are handled by a slope-bounded condition. The
controller design conditions are formulated as linear matrix
inequalities. A numerical example illustrates the results.

I. INTRODUCTION

There are numerous control systems that involve physical
time lag. For instance, time-delay, also called dead-time,
happens when sensors and actuators are not co-located. This
phenomenon can appear in transportation [7], biological sys-
tems [1], networked control systems [9], etc. Time-delays are
frequently non-negligible factors, a source of instability, thus,
it is important to take them into account in the analysis and
the design of the control systems.

The research concerning stability and stabilizing control
of time-delay systems has been intensified in the past years.
Lyapunov’s direct method is an efficient way to analyse the
stability of systems with time-delay. A complex overview on
stability analysis for time-delay systems is presented in [5]: for
slowly-varying and fast-varying delay, delay-dependent and
delay-independent conditions, for both linear and nonlinear
cases. The nonlinearities in [5] are handled directly, which
makes the design conditions restrictive. Another way to handle
model nonlinearities is the Takagi-Sugeno (TS) fuzzy mod-
elling.

TS models are able to represent a large class of nonlinear
time-delay systems as convex combination of local linear
models. Stabilization and design conditions are generally for-
mulated as Linear Matrix Inequalities (LMIs). In the last years
the concept of time-delayed TS fuzzy models has become
an important subject of interest. For example [16] developed
stability conditions based on a quadratic convex combination
using an augmented Lyapunov-Krasovskii functional for TS
fuzzy systems with time-varying delay. A robust stabilization
method for nonlinear time-delay systems has been proposed
in [17], where a PDC controller has been used and the
conditions have been developed based on an impulsive-time-
dependent Lyapunov function. Improved stability and stabi-
lization conditions for TS fuzzy system with time-varying
delay have been presented in [6], where an augmented solution
has been used to achieve delay-and-its-derivative-dependent
stability conditions.

The mentioned methods do not include delay in the input,
although they consider delay in the states. A delay in the input
leads to delay in the membership functions of the controller,
which motivates the research presented hereafter.

The TS models we consider are with nonlinear consequents.
The purpose of this technique is to reduce the number of fuzzy
rules and to handle nonlinearities that depend on unmeasured
states. In the literature this idea of separating the nonlinearities
has been exploited, e.g. in [3], [4], [10], [11], [12], but not
for time-delay systems. In this paper we use a slope-bounded
condition for handling the nonlinear part of the consequent.

Moreover, we consider TS models in the presence of time-
varying input delay and assume that the membership functions
may depend on both current and delayed states. In our previous
research [13] we have considered slowly-varying delay. In
this paper we tackle the problem of fast-varying delay, and
propose conditions that depend on the maximum delay and
the maximum of its derivative.

The structure of this paper is as follows: Section 2 reviews
the necessary concepts for TS fuzzy systems and their basic
properties. The design conditions are presented in Section 3.
Section 4 illustrates the delayed condition on a numerical
example. Section 5 concludes the paper.

Notations. Let F = FT ∈ Rn×n be a real symmetric
matrix; F > 0 and F < 0 mean that F is positive definite and
negative definite, respectively. I denotes the identity matrix
and 0 the zero matrix of appropriate dimensions. The symbol
∗ in a matrix indicates a transposed quantity in the symmetric

position, for instance
(
P ∗
A P

)
=

(
P AT

A P

)
, and A + ∗ =

A+ AT . The notation diag(f1, ..., fn), where f1, ..., fn ∈ R,
stands for the diagonal matrix, whose diagonal components
are f1, ..., fn. ‖x‖, where x ∈ Rnx , is the Euclidean norm of
x. Throughout this paper, the following shorthand notations
are used to represent convex sums of matrix expressions:

Fz =

s∑
i=1

qi(z(t))Fi, (1)

Fzτ =

s∑
i=1

qi(z(t− τ(t)))Fi, (2)

Fzzτ =

s∑
i=1

qi(z(t))

s∑
j=1

qj(z(t− τ(t)))Fij , (3)



where qi, i = 1, ..., s are nonlinear functions called the
membership functions with the property:

qi ∈ [0, 1], i = 1, ..., s,

s∑
i=1

qi(z) = 1. (4)

II. PRELIMINARIES AND PROBLEM STATEMENT

The time-delay TS fuzzy model that we consider with
nonlinear consequents:

ẋ(t) =Azzτx(t) +Dzzτx(t− τ(t))

+Bzzτu(t− τ(t)) +BzzτGψ(Hx(t)),
(5)

where Azzτ ∈ Rnx×nx , Dzzτ ∈ Rnx×nx , Bzzτ ∈
Rnx×nu and G ∈ Rnu×r represent the model matrices, i.e.,∑s
i=1

∑s
j=1 qi(z(t))qj(z(t − τ(t)))Aijx(t), etc.; x(t) ∈ Rnx

is the state vector, u(t) ∈ Rnu is the control input, s is the
number of rules, z(t) ∈ Rnz is the premise vector; τ(t) is the
varying time-delay, where τ is differentiable, τ̇ ≤ d, d ∈ [0, 1)
is a given constant, τ ≤ h, h > 0 is the maximum time-delay.

The quantity ψ(Hx(t)) ∈ Rr is an r-dimensional vector
where H ∈ Rr×nx and each entry is a function of a linear
combination of the states, i.e.

ψi = ψi(

n∑
j=1

Hijxj), i = 1, ..., r.

To develop our results, the elements in the vector ψ(Hx(t))
must fulfill the following assumption.

Assumption 1: For any i ∈ {1, ..., r} there exist constants
0 < bi ≤ ∞, so that

0 ≤ ψi(v)− ψi(w)

v − w
≤ bi, ∀v, w ∈ R, v 6= w. (6)

As in [2], in view of (6), there exist δi(t) ∈ [0, bi], so that for
any v, w ∈ R

ψi(v)− ψi(w) = δi(t)(v − w). (7)

We denote δ(t) = diag(δ1(t), ..., δr(t)).
In this paper we consider state-feedback controller design

and we assume that all the states are available. For simplicity
in what follows we omit in the notation the explicit time
dependence of the delay, i.e. we use τ instead of τ(t).

To develop our results the following lemmas and property
are used.

Lemma 1: Let A and B be matrices of appropriate dimen-
sions and ranks, with B = BT > 0. Then

−ATB−1A ≤ −A−AT +B

Lemma 2 (Congruence): Given matrix P = PT and a full
column rank matrix Q, it holds that

P > 0 ⇒ QPQT > 0.

Property 1: (Schur complement) Let M = MT =[
M11 M12

MT
12 M22

]
, with M11 and M22 square matrices of appro-

priate dimensions. Then:

M < 0⇔

{
M11 < 0

M22 −MT
12M

−1
11 M12 < 0

⇔

{
M22 < 0

M11 −M12M
−1
22 M

T
12 < 0

(8)

The design conditions will be defined as a triple sum negativity
problem having the form

s∑
i=1

s∑
j=1

s∑
k=1

qi(z(t)) qj(z(t− τ)) qk(z(t− τ))Fijk < 0, (9)

with symmetric matrices Fijk, and nonlinear functions qi,
i = 1, ..., s, satisfying the convex sum property in (4).

Sufficient LMI conditions are obtained using the following
Lemma:

Lemma 3 ([15]): Equation (9) is satisfied if the following
conditions hold

Fijj <0

2

s− 1
Fijj + Fijk + Fikj <0 ∀i, j, k = 1, ..., s, j 6= k.

(10)

III. MAIN RESULTS

In this section we develop sufficient conditions for controller
design. To this end, the following control law is considered:

u(t) = −Kzx(t)−Gψ(Hx(t)), (11)

where Kz =
∑s
k=1 qk(z(t))Kk are the controller gains. Based

on (5) and (11), the closed loop system is:

ẋ(t) =Azzτx(t) +Dzzτx(t− τ) +BzzτGψ(Hx(t))

+Bzzτ (−Kzτx(t− τ)−Gψ(Hx(t− τ)))

=Azzτx(t) + (Dzzτ −BzzτKzτ )x(t− τ)

+BzzτG(ψ(Hx(t))− ψ(Hx(t− τ))).

(12)

Furthermore, using Assumption 1 we obtain:

ψ(Hx(t))− ψ(Hx(t− τ)) =δ(t)
(
Hx(t)−Hx(t− τ)

)
=δ(t)H

(
x(t)− x(t− τ)

)
,
(13)

and for simplification we denote η := H
(
x(t)− x(t− τ)

)
.

