
Delft University of Technology

Delft Center for Systems and Control

Interactive Collaborative Information Systems

Enhanced Situation Awareness

Technical report 06-004

State Estimation under Uncertainty:
A Survey
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Chapter 1

Introduction

1.1 Motivation

When making decisions is control systems, one often has to rely only on imperfect information
is available, or uncertain premises. The information ideally needed is in general impossible
or impractical to obtain. In practical situations, one has reason based on the information
available.

In the following, we refer as “imperfect information” to any information different or lacking
those ideally required, and based on which decisions have to be made.

Before finding possible solutions to reduce imperfection and transform the available data
such that it becomes usable for decision making, it is necessary to identify possible causes of
imperfection in practical situations.

First of all, no mathematical system model is perfect. A mathematical model usually
describes the characteristics and relations of interest, leaving out other features, that may
affect the system. This is natural, since a complete model would be too complex to be of
any use in practice and even impossible to obtain. So, many aspects of a system remain
unmodeled.

Second, the aspects which are modeled are necessarily approximated. In other cases,
physical laws or approximations provide only a structure of the model, with the parameters
to be determined.

Third, no sensor provides perfect and complete data about a system. Even more, dynamic
systems may be corrupted by disturbances, which cannot be controlled, or even measured.

In certain restrictive cases, unless vital information is missing, the imperfection can be dis-
regarded, assuming that the difference between the ideally required and available information
has no influence on the decision to be made. However, in other cases, using even a slightly
imprecise data can lead to disastrous consequences. In general, one has to take into account
the fact that the information available is imperfect.

1.2 Imperfection

In practice, imperfection can appear due to:

• Imperfect models: no real system can be modeled up to all the details
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INTRODUCTION

• Incomplete data: the value of some variable is not available (measurable) at certain
moments. A severe particularization of this problem is when the values of a variable is
not measurable at all.

• Contradicting data: in case of redundant sensors, one may obtain different values for the
same variable in the same moment. Causes for this type of imperfection include sensor
imprecision or malfunction, use of multiple, different models, transmission errors, etc.
We consider the data obtained partially contradicting, if the contradiction appears only
casually.

• Corrupted data: the data obtained is corrupted by noise. This type of imperfection is
inherently related to all physically measured data.

• Set-valued data: the data has vague properties, but the exact value is unknown.

When handling practical situations, one can observe that the imperfection present can be of
different types: decision making based on uncertain premises, missing values or contradicting
data. Also, the imperfection may appear due to the subjectiveness of an observer or can be
present regardless an observer.

A taxonomy of imperfection is given by Smets (1991), according to whom imperfection
can be divided into three main categories:

• incompleteness – the obtained data is not complete, e.g., the value of some variable
is missing (casually or permanently). In general any model of a physical system is
incomplete: only a few of its variables can be measured, the rest have to be determined
on other ways.

• imprecision – the value of a variable is given, but not with the required precision. An
important subcategory is added in this survey here: contradiction, or partial contradic-
tion: two different values may be given/ measured, directly or indirectly, for the same
variable at the same moment. While one could argue that in this case the information is
erroneous, and hence it should be discarded, when dealing with numerical computations,
we reduce the problem to imprecision.

• uncertainty – an action has to be taken based on premises for which reliability has not
been clearly established.

Imperfection can also categorized as:

• subjective – the imperfection is present only related to an observer: a robot cannot
measure the luminosity in a certain direction because it is turned to another direction.

• objective – the imperfection is present regardless the presence of an observer: the same
robot cannot measure luminosity due to the lack of a sensor. However, one could argue,
that except for quantum physics, objective imperfection does not exist. We consider
objective imperfection one that cannot be reduced without altering the physical structure
of the system.

The two categorizations are not excluding one another. Incompleteness and imprecision
can be labelled as objective forms of imperfection, since they do not depend on the observer
(Smets, 1997).
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1.3. HANDLING UNCERTAINTY

Uncertainty on the other hand is clearly subjective imperfection, since it is directly related
to an observer. For instance, consider a robot that has to move to a certain point in an
environment that is (partially) unknown to it, and it recognizes its “goal state” only in the
moment it gets there. In this case, the robot’s decisions as to in which direction to move
are based inherently on uncertain premises. However, for an outside observer, for which the
environment is known, there is no uncertainty present.

For the above categories, many subcategories may be defined. The interested reader is
referred to (Smets, 1998b, 1999).

In the following chapters, instead of the term imperfection, the term uncertainty is used.
Also, we deal only with numerical forms of uncertainty, e.g., uncertainty, for which a numeric
quantification may be defined.

Several ways of handling imperfection/uncertainty are briefly overviewed in the following
section.

1.3 Handling uncertainty

When dealing with imperfection an ultimate goal would be to obtain true information. How-
ever, this is impossible due to imperfections in measurements, missing information or model
mismatches. We focus on reducing the imperfection, and finding data which (given the prob-
lem circumstances) can be considered reliable for using for decision.

General methods to deal with imperfect information are presented in what follows:

• Incomplete data: estimating the missing values (casually or continuously).

• (Partially) contradicting data: since it usually appears when fusing data, its cause is
usually imprecision. If a fault (erroneous sensor) cannot be detected, all data should be
considered imprecise, and the imprecision reduced by combination of the available data.

• Corrupted data: if some properties of the corrupting noise are known, the data can be
filtered.

• Set-valued data: combining the known properties of the data with other available infor-
mation.

Several theories for handling uncertainty have been developed for different types of im-
perfection. The best developed and most often used is probability theory, which quantifies
the likelihood of an imperfect (noise or otherwise corrupted) information to be a correct one.
Fuzzy logic can deal with vague information, while degrees of belief can be assigned to uncer-
tain premises in order to quantify there (subjective) reliability.

With regard to missing or noise corrupted data, two methods are representative: filtering
and state estimation.

We consider filtering as in signal processing: a version of a signal is measured that is
corrupted with noise. Given the properties of the noise, the problem is to reconstruct the
original signal.

Estimation is considered when only some variables of the system can be measured at a
certain moment. Also, measured data do not necessarily include the data of interest, which
have to be determined. Assuming that the change in the variables of interest is reflected
(possibly with delay), in the measured data, we try to reconstruct the missing information.
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INTRODUCTION

Throughout the survey we use filtering and estimation interchangably. If not stated oth-
erwise, we refer to estimation.

This review is organized as follows:
Chapter 2 presents a brief overview of the theories which can be used for reasoning under

uncertainty: probability and related theories, fuzzy sets and possibility theory.
Chapter 3 focuses entirely on two families of probabilistic state estimation methods:

Kalman filters and particle filters. These methods are described in detail, with the affer-
ent advantages and shortcomings, and possible application areas.

Chapter 4 deals with black- and grey-box models. Several types of fuzzy and neural
observers are presented, and also possible combinations of fuzzy and probabilistic filters are
described.

Chapter 5 gives a possible application of the presented estimators in a multiagent frame-
work.

Finally, Chapter 6 presents a set of conclusions and outlines possible research directions.
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Chapter 2

Theories for reasoning under
uncertainty

2.1 Introduction

A real-time control system has to deal with information acquired online. As discussed in
Chapter 1, in general, available information is not perfect and the information ideally re-
quired is rather impossible to obtain. Models that can quantify and handle different types of
uncertainties have to be developed.

Several theories used for handling uncertainty are presented in the following sections: the
oldest and possibly still best developed is probability theory. Several other theories are based
on or are generalizations of probability theory, such as upper and lower probabilities, certainty
factors or Bayesian networks. Fuzzy logic is a theory dealing with uncertainty deriving from
the vagueness of the terms. Possibility and necessity measures are also presented. together
with possible combinations of fuzzy and probability theory.

2.2 Probability theory

The word “probable” was derived from the Latin probare, meaning to test, to prove. In-
formally, “probable” is often interchanged with “possible”, “likely”, “uncertain”, “maybe”.
However, in the following, the term “probability” is used in the mathematical sense, defined
below.

Probability theory attempts to quantify the notion of probable. The general idea is divided
into two concepts:

• aleatory (objective) probability, which represents the likelihood of future events whose
occurrence is governed by some random phenomena. Examples include tossing a coin or
spinning a roulette wheel.

• epistemic (subjective) probability, which expresses one’s uncertainty about the outcome
of some event, in the lack of knowledge or causes. The common example is when one tries
to determine how probable is that a suspect committed a crime, based on the evidence
presented.

5



THEORIES FOR REASONING UNDER UNCERTAINTY

It can be argued whether the second type of probability really exists or that it can be
represented by objective probability combined with incompleteness. Choosing one of the
representations has implications on how one models the real world.

Probabilistic concepts are formalized so that they can be considered apart from their
meaning. The formal terms are manipulated by the rules of mathematics and logic.

2.2.1 Probabilities

In the following, the Kolmogorov formalization of probability is presented. In this formulation,
sets are interpreted as events and probability as a measure defined on these sets. In this way,
the probability P (·) of an event E, denoted P (E) is defined with respect to a universe or a
sample space Ω of all possible elementary events so that P (·) satisfies the Kolmogorov axioms.

Let Ω (sample space/ universe/ frame) denote the set of all events. If A is a subset of the
sample space Ω, then A contains events that ca happen. The empty set ∅ denotes impossible
events. It is usually assumed that a probability is a field on the sample space, that is, a set
of subsets of the sample space, which is closed under finite units and complementation on the
sample space.

The Kolmogorov axioms are formalized in the following way:

Definition 2.1 Let Σ be an algebra on Ω. Then, P (·) is called a probability function on Σ if
P (·) assigns real values to the members of Σ and satisfies the following conditions:

(i) ∀A ∈ Σ, P (A) ≥ 0

(ii) P (Ω) = 1

(iii) ∀ A, B ∈ Σ, A ∪B 6= ∅, P (A ∪B) = P (A) + P (B)

Some useful properties of probabilities are given in what follows (Voorbraak, 1995).

Proposition 2.1 Let Σ be an algebra on Ω and P (·) a probability function on Σ, and assume
that A and B are elements of Σ. Then:

(i) P (A) = P (A ∩B) + P
(
A ∩ B̄

)

(ii) P
(
Ā

)
= 1− P (A)

(iii) P (∅) = 0

(iv) B ⊆ A ⇒ P (B) ≤ P (A)

(v) P (A ∪B) = P (A) + P (B)− P (A ∩B)

Proposition 2.2 Assume that A, B1, . . . , Bn ∈ Σ so that B1, . . . , Bn is a partition of Σ.
Then:

P (A) =
n∑

i=1

P (A ∩Bi)

Proposition 2.3 Two sets A, B ∈ Σ are called independent if:

P (A ∩B) = P (A) · P (B)

6



2.2. PROBABILITY THEORY

2.2.2 Conditional probability and Bayes rule

Every set A with nonzero probability P (A) can define another probability:

P (B |A) =
P (A ∩B)

P (A)

on the sample space. This probability is called the conditional probability of B given A. Two
sets A and B are independent if the probability of B given A is the same as the probability
of B.

Some useful properties of the conditional probability are given in the following propositions.

Proposition 2.4 Assume that A, B1, . . . , Bn ⊆ Σ so that B1, . . . , Bn is a partition of Σ and
P (Bi) > 0,∀i = 1, 2, . . . , n. Then:

P (A) =
n∑

i=1

P (A ∩Bi) · P (Bi)

Proposition 2.5 (Chain rule) Assume that A1, A2, . . . , An ⊆ Σ so that P (∩n
i=1Ai) > 0.

Then:

P (∩n
i=1Ai) = P (A1) · P (A2 |A1) · P (A3 |A1 ∩A2) . . . P

(
An | ∩n−1

i=1 Ai

)

For the computation of (conditional) probabilities, a simple result provided by Thomas
Bayes is useful. This result, known as Bayes rule or Bayes theorem is given in what follows.
Based on the definition of conditional probability we have:

P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A)

If P (B) 6= 0, then:

P (A |B) =
P (B |A) · P (A)

P (B)

Theorem 2.1 (Bayes rule) Assume A, B ⊆ Σ so that P (A) > 0, P (B) > 0. Then

P (A |B) =
P (B |A) · P (A)

P (B)

Each term in Bayes theorem has a conventional name:

• P (A) is the prior or the marginal probability of A

• P (A |B) is the posterior probability of A, given B

• P (B |A) for a specified value of B is the likelihood function of A, given B. It can also
be written as L(A|B)

• P (B) is the prior probability of B. In computations, it generally acts as a normalizing
constant.
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THEORIES FOR REASONING UNDER UNCERTAINTY

A common example of using this rule is medical diagnosis: one is interested in the prob-
ability of a disease A, given the symptoms B. Usually it is easier to obtain P (B |A) (from
experts) and the prior probabilities of the symptoms P (B) and the disease P (A) than directly
P (A |B).

Proposition 2.6 Assume A, B, C ⊆ Σ so that P (C) > 0. Then A and B are conditionally
independent given C, if

P (A ∩B |C) = P (A |C) · P (B |C)

2.2.3 Probability distributions

A probability distribution is a function that assigns probabilities to events. The choice of
a distribution depends on the assumptions made about the events in question. A common
way to specify a probability distribution is a probability density function (PDF). In this case,
the probability of an event is obtained by integrating the density function. The probability
distribution function can also be specified directly, both for continuous and discrete domains.

A distribution is discrete if it is defined on a countable, discrete set; it is continuous, if it
has a continuous distribution function. Common distributions used in practice are the Delta
distribution, Gaussian or normal, uniform, Poisson and exponential distributions.

Bayes rule is also defined for continuous distributions.

Proposition 2.7 Let p be a continuous probability density function. Then

p (x | y) =
p (y |x) · p (x)

p (y)

where p (y), according to the law of total probability is

p (y) =
∫ ∞

−∞
p (y |x) · p (x) dx

In the discrete case, p (x, y) is called the joint distribution of the random variables X and
Y where p (X|y) is the posterior distribution of X, given Y = y, p (y |X) = L(X|y) is the
likelihood function of X, given Y = y, and p (X) and p (Y ) are marginal distributions of X
and Y , respectively.

2.3 Probability-related theories

2.3.1 Generalized probability theory (upper and lower probabilities)

While probability theory uses only one measure, which gives an exact value to the probability
of an event, generalized probability theory uses more general measures, which may not satisfy
the additivity property from the Kolmogorov axioms.

Definition 2.2 Let Ω be a sample space. A real-valued function F is called a capacity if it
satisfies the following conditions:

(i) ∀A ⊆ Ω, F (A) ≥ 0

(ii) F (Ω) = 1

8



2.3. PROBABILITY-RELATED THEORIES

(iii) ∀A, B ⊆ Ω, A ⊆ B, ⇒ F (A) ≤ F (B)

In the literature, capacities are also known as fuzzy or Sugeno measures (Zadeh, 2005). A
probability measure over Ω is also a capacity.

Capacity measures are motivated by constraints applied to the probabilities of the events
one is interested in. Ideally, the constraints should determine a probability measure, but in
general, there is a class of probability measures that satisfies the constraints.

A set of probability functions induce two natural measures, the upper and lower probability.

Definition 2.3 Assume Π is a nonempty subset of the probability functions that can be defined
on Ω, P (Ω). Then the upper and lower probabilities are defined as:

∀A ⊆ Ω Πlow(A) = inf{P (A) : Pr(·) ∈ Π}
∀A ⊆ Ω Πupp(A) = sup{P (A) : Pr(·) ∈ Π}

Theories derived from upper and lower probabilities include families of probability func-
tions, and inner and outer measures (Smets, 1998b).

2.3.2 Certainty factors

The certainty factor model was developed for expert systems, and it is based on handling facts
and rules. This model handles uncertainty by assigning a measure of (un)certainty, called a
certainty factor to every rule and basic fact. The certainty factor of a conclusion is computed
by applying some simple formulae to the certainty factors of the rules and facts used.

A certainty factor is usually a real number from the interval [−1, 1]. The user of the expert
system has to provide the certainty factors of the basic propositions and also of the production
rules. The certainty factor of a rule A → B (if A then B) is denoted by CF[A → B].

In this case, if A is evidence to support B, then CF[A → B] > 0. If A is evidence against
B, then CF[A → B] < 0. The meaning of CF[A → B] = 1 is that B is certainly true, given A
(A fully supports B), and CF[A → B] = −1 means that B is certainly not true, given A (A
invalidates B ). As specified before, in this case A is evidence against B.

The propagation rules are the following:

(i) serial combination of evidences

CF[B, A] = CF[A → B] ·max(0, CF[A])

(ii) conjunction

CF[A ∩B] = min(CF[A], CF[B])

(iii) disjunction

CF[A ∪B] = max(CF[A], CF[B])

(iv) parallel combination

CF[B, A1, A2, . . . , An] = g(CF[B,A1, A2, . . . , An−1], CF[B, An])

with g given as:

g(x, y) =





x + y − xy if x, y > 0
x + y + xy if x, y < 0

x + y otherwise

9



THEORIES FOR REASONING UNDER UNCERTAINTY

2.3.3 Dempster-Shafer theory

Dempster-Shafer theory was introduced in the late 70’s by Glen Shafer, as a “mathematical
theory of evidence”. The main innovation of the Dempster-Shafer theory is Dempster’s rule,
which provides means for combining the effects of different bodies of evidence.

In this formalism, the chance (probability, possibility of an event to appear) is represented
as a belief function. Probability values are assigned to sets of possibilities rather than events.
The Dempster-Shafer theory interprets belief functions as mass functions (Sentz and Ferson.,
2003):

Definition 2.4 A function m over a sample space Ω is a mass function or basic probability
assignment, if:

(i) m : Pow (Ω) → [0, 1]

(ii) m(∅) = 0

(iii)
∑

A∈Pow(Ω) m(A) = 1

where Pow (Ω) is the power set of Ω.

The quantity m(A) is a measure of belief that is assigned to exactly the set A. To account
for the measures of beliefs assigned to the subsets of A, the belief functions are introduced.

Definition 2.5 Let m be a mass function over a sample space Ω. The belief function Bel(·)
induced by m is defined by:

∀A ⊆ Ω Bel (A) =
∑

B⊆A

m(B)

In this way, Bel (A) is the measure of total belief that is certainly assigned to A. There
may still be beliefs that can be assigned to A, i.e., beliefs that are not assigned to propositions
that falsify A. These beliefs are taken into account by plausibility functions.

Definition 2.6 Let m be a mass function over a frame Ω. The plausibility function Pl(·)
induced by m is defined by:

∀A ⊆ Ω Pl (A) =
∑

A∩B 6=∅
m(B)

Plausibility may be understood as a measure of belief assigned to some B-s, that are
consistent with A. Beliefs/evidence may be combined by using the above measures. For this,
first define the focal element of a belief function:

Definition 2.7 A is a focal element of a belief function Bel(·) over Ω if m(A) > 0.

Now, the following rule can be formulated: if one piece of evidence is represented by a mass
function m1, which assigns m1(A) to A, and a second piece of evidence is represented by a mass
function m2, which assigns m2(B) to B, then the combined evidence assigns m1(A) ·m2(B)
to A ∩B.

Formally, for focal elements A1, A2, . . . , An, B1, B2, . . . , Bm, with belief functions m1 and
m2, the combination of beliefs Bel1(·) and Bel2(·), is the belief function Bel1⊕Bel2, induced
by the mass function m1 ⊕m2, defined as:

10
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m1 ⊕m2(A) =





0 if A = ∅∑
Ai∩Bj=A m1(Ai) ·m2(Bj)∑
Ai∩Bj 6=∅m1(Ai) ·m2(Bj)

if A 6= ∅

Bel1 ⊕Bel2 is also called the orthogonal sum of Bel1(·) and Bel2(·).
However, Shafer mentions two requirements which have to be satisfied in order to apply

Dempster’s rule, namely that:

1. when choosing the sample space, one has to consider not only the evidence, but also the
possible interaction between the evidences.

2. the belief functions to be combined have to be based on entirely distinct bodies of
evidence (Dempster-Shafer independence).

If one refers to probability theory, the second constraint may be reformulated as proba-
bilistic independence of the sources of the two bodies of evidence.

An interpretation of the Dempster-Shafer theory is the Transferable Belief Model of Philippe
Smets (Smets, 1998a). This model does not assume a relation between belief functions and
probability theory. The information provided by an evidence is represented by the mass func-
tion and for the transfer of belief, Dempster’s rule is used.

2.4 Bayesian networks

A causal network consists of a set of variables and a set of directed links between these
variables. This structure is called a directed graph. In a directed graph, there are two basic
relations: if there is a link from a node A to a node B, then it is said that B is a children of
A or that A is a parent of B.

The variables (nodes of the graph) represent events. In general, a variable can have
any number of states, but, at a certain moment, it has to be in exactly one of the states.
Connections between the nodes/variables may be: serial (node A has a child B, which in turn
has a child C), diverging (a node may have several children) and converging (a node may have
several parents). While causal networks are graphical models, they also have a quantitative
side: namely the strength attached to links between nodes.

Reasoning in this case is defined as computation of certainty factors of some nodes, given
the instantiations of other nodes.

Consider the following situation: let B be a parent of A. Using probability theory, one
would say that the strength of the link B → A should be defined as P (A |B). However,
C may also be the parent of A, and B and C may also have a common ancestors. In this
case,the separate conditionals P (A |B) and P (A |C) would not give a correct evaluation of the
interaction between the nodes. Just as in the case of Dempster-Shafer theory, the interactions
between the nodes have to be considered.

While it is possible for a directed graph to contain cycles, no method for dealing with
cyclic relations exist. In what follows, we assume that the graphs do not contain cycles.

Definition 2.8 (Pearl, 1996) Bayesian networks (BN) are directed acyclic graphs in which
the nodes represent variables of interest and the links represent causal influences among the
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variables. The strength of the influence is represented by conditional probabilities that are
attached to each cluster of parent-child node of the network.

In this way, the chain rule is redefined for Bayesian networks.

Proposition 2.8 (The chain rule) Let BN be a Bayesian network over U = A1, . . . , An.
The joint probability density distribution P (U) is the product of all conditional probabilities
specified in BN

P (U) = ΠiP (Ai |pa(Ai))

where pa(Ai) is the parent set of Ai.

A conditional probability table P (A |B1, B2, . . . , Bn), which lists all the possible combi-
nations, is attached to each variable A with parents B1, B2, . . . , Bn . These tables are in fact
the parameters of the model. The most common task for which Bayesian networks are used is
probabilistic inference. Depending on which variables are unknown, the inference can be done
in two directions: computing the posterior of the evidence using Bayes rule or computing the
probability of an effect, given the prior probabilities. In the second case, the model is called
generative. In order to simplify the computations, conditional independence relationships are
defined: a node is independent of its ancestors, given its parents. In this way, the chain rule
of probability may be used.

2.5 Fuzzy sets

Unlike crisp sets, which assign a value in {0, 1} to an event, meaning that it is true or false,
respectively, fuzzy sets generalize this concept, assigning a membership function to a set A:

µA : Ω → [0, 1]

In the general case, fuzzy membership functions on a set A may be expressed as

µA : Ω → L

where L is a partially ordered set.

Definition 2.9 The support of a set A are those elements of the universe Ω, which have
nonzero membership grade, i.e.

suppA = {ω ∈ Ω|µA (ω) > 0}

Definition 2.10 A fuzzy set is normal, if max{µA (x)} = 1 and ∃ω ∈ Ω s.t. µA (x) = 1.

Definition 2.11 An α-cut of a fuzzy set is a set, that contains all elements of Ω with mem-
bership degree greater or equal to α, i.e.

Aα = {ω ∈ Ω|µA (ω) ≥ α}

12
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Operations on fuzzy sets

The original theory of fuzzy sets was formulated in the terms of specific operations:

µĀ (ω) = 1− µA (ω)
µA∪B (ω) = max (µA (ω) , µB (ω))
µA∩B (ω) = min(µA (ω) , µB (ω))

However, other operators, called T-norms are often used.

Definition 2.12 A function T : [0, 1]2 → [−1, 1] is a T-norm, if:

(i) T (a, 1) = a

(ii) a ≤ b ⇒ T (a, c) ≤ T (b, c)

(iii) T (a, b) = T (b, a)

(iv) T (a, T (b, c)) = T (T (a, b), c)

The most used T-norms are:

Tmin(a, b) = min{a, b}
TLuka(a, b) = max{0, a + b− 1}
Tprod(a, b) = ab

Fuzzy sets serve as a compressed description of imprecise, generally contradictory pieces of
information. The basic assumption is that the data is vague, due to the set-valued information.

However, this might not be always the case, hence there should be a mechanism to trans-
form crisp (exact) values to fuzzy values and vice-versa. This procedure uses the notion
of membership functions and is called fuzzification and defuzzification, respectively. Fuzzi-
fication consists of finding the corresponding membership values of a crisp value, while by
defuzzification one approximates the crisp value corresponding to some fuzzy values.

2.6 Possibility theory

Possibility theory is an alternative to probability theory for dealing with uncertainty. But
while probability theory assignes a single number to an event (the probability of the event to
occure), possibility theory uses two numbers: possibility and necessity.