This leads to the following form for (12):

ẋ(t) =Azzτx(t) + (Dzzτ −BzzτKzτ )x(t− τ)

+BzzτGδ(t)η

η =H
(
x(t)− x(t− τ)

)
.

(14)



To develop the design conditions, we consider the Lyapunov
functional [5]:

V (t, x, ẋ) =xT (t)Px(t) +

∫ t

t−h
xT (s)Sx(s)ds

+ h

∫ 0

−h

∫ t

t+θ

ẋT (s)Rẋ(s)dsdθ

+

∫ t

t−τ
xT (s)Qx(s)ds

(15)

The following result can be formulated:
Theorem 1: Consider the closed loop system (14), and

assume that τ is differentiable, τ̇ ≤ d, d ∈ [0, 1) is a given
constant, τ ≤ h, h > 0 is the maximum time-delay. If there
exist matrices P̃ = P̃T > 0, R̃ = R̃T > 0, S̃ = S̃T > 0, S̃12,
Q̃ = Q̃T > 0, M̃ = diag(m1, ...,mr) > 0, Ni, i = 1, ..., s

and constant ε̃ > 0, so that
[
R̃ S̃12

∗ R̃

]
≥ 0 and Lemma 3

holds with (16), where

Σ̃33 =− (1− d)Q̃− 2R̃+ S̃12 + S̃T12

ν(M̃) =− 2M̃diag(
1

b1
, ...,

1

br
),

(17)

then the closed loop system (14) is asymptotically stable. The
controller gains can be recovered from Ki = NiP̃

−1, i =
1, ..s.

Proof: Consider the candidate Lyapunov-Krasovskii func-
tional (15). The derivative of V is

V̇ (t, x, ẋ) =xT (t)Pẋ(t) + ẋT (t)Px(t)

+ h2ẋT (t)Rẋ(t)− h
∫ t

t−h
ẋT (s)Rẋ(s)ds

+ xT (t)[S +Q]x(t)− xT (t− h)Sx(t− h)

− (1− τ̇(t))xT (t− τ)Qx(t− τ),
(18)

where P = PT > 0, R = RT > 0, S = ST > 0, Q = QT >
0.

Based on [5]

−
∫ t

t−h
ẋT (s)Rẋ(s)ds ≤ −

[
e1
e2

]T [
R S12

∗ R

] [
e1
e2

]
(19)

where e1 = x(t) − x(t − τ(t)), e2 = x(t − τ(t)) − x(t − h)

and
[
R S12

∗ R

]
≥ 0, for some S12 ∈ Rnx×nx .

Using τ̇(t) ≤ d and denoting

χ :=


x(t)

x(t− h)
x(t− τ)
δ(t)η

 (20)

we obtain
V̇ (t, x, ẋ) ≤χT∆χ (21)

where ∆ is defined in (22) and B = Dzzτ − BzzτKzτ , C =
BzzτG, Σ33 = −(1− d)Q− 2R+ S12 + ST12.

Next we use Assumption 1 to determine relaxed conditions
for V̇ < 0. Consider the inequality:

χT∆χ+ χT θχ ≤ 0, (23)

where

θ =


εI 0 0 HTM
∗ 0 0 0
∗ ∗ 0 −HTM
∗ ∗ ∗ ν(M)

 (24)

and M = diag(m1, ...,mr) > 0.
Let us now examine χT θχ:

χT θχ =εx(t)Tx(t) + 2(x(t)− x(t− τ))THTMδ(t)η

+ (δ(t)η)T ν(M)δ(t)η.
(25)

Since η = H(x(t)− x(t− τ)), we have

−χT θχ =−εx(t)Tx(t)−2ηTMδ(t)η−(δ(t)η)T ν(M)δ(t)η

=−ε‖x(t)‖2−2ηT
(
Mδ(t)−δ(t)TMdiag( 1

b1
, ..., 1

br
)δ(t)

)
η.

(26)
Both M and δ(t) are diagonal matrices, so we can examine
the terms:

miδi(t)−mi
1

bi
δi(t)

2 = miδi(t)
(
1− δi(t) 1

bi

)
. (27)

The term δi(t) ∈ [0, bi], so
(
1− δi(t) 1

bi

)
≥ 0, and since

mi > 0, the following holds:

2ηT
(
Mδ(t)− δ(t)TMdiag( 1

b1
, ..., 1

br
)δ(t)

)
η ≥ 0. (28)

Finally, we obtain

−χT θχ ≤ −ε‖x(t)‖2. (29)

Therefore, if χT∆χ+ χT θχ < 0, then V̇ < 0.
To obtain LMI conditions, consider the matrix inequality

∆ + θ < 0. Then, applying the Schur complement on (30) we
get (31).