Possibility and necessity can also be seen as set measures. The possibility measure Π ()
defined on a set Ω for an event/set of events A is the degree of possibility that the event A
occurs.

If the possibility measure is normalized, then on a space Ω we have:

Π (∅) = 0 Π (Ω) = 1

Unlike in probability theory, the fundamental axiom of possibility theory is that:
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Definition 2.13 The disjunction of two events A and B is the maximum of their individual
possibilities:

Π(A ∪B) = max {Π (A) , Π(B)}

or, in a general:

Π(∪n
i=1Ai) = sup

i=1,2,...,n
{Π(Ai)}

According to the above definition, in general it will not be true that

Π
(
Ā

)
= 1−Π(i)

In this way, the necessity measure is introduced.

Definition 2.14 The necessity of an event A is the negation of the possibility of the negation
of the event:

N (A) = 1−Π
(
Ā

)

The following properties hold:

Proposition 2.9 Let A and B be two subsets of the sample space Ω. Then:

N (A ∩B) = min {N (A) , N (B)}
Π(A ∩B) ≤ min {Π(A) , Π(B)}
N (A ∪B) ≥ max {N (A) , N (B)}

Proposition 2.10 Let A and B be two subsets of the sample space Ω. Then A and B are
disjoint, if

Π(A ∩B) = min {Π (A) , Π(B)}

2.6.1 Conditional possibility

The role of conditional possibility and necessity is similar to that of conditional probabilities.
However, they are defined using fuzzy membership functions.

Definition 2.15 Let A, B be subsets of Ω, µA, µB : Ω → [0, 1] membership functions. Then
the conditional possibility can be written as:

Π(A|B) = sup
ω∈Ω

min {µA (ω) , µB (ω)} = sup
ω∈Ω

µA∩B

and the conditional necessity as:

N (A|B) = inf
ω∈Ω

min {µA (ω) , µB (ω)} = inf
ω∈Ω

µA∩B

Some properties of conditional distributions are listed in what follows.

Proposition 2.11 Let A, B be subsets of Ω. Then:

(i) N (A|B) = 1−Π
(
Ā|B)
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(ii) Π(A|B) = Π (B|A)

(iii) N (A|B) = N
(
B̄|Ā)

(iv) if ω is a singleton in Ω, then

Π(A|{ω}) = N (A|{ω}) = µA (ω)

(v) if B is normal, then

Π(A|B) ≥ N (A|B)

Like probability distributions, it is also possible to define a possibility distribution:

π : Ω → [0, 1] π(x) = Π ({x}) , ∀x ∈ Ω

Due to the definition of possibility, in this case one has:

Π (A) = max
x∈A

π(x)

Possibility theory is closely related to several other theories:

• The link between possibility and fuzzy sets is given by Zadeh’s possibilistic principle,
which states, that the grade of membership of an event is numerically equal to the
possibility of the event.

• possibility and probability :

– both can be represented by distributions

– probability and necessity may be seen as upper and lower probabilities

– possibility can be seen as plausibility in Dempster-Shafer theory

2.7 Fuzzy sets and probabilities

Two main approaches that combine fuzzy sets and probabilities can be distinguished based
on the available literature: defining probabilities on fuzzy sets, developed based on set-valued
probabilities and applying probabilistic methods to fuzzy systems.

The second approach is much more restricted, as it does not really combine the two theories,
but applies both for the same problem. In this case, fuzzy sets are not used for representing
uncertainty, but rather to represent a model.

For instance, in case on state estimation, instead of using a non-linear filter, one can
approximate the underlying process by a TS fuzzy system with linear consequents and apply
Kalman filters.
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2.7.1 Combination of fuzzy and probability theory

A good example for defining probabilities on fuzzy sets is given by Kato et al. (1999), where
the normal probability density function is redefined, having fuzzy numbers as mean and vari-
ance. Also, already in 1984, Zadeh defined probabilities on discrete fuzzy sets, based on their
cardinality (Zadeh, 1984). The same idea is continued by Pan et al. (1996), where Bayesian
inference is realized first on interval valued probabilities, and then extended to fuzzy distrib-
utions.

Furthermore, several authors defined probabilities on the rules of fuzzy systems, in order
to model uncertainty, particularly in classifier systems. In this case, a fuzzy rule is expressed
as follows (Meghdadi and Akbarzadeh, 2003):

if xi is Ai then y = B1 with probability P1

y = B2 with probability P2

y = Bm with probability Pm

so that P1 + P2 + · · ·+ Pm = 1.

The output is selected based on a roulette wheel mechanism. For multiple input, multiple
output models, two possible forms can be defined, which depend on the statistical dependencies
of the output: coupled and independent. Inference rules have been developed for both models.

2.7.2 Probabilities defined on fuzzy sets

A common method for defining probabilities on fuzzy sets is presented in what follows (van den
Berg et al., 2002).

First, define the probability of a singleton fuzzy event as:

P (Si) = µSi ḟ(xi) =
∑

xk∈X

µSi(xk)f(xk)

where f(xk) = P (xk) by definition and xk is a fuzzy sample.
Extending the above definition to a countable set of discrete fuzzy events Ab defined on

the sample space Ω, one obtains a vector of membership values: µAb
(xk) = mAb,k.

For a fuzzy partition, it can be written that:
∑

Ab

µAb
(xk) = 1, ∀xk

In this way, several properties from probability theory can be rewritten for fuzzy sets.

• membership function of the intersection:

µAb∩Bc(xk) = µAb
(xk)µBc(xk)

P (Ab ∩Bc) =
∑

xk∈X

µAb
(xk)µBc(xk)f(xk)

• conditional probability

P (Ab|Bc) =

∑
xp

µAb
(xp)µBc(xp)∑

xp
µBc(xp)

where xp is a finite set of representative samples.
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• total law of probability:
∑

Ab

P (Ab|Bc) = 1

Teixeira and Zaverucha (2003) considered a hidden Markov model with fuzzy events as class
and attribute values, so fuzzy probabilities are estimated. In this case, the probability of
a fuzzy variable is defined as the expectation of its membership function, which in turn, is
estimated from samples.

Inference in a fuzzy Bayesian network is also considered in literature (Baldwin and Di Tomaso,
2003). Since continuous variables have to be discretized, in order to provide some sort of in-
terpolation, fuzzy partitions are used with a modified inference mechanism.

2.8 Summary and conclusions

Imperfection is present in every real system, due to the modeling, missing values or imperfect
data. The common method used to compensate the imperfection is using probability theory.
The notion “probable”, often interchanged with “likely” or “uncertain”, gives a framework
in which one can quantize the imperfection. In this chapter, the Kolmogorov formalization,
conditional probabilities and probability distributions were presented.

An attempt to generalize probability theory resulted in upper and lower probabilities.
When introducing constraints, one might not be able to clearly define a probability. However,
the constraints define a class of probability measures, for which an upper and a lower measure
can be given.

Certainty factors were developed for expert systems, and they still do not have a proper
theoretical justification. The uncertainty is handled by assigning a measure to each fact and
rule, which quantifies one’s belief that the fact is reliable.

Dempster-Shafer theory provides a different framework to combine bodies of evidence,
by introducing belief functions. However, when combining evidence, one has to consider the
interactions and only entirely distinct evidences can be combined. This requirement in certain
cases can be nearly impossible to fulfill.

Bayesian networks are a graphical method to represent variables and interactions between
them and provide a mean for reasoning. Their severe shortcoming is that they can represent
only a finite number of variables and states for these variables.

Fuzzy sets, unlike probability and related theories, provide a mean to represent vagueness,
instead of quantifying the likelihood of an event. These sets generalize the concept of a truth
value, assigning a membership value instead to a set of events. The basic assumption is that
the data is vague,due to set-valued information, and fuzzy sets can serve as a compressed
description of imprecise, generally contradicting pieces of such information. Formulae for
dealing with fuzzy sets are given by possibility theory.

However, fuzzy sets are also used to represent models, in which case only the basic as-
sumptions are used. Several authors combined probabilities and fuzzy sets, the attempts
ranging from using probability theory related methods on fuzzy models to defining concepts
of probability theory on fuzzy sets.

All the above presented theories are suited for dealing with imperfect information. Each
of them has its advantages and shortcomings: probability and related theories quantify the
certainty of an event, but cannot deal with vague information. Several of these theories are
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suitable only for a finite number of possibilities. A general rule for which theory should be
applied cannot be given: each application has to be evaluated separately, and suitable means
for handling the imperfection present has to be found.
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Chapter 3

Estimation using probability theory

3.1 Introduction

As presented in Chapter 1, not all the variables of a system, and not even the variables of
interest can be measured. In order to determine the variables of interest, other methods then
measuring have to be used.

Consider the following description of a (possibly) time-varying, nonlinear system:

xk = fk(xk−1, uk−1, θk−1, k) (3.1)
yk = hk(xk, uk, µk, k) (3.2)

where:

• k - current time step

• x - state variables

• u - control variables

• θ, µ - unknown/varying parameters

• y - measurements

It is also assumed that both the states and the measurements may be corrupted by noise.
In the following, assume that the system is always observable (in control theory sense),

however, (as in most of the cases), it is only partially measurable. It has to be emphasized,
that in this case, (theoretically) any state can be determined (up to a delay), from a finite
number of exact input-output pairs. Consider also, that the states and/or the parameters are
corrupted with (some) noise and/or part of the model is unknown, but an alternative model
(in the worst case a random walk) can be found.

Clearly, the goal is the estimation of the states/parameters of interest.
In the following, two family of methods will be presented for the estimation of states/

parameters: Kalman filters and particle filters. While both families rely on notions from
probability theory, there is one fundamental difference between them: while Kalman filters
are essentially deterministic, particle filters are stochastic methods.

While both methods assume probabilistic models, several properties are listed in what
follows.

Kalman filters:
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• assume Gaussian noise (except for sigma-point filters)

• approximate the posterior as Gaussian, compute its mean and covariance

• deterministic

Particle filters:

• can handle any type of noise

• represent the posterior as weighted samples

• stochastic

While presenting the two methods, parameter estimation is not handled separately. It
is assumed that the parameter variation may be represented as a stochastic process and the
states are simply augmented with the parameters to be estimated.

3.2 Kalman filters

3.2.1 General description

Filtering can be defined as the problem of estimating the states of a system, given its model and
a set of observations. These observations are usually noisy measurements of some quantities
related to the states. On the other hand, system models are usually inferred based on ideal
conditions, which are not accurate. When filtering, model inaccuracy is considered as noise.

In the case of linear systems, corrupted by white Gaussian noise, the Kalman filter is
proved to be an optimal filter in the mean least square sense. The Kalman filter is a re-
cursive algorithm, that incorporates all the provided information (model and observations)
and processes the available measurement to estimate the current state of the system. For
this, it makes use of the system model, the measurement model and the known statistics of
the corrupting noise. The filter works in two steps: prediction and update. The prediction
step uses the system model and the information incorporated so far in order to predict the
process’ states. This stage is also known as the time update step, as it projects forward in
time the current state and error. The update stage uses the latest (noisy) measurement to
modify (correct) the projected state. This stage is also known as measurement update, since
it incorporates the information brought by the new measurement.

While the Kalman filter is optimal only in the case of linear systems corrupted by white
Gaussian noise, several extensions to nonlinear systems exist: the extended Kalman filter
(based on linearizing the models around the current states), or the family of sigma point
Kalman filters (based on approximating the distribution of the states).

In the following, only the recursive algorithms for the Kalman filter, Extended Kalman
filter and Unscented Kalman filter will be presented. For the computational origins of the
filters, see Kalman (1960), Julier and Uhlmann (1997), and Welch and Bishop (2002).

Note: In the description of the models the control input and other known/controlled
parameters will not be separately stated. Thus, instead of f(xk−1, vk−1, uk−1, θk−1), where
uk−1 is the control input and θk−1 is a vector of some known/controlled parameters, we use
the notation f(xk−1, vk−1).
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3.2.2 Gaussian random variables

The Kalman filter usually works under the assumption that both the state transition and
measurement noises are white and Gaussian. If this assumption is removed (the noises are
considered arbitrary), the Kalman filter can be shown to be the best (minimum error variance)
filter from the class of linear unbiased filters.

A Gaussian (or normal) distribution is usually assumed because it remains linear under
linear transformations and its mean, mode and median have the same value. Also, an arbi-
trary distribution can be approximated as an (infinite) sum of Gaussian distributions. For
any distribution for which only the mean and the variance is known, there exists a normal
distribution with the same parameters.

For a normal distribution N (m,σ2) the following properties hold:

1. Its linear transformation is also normal: if X ∼ N (m,σ2) and a, b ∈ R, then aX + b ∼
N (a ·m + b, (aσ)2)

2. The sum of independent normal random variables is also normal: X ∼ N (mx, σ2
x),

Y ∼ N (my, σ
2
y) then X + Y ∼ N (mx + my, σ

2
x + σ2

y)

3. The integral over two conditionally dependent Gaussian distribution is also Gaussian:∫ N (x|Ay + b, σ2
x)N (y|z, σ2

y)dy = N (x|Az + b, σ2
x + Aσ2

yA
T )

4. The product of two Gaussian distributions has a Gaussian form (though it is not a
Gaussian distribution anymore): N (mx, σ2

x)N (my, σ
2
y) = zN (mz, σ

2
z)

3.2.3 Linear Kalman filter

Consider the following linear model:

xk = Fxk−1 + Buk−1 + vk−1 (3.3)
yk = Hxk + ηk (3.4)

with x0 (initial state) and P0 (initial covariance) known or previously estimated, and vk−1 (the
state transition noise) and ηk (the measurement noise) zero mean Gaussian noises of known
covariances Qk and Rk, respectively.

The objective is to recursively estimate (filter) the state xk based on available measure-
ments.

The next state and its covariance are constructed as follows:
Prediction: at time k, the state xk−1, its covariance Pk−1 (both estimated in the previous

step) and the control input uk−1 are available. These are used to predict the next state and
its covariance via the system model:

xk|k−1 = Fxk−1 + Buk−1 (3.5)

Pk|k−1 = FPk−1F
T + Qk (3.6)

Update: when the measurement yk becomes available, it is used to compute the so-called
Kalman gain and correct the estimates:

Kk = Pk|k−1H
T (HPk|k−1H

T + R)−1 (3.7)
xk = xk|k−1 + Kk(yk −Hxk|k−1) (3.8)
Pk = (I −KH)Pk|k−1 (3.9)
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3.2.4 Extended Kalman filter

As mentioned before, the Kalman filter is optimal (in the mean least square sense) only when
dealing with linear processes and white Gaussian noise. However, several attempts were made
to extend/adapt it for nonlinear systems. One of them, which linearizes the system equations
around the current mean and covariance is referred to as the Extended Kalman filter (EKF).

Consider the following nonlinear model:

xk = f(xk−1, vk−1) (3.10)
yk = h(xk, ηk) (3.11)

with x0 and P0 known or estimated, and vk−1 and ηk zero mean Gaussian noises of known
covariances Qk and Rk, respectively.

The extended Kalman filter linearizes the model at every step around the current estimate,
assuming zero noise. Thus, we define:

Fk =
∂f

∂x
(xk−1, 0) (3.12)

Gk =
∂f

∂v
(xk−1, 0) (3.13)

Hk =
∂h

∂x
(xk, 0) (3.14)

Dk =
∂h

∂η
(xk, 0) (3.15)

These matrices have to be recomputed at every step. The basic (linear) Kalman filter is now
applied to this linearized model.

The prediction stage becomes:

xk|k−1 = f(xk−1, 0) (3.16)

Pk|k−1 = FkPk−1F
T
k + GkQk−1G

T
k (3.17)

The update equations are:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + DkRkD

T
k )−1 (3.18)

xk = xk|k−1 + Kk(yk − h(xk|k−1, 0)) (3.19)
Pk = (I −KkHk)Pk|k−1 (3.20)

Though the EKF is the most used Kalman filter Maybeck (1979), especially in tracking,
navigation, localization problems, in the case of an unobservable process, or when the mapping
between the measurement yk and the state is not one-to-one, the filter can diverge.

3.2.5 The Unscented Kalman filter

The fundamental flaw of the EKF is that the distributions of the random variables, after
undergoing a nonlinear transformation will no longer be normal. A variation of the Kalman
filter, which preserves the normal distribution through the transformation (up to a certain
point) was developed by Julier and Uhlmann (1997).

The unscented filter belongs to the family of the sigma point Kalman filters, and it is based
on the unscented transformation. The unscented transformation computes the statistics of a
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random variable which undergoes a nonlinear transformation. For this, a number of weighted
“samples” or “sigma points” are chosen deterministically, so that they completely capture the
mean and covariance of a random variable.

Assume that an nx-dimensional random variable x has to be propagated through the
nonlinear function g in order to generate y:

y = g(x)

Assume also that x has a known mean x0 and a known covariance Px. In this case, a number
of 2nx +1 sigma points can be generated deterministically, so that they capture the mean and
variance. A selection procedure is the following:

X0 = x0 w0 = κ/(nx + κ) (3.21)
Xi = x0 + [

√
(nx + κ)Px]i wi = 1/[2(nx + κ)] i = 1, 2, ...nx (3.22)

Xi = x0 − [
√

(nx + κ)Px]i wi = 1/[2(nx + κ)] i = nx + 1, ...2nx (3.23)

where κ is a scaling parameter, [
√

(nx + κ)Px]i is the ith row of the matrix square root of
(nx + κ)Px, and wi is the weight associated to the ith sample.

The sigma points are now propagated though the nonlinear function g: Yi = g(Xi), i =
0, 1, . . . , 2nx. The mean and covariance are estimated as:

y0 =
2nx∑

i=0

wiYi (3.24)

Py =
2nx∑

i=0

wi(Yi − y0)(Yi − y0)T (3.25)

These estimates are accurate to the second order of the Taylor series expansion of g(x), for
any nonlinear function and for any distribution. However, in certain cases the computed
covariance matrix can be non-positive semidefinite, in which case the filter collapses.

In order to apply the Kalman filter using the unscented transformation, the state variables
are augmented with the state transition and measurement noise, and the state covariance with
the state transition and measurement covariance:

xa
k = [xT

k vT
k ηT

k ]T

P a = diag([Pk Qk Rk])

The sigma points are computed based on the augmented state and covariance.
The prediction is extended, since the sigma points have to be computed and propagated

through the state transition model to predict the new states. The predicted states are also
have to be propagated though the measurement model in order to predict the measurement.
The equations are the following:

Compute sigma points:

X a
k−1 = [xa

k−1 xa
k−1 ±

√
(na + κ)P a

k−1] (3.26)

where a sigma point will have the form:

X a
k−1 = [X x

k−1 X v
k−1 X η

k−1] (3.27)
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Propagate sigma points through the state transition model:

Xk|k−1 = f(X x
k−1, X v

k−1) (3.28)

Predict next state:

xk|k−1 =
2na∑

i=0

wiXi,k|k−1 (3.29)

Predict covariance:

Pk|k−1 =
2na∑

i=0

wi(Xk|k−1 − xk|k−1)(Xk|k−1 − xk|k−1)
T (3.30)

Propagate transformed sigma points through the measurement model:

Yk|k−1 = h(Xk|k−1, X η
k−1) (3.31)

Predict measurement:

yk|k−1 =
2na∑

i=0

wiYi,k|k−1 (3.32)

Predict measurement covariance:

Pyy =
2na∑

i=0

wi(Yk|k−1 − yk|k−1)(Yk|k−1 − yk|k−1)
T (3.33)

Compute cross-correlation matrix:

Pxy =
2na∑

i=0

wi(Xk|k−1 − xk|k−1)(Yk|k−1 − yk|k−1)
T (3.34)

The update stage remains the same as the Kalman filter:
Compute Kalman gain:

Kk = PxyP
−1
yy (3.35)

Correct predicted state:

xk = xk|k−1 + Kk(yk − yk|k−1) (3.36)

Correct the covariance:

Pk = Pk|k−1 + KkPyyK
T
k (3.37)

A generic Kalman filter algorithm is given in Algorithm 3.1.
The presented procedure is a general form of the unscented Kalman filter. For special cases,

such as additive state transition and/or measurement noise, the computational complexity may
be reduced (Julier and Uhlmann, 1997).
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Algorithm 3.1 Unscented Kalman filter
Input: u, y, Q, R, f, h
Output: x, P

for k = 1, 2, . . . do . each input
Prediction:
xa

k−1 = [xT
k−1 vT

k−1 ηT
k−1]

T . augment states
P a

k−1 = diag[Pk−1 Qk−1 Rk−1] . augment covariance

X a
k−1 = [xa

k−1x
a
k−1 ±

√
(na + κ)P a

k−1] . compute sigma points

Xk|k−1 = f(X x
k−1, X v

k−1) . propagate sigma points
xk|k−1 =

∑2na
i=0 wiXi,k|k−1 . predicted next state

Pk|k−1 =
∑2na

i=0 wi(Xk|k−1 − xk|k−1)(Xk|k−1 − xk|k−1)T . predict covariance

Yk|k−1 = h(Xk|k−1, X η
k−1) . propagate transformed sigma points

yk|k−1 =
∑2na

i=0 wiYi,k|k−1 . predicted measurement
Pyy =

∑2na
i=0 wi(Yk|k−1 − yk|k−1)(Yk|k−1 − yk|k−1)T . predicted measurement covariance

Pxy =
∑2na

i=0 wi(Xk|k−1 − xk|k−1)(Yk|k−1 − yk|k−1)T . cross-correlation matrix

Update:
Kk = PxyP

−1
yy . Kalman gain

xk = xk|k−1 + Kk(yk − yk|k−1) . correct the state
Pk = Pk|k−1 + KkPyyK

T
k . correct the covariance

end for

3.2.6 Advantages and shortcomings

In the case of a linear process model corrupted by zero-mean Gaussian noise, the Kalman
filter is the optimal estimator in the least square sense. This is because of the property of
the Gaussian signal of remaining Gaussian after passing through a linear system, and because
of the sum of two independent Gaussian random variables is also Gaussian. However, when
passing through a nonlinear function, a Gaussian distribution is not likely to remain Gaussian.

While in general the noise covariances are considered constant, in some cases, they might
be variable, and have to be tuned. In an actual implementation, the measurement noise
covariance is measured before filtering, but there are also cases, when the measurement noise
covariance changes while filtering (e.g. due to a sensor change).

The state transition noise covariance is more difficult to determine. Sometimes even a
poor model can produce acceptable results, if enough uncertainty is considered, i.e. the state
transition noise covariance is great enough. In either case, the covariances may be tuned. This
is usually performed off-line, using another Kalman filter.

If the covariances are constant, both the estimation error covariance and the Kalman gain
will stabilize quickly and remain constant. If this is the case, they may be computed off-line
and stored.

The Extended Kalman filter is based on simple linearization around the current estimate.
While for highly nonlinear equations this linearization introduces considerable errors, and it
might even diverge, this filter is used in many cases with success.
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The EKF may collapse due to two causes:

1. the random variables are no longer normal after the nonlinear transformation and this
effect is increased at every step.

2. by linearization, a nonlinear observable process may become unobservable, and the cor-
rection performed wrongly (linearization may produce highly unstable filters if local
linearity is violated).

These collapses may be prevented by the UKF, which is not restricted to Gaussian noises.
However, its best performance is achieved when the random variables are Gaussian. Since
it uses the nonlinear equations, it is more accurate than the EKF. Also, it does not need to
calculate Jacobians, but a matrix square root. Its superior performance has been reported in
many publications, such as (Li et al., 2004; van der Merwe and Wan, 2003; van der Merwe
et al., 2001).

While it would seem that the Unscented Kalman filter is a solution for state estimation,
there are certain cases, when it cannot be used successfully. The filter may collapse due to
robustness issues: the estimated posterior covariance can increase unlimited if the model is
incorrect. While theoretically it can handle non-Gaussian noise, this is not always the case in
practice.

3.3 Particle filters

3.3.1 General description

While Kalman filters represent the distribution of the random variables as Gaussians, this is
not always the case. Moreover, the result of the propagation of a Gaussian through a nonlinear
function in most cases is not a Gaussian. Also, there is no general method to compute the
resulting distribution analytically. This is why the particle filters represent the distributions
by samples, rather than a compact analytical form.

In the Bayesian approach of state estimation, the objective is to construct the posterior
probability density function (Probability Density Function (PDF)), based on all available in-
formation (models and measurements). In general, a state estimate is required every time a
measurement is received. The filter works in two stages: prediction and update. The predic-
tion stage uses the system model to predict the state PDF one step ahead. The PDF obtained
after prediction is called the prior PDF. The update stage uses the latest measurement to
modify (correct) the predicted PDF. This correction is achieved via Bayes rule. The PDF

obtained after the update (correction) is called the posterior PDF.