Using Lemma 2 with
P−1 0 0 0 0

0 P−1 0 0 0
0 0 P−1 0 0
0 0 0 M−1 0
0 0 0 0 I−1

 ,
where A = P−1ATzzτ + ∗+ εP−2 + P−1(S + Q− R)P−1,

(31) becomes (32). Next, using the Schur complement on
εP−2, denoting P̃ = P−1, S̃ = P−1SP−1, Q̃ = P−1QP−1,
M̃ = M−1, Nzτ = KzτP

−1, ε̃ = 1
ε , PS̃12P = S12 and

PR̃P = R and using the inequality −P−1R̃P−1 ≤ R̃ − 2P̃ ,
we obtain (33).

The conditions in Theorem 1 are obtained by applying

Lemma 1 on (33) and congruence with
[
P−1 0

0 P−1

]
on[

R S12

∗ R

]
.



Fijk =

P̃ATij + ∗+ S̃ + Q̃− R̃ S̃12 DijP̃ −BijNk + R̃− S̃12 BijGM̃ + P̃HT hP̃Aij P̃

∗ −R̃− S̃ R̃− S̃T12 0 0 0

∗ ∗ Σ̃33 −P̃HT hP̃ (DT
ij −KT

k B
T
ij) 0

∗ ∗ ∗ ν(M̃) hM̃(BijG)T 0

∗ ∗ ∗ ∗ −R̃ 0
∗ ∗ ∗ ∗ ∗ −ε̃I


(16)

∆ =


ATzzτP + ∗+ h2ATzzτRAzzτ + S +Q−R S12 PB + h2ATzzτRB +R− S12 (P + h2ATzzτR)C

∗ −R− S R− ST12 0
∗ ∗ Σ33 + h2BTRB h2BTRC
∗ ∗ ∗ h2CTRC

 (22)


ATzzτP + ∗+ S +Q−R+ εI S12 PB +R− S12 PBzzτG+HTM

∗ −R− S R− ST12 0
∗ ∗ Σ33 −HTM
∗ ∗ ∗ ν(M)



+


h2ATzzτRAzzτ 0 h2ATzzτRB h2ATzzτRBzzτG

∗ 0 0 0
∗ ∗ h2BTRB h2BTRBzzτG
∗ ∗ ∗ h2(BzzτG)TRBzzτG

 ≤ 0

(30)


ATzzτP + ∗+ S +Q−R+ εI S12 PB +R− S12 PBzzτG+HTM hATzzτ

∗ −R− S R− ST12 0 0
∗ ∗ Σ33 −HTM hBT
∗ ∗ ∗ ν(M) h(BzzτG)T

∗ ∗ ∗ ∗ −R−1

 ≤ 0 (31)


A P−1S12P

−1 BP−1 + P−1(R− S12)P−1 BzzτGM
−1 + P−1HT hP−1ATzzτ

∗ −P−1(R+ S)P−1 P−1(R− ST12)P−1 0 0
∗ ∗ P−1Σ33P

−1 −P−1HT hP−1BT
∗ ∗ ∗ M−1ν(M)M−1 hM−1(BzzτG)T

∗ ∗ ∗ ∗ −R−1

 ≤ 0 (32)



P̃ATzzτ + ∗+ S̃ + Q̃− R̃ S̃12 Dzzτ P̃ −BzzτNzτ + R̃− S̃12 BzzτGM̃ + P̃HT hP̃ATzzτ P̃

∗ −R̃− S̃ R̃− S̃T12 0 0 0

∗ ∗ Σ̃33 −P̃HT hP̃BT 0

∗ ∗ ∗ ν(M̃) hM̃(BzzτG)T 0

∗ ∗ ∗ ∗ R̃− 2P̃ 0
∗ ∗ ∗ ∗ ∗ −ε̃I

 ≤ 0

(33)

IV. EXAMPLE

In this section we illustrate the use of the conditions of
Theorem 1, then we compare our results with the results
obtained using the conditions presented by [13]. In the
literature the case when the input is delayed is rarely
considered. A result for such a case is presented in [8],
however, it considers TS models with classic consequents,

not nonlinear ones.