3.3.2 Preliminaries

In the following, in the description of the models, the control input and the parameters will not
be explicitly noted. Thus, instead of f(xk−1, vk−1, uk−1, θk) where uk−1 is the control input
and θk is a vector of some known/controlled parameters, we use the notation f(xk−1, vk−1).

Likelihood function: any function proportional to a conditional probability density
function, considered a function of its second argument, with its first argument held fixed.

L(B = b|A) = αP (A|B = b)
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Likelihood functions are evaluated up to a proportionality constant.

Initial PDF: p(x0), or p(x0|y0) (sometimes the notation p(x0) = p(x0|y0) is used) is
assumed to be known or previously estimated, meaning that initial samples and weights can
be obtained from an (estimated) distribution. Methods for initialization include sampling
from:

• N (x̂0, σ0), where x̂0 is the estimated initial state and σ0 is its estimated variance

• U(x0min, x0max), sampling uniformly the state space

Dirac delta function/distribution: is a function δ(·) with the property
∫ ∞

−∞
f(x)δ(x)dx = f(0)

valid for any continuous function f . As a distribution, the Dirac delta has the following
parameters: support x ∈ [x0; x0], PDF δ(x− x0), mean and median x0.

Note: p(x|xk−1) means both the prior PDF in the analytical case, and the value of the
probability in the implementation of the particle filter

3.3.3 Bayesian filtering

Consider the process described by the following system and measurement models:

xk = f(xk−1, vk−1) (3.38)
yk = h(xk, ηk) (3.39)

and x0 is given/estimated, or, equivalently, the following PDFare given (see Rekleitis, 2004):

p(xk|xk−1) (3.40)
p(yk|xk) (3.41)

and p(x0) is given/estimated.
The objective is to recursively estimate the state xk based on the available measurements

ϕk, or, from a Bayesian point of view, to construct the posterior probability density function
p(xk|ϕk).

Example: Consider the following system:

xk = f(xk−1) + vk−1

yk = h(xk) + ηk

where vk and ηk are zero mean Gaussian noises, with constant covariances Q and R, respec-
tively.

This model is equivalent with:

p(xk|xk−1) = N (xk; f(xk−1), Q)
p(yk|xk) = N (yk; h(xk), R)

The objective is to recursively estimate p(xk|ϕk). 2
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The posterior PDF p(xk|ϕk) is constructed in two steps: prediction and update.

Prediction: At step k, the PDF p(xk−1|yk−1) is available. The prior PDF, p(xk|ϕk−1)
is constructed using the system model, via the Chapman-Kolmogorov equation (see Arulam-
palam et al., 2002):

p(xk|ϕk−1) =
∫

p(xk|xk−1) p(xk−1|ϕk−1)dxk−1 (3.42)

Update: As the measurement yk becomes available, it is used to update the prior PDF

via the Bayes rule. The posterior PDF can be computed as:

p(xk|ϕk) =
p(yk|xk) p(xk|ϕk−1)

p(yk|ϕk−1)
(3.43)

where the normalizing constant is given by

p(yk|ϕk−1) =
∫

p(yk|xk) p(xk|ϕk−1)dxk (3.44)

Example (cont’d): Assume that p(x0|y0) = N (x0, σ0) is given/estimated.
At step k = 1, the PDF p(x1−1|y1−1) = N (x0, σ0) is available. The prior is constructed by

using (3.42):

p(x1|y0) =
∫

p(x1|x0) p(x0|y0)dx0

p(x1|y0) =
∫
N (f(x1), Q) N (x0, σ0)dx0

When the measurement y1 becomes available, the prior is updated via the Bayes rule:

p(x1|y1) =
p(y1|x1)p(x1|y0)

p(y1|y0)

with the normalizing constant

p(y1|y0) =
∫

p(y1|x1)p(x1|y0)dx1

This constant in the general case cannot be computed analytically. Special cases and approx-
imations are presented by Doucet et al. (2000).

3.3.4 Representation

Except for a few special cases (such as linear Gaussian state space models), the posterior PDF

cannot be analytically evaluated. To overcome this difficulty, particle filters represent the PDF

at step k by a number NS of random samples xi
k with associated weights wi

k. The estimates
are computed based on these samples and their weights.

The weights are normalized, so that
NS∑

i=1

wi
k = 1, for each k. Since the estimated posterior

PDF is represented by the set samples, there is no analytical expression for it. However, the
approximation is conventionally denoted by:

p(xk|ϕk) ≈
NS∑

i=1

wi
kδ(xk − xi

k) (3.45)
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3.3.5 Importance sampling

Ideally, the samples should be drawn from the posterior distribution. Since this is the PDF

to be estimated, in general it is impossible to sample directly from this distribution, but it
can be evaluated (up to a normalizing constant). Therefore, the samples are drawn from
another distribution, having a support which includes the support of the posterior PDFs. The
density function from which the samples are drawn is called importance (proposal) density
function. The procedure of sampling from the importance density instead of the posterior is
called importance sampling.

In general, a density function p(·), which cannot be sampled, but can be evaluated, can
be represented by the weighted samples of an importance density function q(·), denoted by:

p(x) ≈
NS∑

i=1

wiδ(x− xi) (3.46)

where the weights wi are calculated by

wi =
p(xi)
q(xi)

(3.47)

and normalized.

At step k, p(xk−1|ϕk−1) is available as a set of samples xi
k−1 and corresponding weights

wi
k−1, i = 1, ..., NS. New samples xi

k and weights wi
k, i = 1, ..., NS have to be generated, which

should approximate p(xk|ϕk). To achieve this, the samples xi
k are drawn from a (chosen)

importance density q(xi
k|xi

k−1, ϕk), and the weights are updated as

wi′
k = wi

k−1

p(yk|xi
k) p(xi

k|xi
k−1)

q(xi
k|xi

k−1, ϕk)
(3.48)

The weights are then normalized

wi
k =

wi′
k

NS∑

j=1

wj′
k

(3.49)

The posterior PDF is represented by the set of weighted samples, denoted by:

p(xk|ϕk) ≈
NS∑

i=1

wi
kδ(xk − xi

k) (3.50)

Remarks:

• Theoretically, there is no restriction on how to select the importance density, except
that its support should include the posterior’s. Several importance functions (obtained
by local linearization, the optimal importance function, the prior, and fixed importance
functions) are described by Doucet et al. (2000).

• In the case of Bayesian filtering the filter’s convergence is defined as the convergence of
the estimated PDF to the real posterior. This clearly depends on the number of particles.
For bounds on errors depending on the number of particles, see (Boers, 1999). Statistical
methods for verifying convergence are presented by Brooks and Gelman (1998).
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3.3.6 Degeneracy

A common problem of the particle filters is the degeneracy of the samples: after a few iter-
ations, all but one particle will have negligible weight. A measure of the degeneracy of the
samples is the effective sample size, approximated by:

Neff =
1

NS∑

i=1

(wi
k)

2

(3.51)

Since after normalization, 0 ≤ wi
k ≤ 1 for every particle and at every step k, 0 ≤ Neff ≤ NS.

A small Neff indicates a severe degeneracy, meaning that many of the particles will have
very small weights. These particles should be eliminated, or replaced by particles with greater
weights. Thus, a new sample set has to be generated. The procedure, by which a new set of
samples is generated from p(xk|ϕk) is called resampling. Several resampling algorithms are
given by Fearnhead (1998).

One of the resampling procedures is presented in Algorithm 3.2. This algorithm replaces
the particles with smaller weights by multiplying the ones with greater weights and then
resetting all the weights to 1/NS.

Algorithm 3.2 Resampling
Input: x, w
Output: xnew, wnew

for i = 1, 2, . . . , NS do
Compute cumulative sum of the weights: wi

c =
∑i

j=1 wj
k

end for
Sample u1 from U [0, 1/NS]
for i = 1, 2, . . . , NS do

Find x+i
k , the first sample for which wi

c ≥ ui.
Replace particle i: xi

k,new = x+i
k , wi

k,new = 1/NS

ui+1 = ui + 1/NS

end for

3.3.7 The generic particle filter algorithm

For the algorithm it is assumed that the initial samples are generated from a normal distrib-
ution, with mean x0 (the (estimated) initial state) and a given variance σ0. The importance
density function is denoted by q(·), and it is assumed that it depends only on the previous
state, and not on the measurement, q(xk|xk−1, yk) = q(xk|xk−1). A generic particle filter
algorithm is given in Algorithm 3.3.

3.3.8 Sequential Importance Resampling (SIR) particle filter

The importance density should be chosen so that it maximizes Neff , which is equivalent to
minimizing the variance of the weights. It has been shown that the optimal importance density
is (Doucet et al., 2000):

q(xk|xk−1, ϕk) = p(xk|xk−1, ϕk) (3.52)
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Algorithm 3.3 Particle filter
Input: NS, p(xk|xk−1), p(yk|xk), x0, σ0, q(·), NT (resampling threshold)
Initialize:

for i = 1, 2, . . . , NS do
Draw a new particle: xi

1 ∼ N (x0, σ0)
Assign weight: wi

1 = 1/NS

end for
At every step k = 2, 3, . . .

for i = 1, 2, . . . , NS do
Predict: Draw particle from proposal distribution: xi

k ∼ q(xi
k|xi

k−1)
if yk is available then

Update: Compute weight: wi′
k = wi

k−1

p(yk|xi
k) p(xi

k|xi
k−1)

q(xi
k|xi

k−1)

end if
end for
Normalize weights: wi

k = wi′
kPNS

i=1 wi′
k

Compute effective sample size: Neff = 1PNS
i=1(w

i
k)2

if Neff < NT then
Resample using Algorithm 3.2.

end if

Analytic evaluation of this expression is possible only in the case of models, for which the
system dynamics is nonlinear, the measurement model is linear, and the noise is Gaussian (see
Doucet et al., 2000).

It is often convenient to choose as importance density the prior:

q(xk|xk−1, ϕk) = p(xk|xk−1) (3.53)

In this case sampling from the prior is necessary. Samples can be generated by first
generating a process noise sample vi

k−1 and then setting xi
k = f(xi

k−1, v
i
k−1).

For this choice of the importance density, the weight update becomes:

wi
k = wi

k−1 · p(yk|xi
k) (3.54)

Another difference between the SIR filter and the generic particle filter is that for the
SIR filter resampling is applied at every step. In this way, after the weights are normalized,
resampling is applied, and the weights will have the value 1/NS. The weight update equation
(3.54) can be written as:

wi
k = p(yk|xi

k) (3.55)

In the following, it is assumed that the state transition noise distribution is denoted by
DN(·), and the initialization is done in the same manner as for a generic particle filter. In
these circumstances, the SIR filter algorithm is given in Algorithm 3.4.

Though the SIR filter has the advantage that the weights are easily evaluated and the
importance density can be easily sampled, this filter can be inefficient and sensitive to outliers,
since the state-space is explored without any knowledge of the observation.
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Algorithm 3.4 SIR filter
Input: NS, f(xk−1, vk−1), p(yk|xk), x0, σ0, DN(·), NT (resampling threshold)
Initialize: same as for the generic particle filter
At every step k = 2, 3, . . .

for i = 1, 2, . . . , NS do
Draw a process noise sample: vi

k−1 ∼ DN(·)
Predict: Compute corresponding particle: xi

k = f(xi
k−1, vk−1)

if yk is available then
Update: Compute weight: wi′

k = p(yk|xi
k)

end if
end for
Normalize weights: wi

k = wi′
kPNS

i=1 wi′
k

Resample using Algorithm 3.2.

3.3.9 Advantages and shortcomings

Particle filters have one main advantage over Kalman filters: the noise corrupting the system,
whose states have to be estimated does not have to be Gaussian.

However, while for at least the linear Kalman filter, stability is proven, this is not the case
for several types of particle filters. Also, obtaining the posterior distribution does not help
when an exact estimate of the state is needed. Several problems raise due to the approximation
of the posterior with weighted samples:

• even if the samples are drawn from the real posterior, an infinite number of samples are
necessary to reconstruct it.

• the mean of the posterior can not be considered a correct estimate of the state, since no
guaranties exist that the posterior is unimodal.

• in practice, a large number of samples are necessary for a good estimation. Hence, the
algorithm is time-consuming, and not suitable for fast processes. In order to reduce the
time needed, the number of samples has to be decreased, which may render the filter
unstable. However, increasing the number of particles beyond a certain threshold does
not significantly improve the results.

• in order to prevent degeneracy, the importance density has to cover the possible states,
which may not be determined beforehand.

• in practice, the filter may collapse due to numerical errors, and re-initialization can be
complicated

While in theory particle filters are the best of the above estimators for non-linear systems,
it can not be considered a universal solution. In case of small nonlinearities or fast processes
may be handled better by a Kalman filter, even if the estimate is not perfect.

3.4 Summary and conclusions

In the probabilistic framework, two classes of filtering methods have been presented: Kalman
and particle filters. Both classes consider a probabilistic representation of a dynamic model.
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While not considered separately, both the Kalman and particle filters can be used for state
and parameter estimation.

The best known variant of the Kalman filter is the linear Kalman filter, which is an optimal
estimator in the least square sense. However, it can be used only for linear systems, and when
the model is completely known, up to a probabilistic uncertainty. Its most used extension to
nonlinear systems, the Extended Kalman filter, is based on the linearization of the system at
each moment around the current mean and variance. However, in highly nonlinear systems,
when the linearization is valid only in a very restricted space, this filter is likely to diverge.

Another extension of the Kalman filter is the Unscented Kalman filter, which uses the
true nonlinear model. This method is based on representing the distribution of the random
variables by a few, deterministically chosen points (the so-called sigma points), which are
chosen so that they completely capture the mean and variance of the random variables. While
this method cannot be rendered divergent due to the model nonlinearity, it may still diverge, if
the mean and the variance are not sufficient for representing the distribution (e.g. multimodal
distributions). However, when this is not the case, its performance is superior to that of the
Extended Kalman filter.

Particle filters represent distributions by random samples and associated weights. Their
main advantage is that they can handle an type of nonlinear models and any distributions.
However, there is a severe shortcoming: their implementation is time-consuming in such a
way, that it can render them unusable in real-time estimations.

There is no general rule which estimator is better for nonlinear systems. In principle,
particle filters are the most accurate. However, small nonlinearities may be better handled by
Extended Kalman filters, or, assuming the the random variables are unimodal, the Unscented
Kalman filter.
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Chapter 4

Black and grey box models

4.1 Introduction

In this chapter, some approaches for analysis and design of observers for Takagi-Sugeno fuzzy
systems and systems represented by neural networks are presented.

The motivation for representing dynamical systems by black or grey box models is straight-
forward: in certain cases, no prior information is available of the dynamical system that has
to be studied. In this case, one could assume a random walk model, however, this model does
not give any useful insight on the dynamics, and no predictions as how the system would
evolve can be made. If using grey box modelling, one can incorporate the known dynamics.

Also, in certain cases, the structure of a system can (partially) change. Instead of identi-
fying an unknown, nonlinear system, it is more convenient to assume from start an adaptive
structure, and modify it in concordance with the plant to be modelled. Approximating a
process by an adaptive fuzzy or neural model make this adaptation possible.

In what follows, fuzzy and neural models and the corresponding observers will be pre-
sented. While several types of observers have been developed for Takagi-Sugeno type fuzzy
systems, these deal with models having stationary structures. The observers for neural mod-
elled systems are more restricted, considering the general structure of the systems modelled,
however, some of these observers can deal with changing nonlinearities.

4.2 Deterministic fuzzy observers

4.2.1 Takagi-Sugeno models and observers

The TS fuzzy model is composed of a if-then rule base that partitions a space into fuzzy
regions called antecedents. The consequent of each rule is a simple functional expression. A
rule can be described as follows:

If θ1 is F i
1 and ... and θm is F i

m then yi = fi(x)
where the vector θ stand for the premise variables and may be a subset of the states.
For a general continuous dynamic system an approximative fuzzy system can be written

as in what follows. Consider the dynamical system given as:

ẋ = f(x, u, µ)
y = g(x, u, µ)
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where f and g are nonlinear, possibly time-varying functions and µ is a vector of parameters.
The corresponding fuzzy system can be written as a set of fuzzy rules of the following form:

If θ1 is F i
1 and ... and θm is F i

m then

ẋ = f̂i(x, u, µ)
y = ĝi(x, u, µ)

or

ẋ =
m∑

i=1

wi(θ)f̂i(x, u, µ)

y =
m∑

i=1

wi(θ)ĝi(x, u, µ)

where the consequents (f̂i and ĝi) are of lower order than the initial nonlinear functions (f
and g).

In the general case, f̂i(x, u, µ) and ĝi(x, u, µ) can be non-linear, time varying functions.
However, most of the fuzzy observers were developed for linear or affine consequents.

Consider the fuzzy system described as

ẋ =
r∑

i=1

wi(θ)(Aix + Biu)

y =
r∑

i=1

wi(θ)Cix

when the consequents is linear, or as

ẋ =
r∑

i=1

wi(θ)(Aix + Biu + ai)

y =
r∑

i=1

wi(θ)(Cix + ci)

with affine consequent. It is assumed, that the system is locally observable, i.e. the subsystems
are observable.

4.2.2 Fuzzy Thau-Luenberger observers

A fuzzy Thau-Luenberger observer for this system can be written in the following way (Berg-
sten, 2001):

˙̂x =
r∑

i=1

wi(θ)(Aix̂ + Biu + Li(y − ŷ))

ŷ =
r∑

i=1

wi(θ)Cix̂
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or (for the affine system)

˙̂x =
r∑

i=1

wi(θ)(Aix̂ + Biu + ai + Li(y − ŷ))

ŷ =
r∑

i=1

wi(θ)(Cix̂ + ci)

Two cases are distinguished:

1. If the scheduling vector does not depend on some of the unmeasurable states, then the
system is asymptotically stable, if ∃P = P T > 0, so that

(Ai − LiCi)T P − P (Ai − LiCi) < 0
(Gi,j + Gj,i)T P − P (Gi,j + Gj,i) < 0

where Gi,j = Ai − LiCi ∀i, j.

2. The second case is when the observer’s scheduling vector does depend on states to be
estimated. For the affine case, the observer becomes:

˙̂x =
r∑

i=1

wi(θ̂)(Aix̂ + Biu + ai + Li(y − ŷ))

ŷ =
r∑

i=1

wi(θ̂)(Cix̂ + ci)

Clearly, there will be a time-varying difference between the estimated and the true states.
In order for the observer to be stable, this difference has to go to zero. The stability
conditions for the first case are rewritten as: the system is asymptotically stable, if
∃P = P T , Q = QT , µ > 0 so that

P,Q > 0
(Ai − LiC)T P − P (Ai − LiC) < 0(

Q− µ2 P
P I

)
> 0

‖∆(θ, θ̂, x, u)‖ ≤ µ‖e‖

i.e., the modelling error also has to be bounded.

This case is developed only for constant measurement equations, i.e. Ci = Cj = C ∀i, j.

A common method to design stable fuzzy observers is by reducing the problem to LMIs.
Bergsten and Palm (2000) presents a LMI based design algorithm for achieving the best
robustness measure. The drawback of this method is that the observer’s poles may be badly
positioned, but this can be corrected by constraining the LMI regions for the solution.
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4.2.3 Fuzzy sliding mode observers

Beside Thau-Luenberger observers, also sliding mode observers are developed (Bergsten et al.,
2002, 2001).

For this case, the fuzzy approximation of the system is written as:

ẋ =
r∑

i=1

wi(θ)(Aix + Biu + ai) + Dζ

y = Cx

It is assumed that a linear change of coordinates z = Tx exists, so that D̄ = TD = [0 D̄2],
C̄ = CT−1 = [0 Ip], Āi = TAiT

−1, B̄i = TBi, āi = Tai, and the uncertainty/modeling error
is bounded , i.e. ∃η > 0 s.t. ‖ζ‖ ≤ η.

Then the observer for the transformed system can be written as:

˙̂z =
r∑

i=1

wi(θ̂)(Āiẑ + B̄iu + āi + L̄i(y − ŷ)) + D̄ζ

ŷ = C̄ẑ

The stability conditions are similar to those for the fuzzy Thau-Luenberger observer.
The same idea can be used for developing sliding mode observers for linear dominant

systems in (Palm and Bergsten, 2000). In this case, the system is essentially linear with
modeling uncertainties and further uncertainties, of which upper bound is known.

If the jth subsystem is dominant, then the system can be written as:

ẋ = Ajx + Bju + ai + ∆j + fum

where ∆j is the known “uncertainty” (the difference between the subsystems).
Using the same transformation as for the sliding mode observer, the transformed system

is:

ż = A11jz + A12jy + B1ju + fz,j

ẏ = A21jz + A22jy + B2ju + fy,j + fz,j

The observer will have the form:

˙̂z = A11j ẑ + A12j ŷ + B1ju + f̂z,j + A12jCy

˙̂y = A21j ẑ + A22j ŷ + B2ju + f̂y,j + (A22j −As,j)(y − ŷ)−M

where As,j is a stable design matrix.
The observer for the original system becomes:

˙̂x =
r∑

i=1

wi(θ̂)(Aix̂ + Biu + ai) + GL(y − ŷ)) + GnlM

ŷ = Cx̂

where Gl = T−1
j

(
A12j

A22j −As,j

)
is the linear gain matrix and Gnl = T−1

j [0 1]T is the nonlinear

gain matrix.
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Similar stability criteria are presented in (Wang et al., 1996; Tanaka and Sano, 1994;
Tanaka and Wang, 1997).

Several authors consider the case of the observer and linear state-feedback controller to-
gether and develop relaxed stability conditions for the augmented system. The conditions
usually lead to (generalized) eigenvalue problems, possible to be solved using LMIs (Taniguchi
et al., 1999b; Tanaka et al., 1998a; Taniguchi et al., 1999a). For the case when the weights
depend on the estimated states, the observer and the controller cannot be designed separately
(Tanaka and Sano, 1994).

Fuzzy observers are usually employed together with a PDC controller. A general framework
for PDC controllers is given by Wang et al. (2000), while a systematic procedure for fuzzy
model construction, rule reduction and robust compensation is presented by Taniguchi et al.
(2001).

Applications include state estimation for translational oscillations (Tanaka et al., 1998c),
backing of a mobile robot with multiple trailers (Tanaka et al., 1998b) and visual servoing
(Kadmiry and Bergsten, 2004).

4.3 Fuzzy Kalman filters

Several methods called fuzzy Kalman filters can be found in the literature. Commonly, these
methods use the linear Kalman filter for estimating the states of a system approximated by
a TS fuzzy model with linear consequents, combine the two approaches to enhance the per-
formance of the estimator or estimate parameters that otherwise should be know in advance,
on-line.

4.3.1 State estimators

When representing a process by a fuzzy model, a rule itself represents a linear system. In
this case, for a single rule, the Kalman filter is an optimal estimator. An overview of Kalman
filtering for fuzzy discrete time dynamic systems can be found in (Simon, 2003). However,
these methods are applicable only for the noise-free case, i.e. the states and measurements are
not corrupted by probabilistic noise beyond the possible model mismatch. Also, in most of the
cases, it is assumed that the premise variables are independent of the states to be estimated.
The main difference between the methods is the moment of linearization. McGinnity and
Irwin (1996) present four types of fuzzy local linear models, which can be combined with
Kalman filters.

Consider the following general nonlinear model:

ẋ = f(x, u)
y = g(x, u)

The four types of fuzzy local linear models are the following:

(i) approximating the system with a fuzzy model and using a single Kalman filter at each
step, with a global covariance and Kalman gain. The fuzzy model is determined at each
instant:

ẋk = f̂i,k(x, u)
yk = ĝi,k(x, u), i = 1, ..n
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(ii) developing local models, for which a bank of Kalman filters is used, i.e. for each local
linear model a separate Kalman filter is used. Each local linear model consists of a state
transition and measurement function. The estimated state is computed as the weighted
mean of the estimate of every local model. The fuzzy model is determined in advance
and it is used unchanged throughout the estimation:

ẋ = f̂i(x, u)
y = ĝi(x, u), i = 1, ..n

(iii) develop local models separately for the state transition and measurement model, and
uses the same Kalman filter. In this case, the fuzzy system becomes:

ẋ = f̂j(x, u) j = 1, ..m

y = ĝi(x, u), i = 1, ..n

(iv) global linearization at every step, in fact an extended Kalman filter

Applications include target tracking (McGinnity and Irwin, 1996, 1997), sensor fusion
(Zhang and Wei, 2003; Sasiadek and Wang, 1999), model set adaptation (Ding et al., 2001).

4.3.2 Covariance estimators

Several methods combine fuzzy and probabilistic observers in order to enhance their perfor-
mance, or in order to tune one of the filters. A common example is when the covariance of
the corrupting noise is unknown.