To illustrate the conditions developed, consider the following
nonlinear system:[

ẋ1
ẋ2

]
=

[
−2 −0.5
0 −6 + sin(x1)

] [
x1
x2

]
+

[
2 1

0.9 + 0.1 sin(x1) 4 + sin(x1(t− τ))

] [
x1(t− τ)
x2(t− τ)

]
+

[
0

0.75 + 0.25 sin(x1)

] (
u(t− τ)

)
+

[
0

−0.375− 0.125 sin(x1)

] (
α1(x1) + α2(x2)

)
,

(34)
where α1(x1) and α2(x2) are two nonlinear functions which
satisfy Assumption 1. For the simulations we consider

α1(v) = α2(v) = cos(v) + v, (35)

and the constants that satisfy Assumption 1 are b1 = b2 = 2,
but the obtained results are valid for any other nonlinear
functions which satisfy Assumption 1 with b1 and b2. In
the following we compare our approach to that of [13]. We
analyze the maximum delay and variation of delay for which
stabilization can be achieved.

For the rest of the nonlinearities we use the sector nonlin-
earity approach [14] and obtain the local matrices:

A11 = A12 =

[
−2 −0.5
0 −5

]
, A21 = A22 =

[
−2 −0.5
0 −7

]
,

D11 =

[
2 1

0.8 3

]
, D12 =

[
2 1

0.8 5

]
, G =

[
−0.5 1

]
,

D21 =

[
2 1
1 3

]
, D22 =

[
2 1
1 5

]
, H =

[
1 0
0 1

]
,

B11 = B12 =

[
0

0.5

]
, B21 = B22 =

[
0
1

]
,

q1(z) =
1− sin(z)

2
, q2(z) = 1− q1(z), z = x1.

The values of the maximum delay, h, and the maximum
derivative of the delay, d, for which feasible solutions have
been obtained are given in Fig. 4. As it can be seen, for
small delays our approach gives feasible solutions for larger
variations of the delay, while the approach in [13] gives
feasible solutions for (very) slowly-varying large delays.

In what follows, we test the controller for a specific case.
The time-delay function, τ , is varying with τ̇(t) ≤ d = 0.5,
and has the form: τ(t) = 0.25 + 0.25 cos(2t), thus h = 0.5.

The initial conditions for the state vector is x0 =
[
1 2

]T
.

The open-loop system without the control is unstable. This
can be seen in Fig 1.

Applying Theorem 1, the obtained control gains for τ(t) ≤
h = 0.5 and τ̇(t) ≤ d = 0.5 are the following:

K1 =
[
6.84 4.82

]
, K2 =

[
6.88 7.35

]
(36)

Fig. 1. Unstable open-loop system

Fig. 2. Convergence of closed-loop states

The rest of the matrices are:

P̃ =

[
0.1722 −0.1406
−0.1406 0.3833

]
, R̃ =

[
0.2156 −0.1291
−0.1291 0.1801

]
,

Q̃ =

[
0.0127 0.0819
0.0819 0.9347

]
, S̃ =

[
0.1027 −0.0605
−0.0605 0.2189

]
,

S̃12 =

[
−0.1085 0.0782
0.0069 −0.0913

]
, M̃ =

[
0.7723 0

0 0.6050

]
,

ν(M̃) =

[
−0.7723 0

0 −0.6050

]
.

The obtained results can be seen in Fig. 2, i.e, this control
stabilizes the system. The time evolution of control law can
be seen in Fig. 3.

Note that even though the controller gains are close to
each other, no feasible solutions were found when the design
conditions were defined with a single control gain, thus a fuzzy
controller is necessary.



Fig. 3. Time evolution of control law

Fig. 4. Feasible solutions, ’.’ - Theorem 1, ’o’ - Theorem 1 from [13]

V. CONCLUSIONS AND FUTURE WORK

This paper considered stabilization for time-delay Takagi-
Sugeno fuzzy systems with nonlinear consequents. The con-
ditions were developed under the assumption that the mem-
bership functions may depend both on current and delayed
states. The nonlinearity in the consequents was handled by
a slope-bounded condition. The conditions were formulated
as linear matrix inequalities and their use illustrated on a
numerical example. In our future work we will consider more
general Lyapunov functions and apply the conditions on a real
application.
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