Typically, the measurement noise covariance is derived from the properties of the sensors
used, but the state transition noise covariance has to be estimated. First, a particular form is
assumed, such as the identity matrix multiplied by a constant. Now, the estimation problem
is reduced to one variable. One way to estimate it is to apply another Kalman filter. However,
fuzzy rules can also be applied. These are based on the difference between the measurement
and its predicted value, since, if the filter works correctly, the residual should be a zero-mean
Gaussian. Typical rules (Jetto et al., 1999; Aja-Fernandez et al., 2003) can be described as:

if residual is OK then Q is unchanged
if residual is very near to zero Q is reduced
if residual is very far from zero Q is increased

Another covariance estimation case is when the state transition noise is known/previously
estimated, but the sensors are changed during the process. Since different sensors may induce
different measurement covariances, the new covariance has to be estimated. This type of tuning
can be performed by fuzzy logic with rules based on the difference between the theoretical
and computed values of the covariance. A predefined difference is added/substracted (Loebis
et al., 2004) to/from an initial covariance.

The methods which aim to enhance the performances of the filter are usually apply both
filters, with correction gains computed based on the other filter’s residual (Li, 1993; Sasiadek
and Wang, 1999; Sasiadek and Khe, 2001; Zhang and Wei, 2003).

Fuzzy Kalman filters can also be used for model selection/mixing, in general in applications
such as tracking a maneuvering target. When using particle filters, the maneuver detection
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is usually reduced to the estimation of a (possibly discrete) variable (Yu and Cheng, 2005),
or to computing the likelihood of different models, which depend on a parameter (Angelova
et al., 2001). When using fuzzy Kalman filters, the mixing of the models is realized. In case of
multiple models, filter banks may also be used, however, fuzzy rules may be applied to adapt a
model set (for better covering of possible maneuvers) (Ding et al., 2001), to adjust parameters
of the models, or even to reinitialize the model if the track is lost (Simutis et al., 1992). Also,
validity domains of the sensors may be specified by fuzzy sets (Caron et al., 2004).

On the other hand, Kalman filters may be used to train fuzzy filters Simon (2002). Training
of a fuzzy system can be understood as optimization or estimation of parameters, and this
can be done by a Kalman filter. The author describes a possible application, when the input
and output membership functions are symmetric triangles, and an extended Kalman filter is
used to estimate their centroid and half-widths.

4.4 Neural Network observers

While several applications employ so-called “neural observers”, these are usually reduced to
trying to represent the underlying partially known/uncertain system by the network. Ex-
amples of application for these neural observers include representing the partial distribution
of wind ( Oztopal, 2005), training a network to approximate a complex relation (Garcia and
Shigidi, 2005), or to estimate the tipover stability margins of a mobile robot (Meghdari et al.,
2005). All these applications use in general feed-forward networks, trained with backpropaga-
tion to represent the relations or to store results of equations which would otherwise require
heavy computations.

However, most of the neural network used together with observers represent only a part of
the model, that is unknown, uncertain or simply too complex. Commonly, it is assumed that
the model can be written as:

ẋ = Ax + Nl(x, u, θ)
y = h(x, u)

where Ax is a known linear part and Nl the uncertain/unknown part of the model. The
uncertainty is also considered in most of the cases bounded.

he most simple form of the system is the following (Wang et al., 2002).

ẋ = Ax + b[f(x) + g(x)u + d(t)]
y = CT x

where f ,g are unknown, but bounded functions, the upper bound of the disturbance d(t) is
known, and the form of A, B and C is given:

A=




0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . .
0 0 0 . . . 0


, B=[0 0 . . . 1], C=[1 0 . . . 0]T .

For this system a state feedback controller can be computed, if the states are completely
known, hence, an observer is needed. A common solution is to train a fuzzy model or a neural
network to approximate the nonlinear part, then adapt it based on the observer. Several
authors use an RBF network representation of a fuzzy system, with feedback and observer
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gains predefined and known membership functions. The observer for this system has the
following form:

ˆ̇x = Ax̂ + b[f̂(x̂) + ĝ(x̂)u− v(t)] + K(y − CT x̂)
ŷ = CT x̂

where (A−KCT ) is strictly Hurwitz.
While above it is considered that at least the linear part is known, the solution may be

extended to the case when both the linear and nonlinear parts are unknown (Schroder et al.,
2001). However, in this case, a static nonlinearity is considered. Then the model can be
expressed as:

ẋ = Ax + Bu + Nl(u)
y = CT x + du

and the nonlinearity:

Nl(u) = eNl
N̄l(u)

where N̄l is a scalar nonlinear function and eNl
a known coupling vector.

If the linear part and eNl
is known, the nonlinearity is visible, and an adaptive RBF

network can be used to approximate the nonlinear function. The observer is given as:

˙̂x = Ax̂ + Bu + eNl
N̂l(x, u)

ŷ = CT x̂ + du

The adaptation laws are commonly error based. The interested reader is referred to (Baz,
1992; Kim et al., 1997; Elanayar and Yung, 2000). Permanent learning of a time-variant
nonlinearity is also possible if the network learns faster that the nonlinearity changes.

If both the linear and nonlinear parts are unknown, two recurrent neural networks can be
employed: one for the nonlinear part (as presented above) and one for the linear part.

In the same way as for fuzzy systems, sliding-mode observers can also be developed for the
above presented linear dominant models. The observer employed estimates the states, and,
based on the estimated state, a neural network model approximates the unknown part of the
system.

Applications, when a linear part is known and the nonlinear part is represented by a neural
network include control of a servomechanism (Lin and Wai, 2002a), self-tuning control of an
induction motor drive (Sheu and Chen, 1999), robust control of an induction motor drive (Lin
and Wai, 2002b; Lin et al., 2000), or linear quadratic state feedback (Marino et al., 1999).

All the above presented papers try to incorporate into the model a known part, mostly, as a
linear part of the system, which may be previously identified. Other approaches represent the
underlying system as a black-box and construct linear observers. Consider a general nonlinear
system, represented by the equations:

ẋ = f(x, u)
y = h(x, u)

Assuming that the state equation has a unique solution, the plant can be replaced by two
linearly parametrized neural networks, and the problem reduces to weight adaptation, using
a linear observer (Ruiz Vargas and Hemerly, 2001).
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Other approaches (Chin, 1994; Pillutla and Keyhani, 1999; Pillutla et al., 1999) include
systems for which the measured outputs may be uniquely mapped into the unmeasurable
states. In this case, a (adaptive) neural network is trained to approximate the (possibly
time-varying) relation between the outputs and the states.

However, all the above presented observers have a serious limitation: it is assumed that
the model is linearly dominant.

4.5 Summary and conclusions

In this chapter, observers developed for black and grey box models, in particular for fuzzy and
neural systems have been presented.

A large class of nonlinear systems can be represented or successfully approximated by TS
fuzzy systems. For these systems, several types of observers have been developed, ranging
from the simple Thau-Luenberger observer to sliding mode observers. Two cases has to be
distinguished for all observers: the membership functions do/do not depend on the states to
be estimated. In the first case, when the membership function do not depend on the states
to be estimated, it is relatively simple to design an adequate observer. In the second case,
however, the analysis has to be based on robust stability and quadratic Lyapunov functions.
However, the design boils down to solving LMIs.

The observers based on neural representations of dynamic systems are more restrictive.
Almost in all of the cases, the authors consider that in order to successfully observe the process,
it has to be linearly dominant. This might be the case if one desires to study these systems
from a robust stability point of view. However, it is our conclusion, that it is not necessary
for the system to be linearly dominant, only that the model should sufficiently approximate
the real process.

A drawback of both representation is that they do not take into account corrupting noise.
In most of the cases, it is considered that the noise is incorporated in the model mismatch,
which, in this case will necessarily be present. In order to prevent this model mismatch, several
authors use fuzzy-Kalman filters: in this way, instead of dealing separately with the difference
between the real process and its model, the noise is used to compensate for it.

While it is theoretically possible, none of the above presented observers consider state
estimation in case of adaptive models.
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Chapter 5

Estimation in multiagent systems

5.1 Agents and Multiagent Systems

An agent is informally any entity that can perceive its environment and act on it. By extension,
a multiagent system (MAS) is a collection of agents that interact with each other, perceive
and act upon their environment.

A formalization of agents and multiagent societies is given in what follows (Buşoniu et al.,
2005).

Definition 5.1 A dynamic agent is a tuple 〈S, Y, U, p, h, s0〉, where:

• S is the internal state space of the agent.

• Y is the observation space of the agent.

• U is the action space available to the agent.

• p : S × Y → S is the agent transition function, describing how the agent evolves as a
result of its observations of the environment.

• h : S × Y ×U → [0, 1] is the decision probability distribution of the agent, describing its
behavior.

• s0 is the agent’s initial state.

Definition 5.2 A DMAS is a tuple 〈A, X, f, {ωi}i∈A, x0〉, where:

• A is the set of dynamic agents, n = |A| being their number.

• X is the environment state space.

• f : X × U × X → [0, 1], with U = ×i∈AUi the joint action space, is the environment
transition probability distribution, describing how the environment evolves as a result of
the agents’ actions.

• ωi : X × Yi → [0, 1], i ∈ A are the observation probability distributions, describing how
the state of the environment is translated into agent observations.

• x0 is the initial environment state.
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In this interpretation, the agent is in complete control of its state space, dynamics and be-
havior. However, the observation distribution is part of the environment, and the observations
resulting from the actions of an agents are the “interface” of the agent with its environment.
It is also assumed that the observation function is not completely known by an agent, as it
observes not only the results of its own actions, but the (partial) state of the environment
as a result of the actions of all the agents present in the environment and (possibly) the
environment’s own dynamics.

In what follows, we give another model for a single agent behavior in an environment.

Definition 5.3 (Single agent behavior in environment) Let xA,k denote the state of an
agent A at the time instant k, xE,k denote the overall state of the environment at the time
instant k, and yk the observations of the agent at the time instant k. Then, it can be written,
that:

xA,k+1 = fA(xA,k, uk, yk)
xE,k+1 = fE(xE,k, uk, xA,k)

yk+1 = g(xE,k)
uk+1 = h(xA,k+1, yk+1)

where

• fA – a possibly nonlinear, time and/or parameter varying function, which describes the
evolution of the agent’s states as a result of its previous state, actions and observations;
agent model

• fE – a possibly nonlinear, time and/or parameter varying function, which describes the
evolution of the environment as a result of its previous state, the agent’s actions and the
agent’s state; environment model

• g – a possibly nonlinear, time varying function, which presents the observations as a
function of the environment state; observation model

• h – a possibly nonlinear, time varying and/or parameter varying function, which the
agent uses to decide its next action based on its current state and the observations re-
ceived; decision model

It has to be emphasized that in this framework, the models are not necessarily restricted
to functions, but they are rather mappings. In this way, the agent and decision models can
change in time (learning agents). However, the agent and decision models have to be known
to the agent itself up to an uncertainty. It is also assumed that the observation model is
stationary (i.e. the agent cannot observe states for which it has no sensors). In general, the
environment model is only partially known to the agent, and it is never able to observe all the
states of the environment.

A model of MAS can be obtained by extending the above model for multiple agents. In
this way, each agent has its own agent, observation and decision model, only the environment
model is common. A formal definition is given in what follows.
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Definition 5.4 Let xi
A,k denote the state of an agent i at the moment k, xE,k denote the

overall state of the environment at the moment k, and yi
k the observations of the agent at the

moment k. Then, it can be written, that:

xi
A,k+1 = fA,i(xA,k, uk, y

i
k), i = 1, . . . n

xE,k+1 = fE(xE,k, uk, xk)
yi

k+1 = gi(xE,k), i = 1, . . . n

ui
k+1 = hi(xA,k+1, y

i
k+1), i = 1, . . . n

where

• fA,i – the model of the ith agent

• fE – environment model

• gi – the observation model of the ith agent

• hi – the decision model of the ith agent

• xA,k – the joint states of all agents

• uk – the joint actions of all agents

Based on the above definition, an agent i regards all the other agents as a (partially known)
part of the environment. In this way, it can decide its action based also on some states of the
environment. It is also considered, that an agent can not observe directly an action of another
agent, but it is not excluded, that based on the observed results of the actions the agent may
deduce the action itself.

5.2 Estimation issues in agent systems

In the literature, it is often considered, that an agent (partially) knows the model of the
environment and/or the models of the other agents present in the environment. For the
second part, two main categories can be distinguished: teammate and opponent models. In
our opinion, these two categories can be combined into one, assuming, that an agent is able
to maintain different models for each other agent.

As a result of the above assumptions, several problems can be identified. For a single
agent, these problems can be limited by the following four cases, assuming that (at least an
approximate) model of the environment can be found:

• The agent perfectly knows its own state and the environments. In this case, the whole
system is a completely defined, deterministic process.

• An agent knows its own state but not the environment’s: in order to perform some states
of the environment have to be estimated.

• The agent knows the environment’s state, but not its own: again, in order to chose the
correct actions, the agent has to estimate its own states.

• The agent does not know its states nor the environment’s: the system is a completely
stochastic process, the actions are chosen randomly.
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While the above presented are the limit cases, the first and last one are seldom considered in
practice. Common examples for the second and third problems are: the environment, though
in most of the cases is considered static, may be dynamic and also only part of the variables of
interest can be measured; an agent may not even know for certain its own location. An agent
might also not be certain of the outcome of an action. Environment and agent state estimation
is usually performed in applications such as simultaneous localization and/or mapping and
robot soccer.

When dealing with multiagent systems, the above problems are amplified: estimation in
multiagent systems can range from estimating the state or a parameter through estimating
beliefs up to estimating the model parameters of a whole multiagent society based on the
observed interactions between agents, (Gilli and Winker, 2003). However, most applications
consider only the estimation of states/parameters of other agents or the environment. The
four, generally used scenarios, extended from the single agent scenario are (Mukhopadhyay
and Jain, 2001):

1. full observability, when each agent knows the states and actions of all other agents, and
there is no uncertainty at all

2. each agent knows the actions of all other agents but not their states. There are two
subcases: the agent knows/does not know its local state.

3. each agent knows only its local state and action

4. complete ignorance: an agent does not know even its local state, does not try to estimate,
and actions are selected randomly

However, the above cases do not take into consideration the knowledge about the environ-
ment, which may vary for each case, and for each agent.

Typically, in the case of estimation in MAS, the two cases (agent estimation and environ-
ment estimation) are considered separately.

Agent estimation
In this case, again, two types are distinguished: teammate modeling and opponent model-

ing. However, both aim to learning about the other agents in the environment in order to make
“good guesses” about their behavior or future actions and to act accordingly (better cooper-
ation or counteracting). Such an approach is used by Boutilier (1996), who employ Bayesian
learning methods for updating models of other agents. Based on these models, agents estimate
the current behavior of their teammates in order to better cooperate with them.

From the point of view of agent i, it has to model all the other agents, and in return all
the other agents model the agent i. In order to completely model the other agents, modeling
their beliefs about agent i is also necessary. In this way, beliefs of other agents have to be
estimated. Hu and Wellman (1998); Doshi and Gmytrasiewicz (2005) consider several levels
of agent models : 0th level, or non-estimating agents, 1st level, when an agent estimates based
only on its observations, 2nd level, when an agent estimates based on observations and other
agents’ beliefs, which in turn depend on observations, and so on.

A 0th level agent believes that no other agent performs learning or modeling activities,
and it does not consider their behaviors as adaptive. A 1st level agent considers all the other
agents as 0th level agents. In general, an nth level agent considers all the other agents present
in the environment as n-1th level agents.
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However, starting from the 3rd level, estimation becomes too complex to be implementable
(an agent estimates the beliefs of other agents about what it believes). Doshi and Gmy-
trasiewicz (2005) investigates the use of 0, 1 and 2nd level modeling agents. The authors
report that for some domains, modeling other agents’ behavior is not necessary.

While in cooperative systems, the need for estimation may be reduced due to communica-
tion, Shaban et al. (2002) identify two types of uncertainty: first, a local one, the uncertainty
of the agent in its own decision, and second, a global one, concerning knowledge sharing. The
information received from another agent may be in contradiction with the agent’s own beliefs.

Environment estimation
In case of modeling the environment, again two main cases can be considered: single agent

environment modeling and environment estimation in MAS.
In the first case, an agent has to rely on its own observations. In literature, it is generally

considered in simultaneous localization and mapping problems, that the environment is static,
and can be represented by a map, which can be learned by an agent.

Also, in most of the cases, a first order MDP or POMDP is considered, such as by Simmons
and Koenig (1995), where a robot has to navigate through an office environment. In this case,
observations are given as numerical data, such as distances or angles. However, for localization,
it might be more helpful to model observations in other domains, such as in (Kröse et al.,
2001), where localization is performed based on visual information.

In MAS, it would seem that the problem is reduced, assuming that the agents are able
to communicate their observations to their teammates. However, other problems are likely to
appear: communication may be restricted; the received information may be corrupted during
transmission or in contradiction with the agent’s own information; it may not be necessary
for all the agents to maintain a map of the environment at all times.

Assuming that one of the agents is building a map of the environment, it is necessary to
integrate all the information received: this means filtering out erroneous information, resolving
contradiction, fusion of knowledge. Also, in general it may not be possible to represent the
system as a first order Markov process. When all the agents act upon the environment in the
same time, it might not be possible to discern the results of the actions separately, given the
observations.

Sensor fusion
A problem inherently present in multiagent systems is the fusion of the data available for

each agent in order to obtain a global overview of the environment.
Assuming that each agent in the system is equipped with its own sensors, each measurement

can suffer from the following problems: breakdown of the sensor, limited spatial coverage,
imprecision. The multiagent system, from the point of view of the sensors, can also be seen as
a sensor network, with (possibly) redundancy. If the system is cooperative, by combining the
data obtained by each agent, information, which otherwise cannot be accessed, can become
available.

Consider in the following a cooperative system. Then, the information fusion can take place
on different levels and by different agents. Depending on the application, if every information
is transmitted, each agent can fuse the measured and received information, based on its own
beliefs. However, this method would most certainly lead to an overhead of communication,
and would be unfeasible in a real-time system. Another approach is hierarchical systems. One
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agent can be chosen from a number of agents to fuse the information, while the role of the
others would be simply to acquire data. However, this approach also leads to problems: if the
agent which combines information breaks down, all the information is lost.

Also, the fusion of the information can take place on different levels. The lowest level can be
considered if the measured data is transmitted and fused. In this case, each agent, at each time
instant when a measurement becomes available, receives it and can proceed to incorporate it.
This approach necessitates information about the reliability of all the sensors. Transmitting
and fusing information already processed (filtered, corrected, estimated) constitutes a second
level of fusion. However, in this case each agent should asses the reliability of the information
transmitted, or maintain degrees of reliability of each other agent.

The highest level of fusion can be considered decision fusion: each agent transmits its own
beliefs about what decision should be made, together with the reasoning based on which the
decision was taken. Again, in this case, each agent has to maintain beliefs about the reliability
of the other agents in order to cope with (possibly) contradicting decisions.

In all the cases, one has to keep in mind the application for which the fusion has to
be realized and the goal of the fusion. For instance, if a multiagent system has to map an
unknown environment, using sensors with limited spatial coverage, in a first step it (probably)
does not make sense to direct all the agents to the same place and try to obtain highly reliable
information about the same object.

5.3 Predictive agents

In the literature, attention is given to predicting other agents’ movements, their states and
(most important) their actions. The knowledge on other agents behavior is called the model
of the agent. This approach is often called “opponent modeling”, however, it is useful in
cooperative settings as well, in particular when the agents have only limited knowledge about
each other, or the communication is restricted.

Boutilier (1996) presents the two limit cases of estimation of another agent’s policies. The
“lower” limit can be considered, when the agent i has no information about the model or
policy of agent j, and does not attempt to build an analytical expression of it. In this case,
agent i maintains a map of the frequencies with which agent j chooses a particular action in a
given state. Assuming, that agent j achieves a stationary state in finite time (i.e. its decisions
will no longer change), this map eventually becomes accurate. However, this method can only
be used in case of a finite universe of states and actions.

The “upper” limit of agent modeling is full Monte Carlo estimation, which may include
also the agents beliefs. Assuming, that a prior distribution of agent j decisions given the states
is available, the agent i observes the decisions of agent j, and updates its beliefs. However,
this approach is computationally too complex, and, except for very simple scenarios, not
implementable in real time, especially considering, that not only one agent has to be modeled.

A more realistic approach is to assume that an agent maintains several models about
other agents (Chiao and Xydeas, 2003; Carmel and Markovitch, 1996). When the agent which
attempts modeling them, obtains a new observation or interacts interact with them, it also
classifies the other agents or increases/ decreases the belief that an agent has a certain model.
In this setting, it is also possible to estimate parameters of certain models. This principle is
applied by Bui et al. (1999), where agents “learn” in a negotiation context about other agents
preferences, based on previous knowledge/ observations.
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5.3. PREDICTIVE AGENTS

When learning does not concern other agents’ internal states, but only attaining a cer-
tain goal, simpler scenarios can be considered. For example, agents can learn to coordinate,
knowing the outcome of possible actions (Sen et al., 1994).

Two problems can be defined in the context of predictive agents.
The first question to be solved is in how much detail must an agent model another agent:

is it enough to be able to predict the actions of another agents, or it also has to model the
internal states? While complex modeling schemes, which include modeling the beliefs about
other agents may be near impossible to implement, they are not necessary in all the cases.
Scheutz and Schermerhorn (2003) compare different types of predictive agents and argue that
a complex predictive agent, while it is computationally more expensive, works just slightly
better than a simpler one. However, complexity of modeling depends on the application.

On the other hand, since an agent might not observe the outcome of other agents’ action
at every step, multistep prediction might be necessary in agent societies. Three types of
predictions are compared by Henninger et al. (2004): based only on the model, without
considering any kind of noise or uncertainty; neural networks and extended Kalman filter. It
seems that when the error tolerance is small, the NN is much superior to the other approaches,
but this difference decreases as the tolerance is increased.
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Chapter 6

Conclusions

This survey presents approaches for dealing with imperfection in data and in models. In
particular filters and observers are discussed for different types of model representations. In
this chapter, the content of the survey is discussed and some directions for future research are
given.

6.1 Summary

Throughout the survey, theories and methods for reducing numerical uncertainty are pre-
sented. Uncertainty, or in a more general case, imperfection is present in every system due to
unmodeled or unknown aspects of the process, approximate models, unmeasurable variables
of interest or simply noise corruption. An overview of the different types of imperfection is
given in Chapter 1.

Chapter 2 discussed several type of theories used for handling imperfection: probability
and related theories, fuzzy sets and combination of probabilities and fuzzy logic.

The most well-known of them is probability theory. It assumes that the model of the
system to be controlled or for which decisions have to be made is known up to a probabilistic
uncertainty (corrupting noise). While not explicitly stated, it is often assumed that the known
part of the system is dominant. By using probability theory, all imperfections (including
variables) are represented as random numbers, for which some properties, such as mean and
variance are known, or can be estimated. Inference in the probabilistic framework is commonly
realized using Bayes rule. Probability theory can be used for dealing with imperfection in both
continuous and discrete systems, as long as (in the continuous case), the analytical expression
of properties can be derived.

The generalization of probability theory led to upper and lower probabilities. While the
theory is intriguing, the practical implementations is somehow restricted, as long as one has
to make one decision, not study a class of decisions.

Bayesian networks are graphical representations of interactions in a system. However, as
it cannot represent an infinity of states, continuous systems are excluded.

Dempster-Shafer theory provides a mean to combine evidences. In this theory, the proba-
bility of an event to occur is represented by belief function. Its practical implementation may
be somehow tedious, as in order to combine evidence, one has to guarantee the independence
of the sources of the evidence to be combined.
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CONCLUSIONS

Fuzzy sets instead of representing the likelihood of an imperfect data, are used to deal
with vagueness. However, in this survey we also consider representing a model using fuzzy
logic, as a combination of local models.

Combinations of probability theory and fuzzy logic is also presented. However, the at-
tempts of combining the two theories, while technically solid, have yet little practical impor-
tance.

Chapter 3 presents two classes of probabilistic estimators: Kalman and particle filters.
Both classes consider a probabilistic representation of a dynamic model.

The best known variant of the Kalman filter is the linear Kalman filter, which is an
optimal estimator in the least square sense. However, it can be used only for linear systems.
Its extensions to nonlinear systems, are the Extended Kalman filter, based on the linearization
of the system, and the Unscented Kalman filter, which uses the true nonlinear model.

Particle filters represent distributions by random samples and associated weights. Their
main advantage is that they can handle an type of nonlinear models and any distributions.

Both types of filters can be used for state and/or parameter estimation. While in principle
particle filters are more accurate, there is no general rule which performs better for a certain
application.

In Chapter 3 only the basic variants of the filters are presented. However, there exist
several combination of the two filters, with (for certain applications) better performance.

Chapter 4 presents observers for black and grey-box models.
For TS fuzzy systems several types of observers have been developed, ranging from the

simple Thau-Luenberger observer to sliding mode observers. For each observer, two cases were
considered: the membership functions do or do not depend on the states to be estimated. In
both cases, design of a stable observer is reduced to solving LMIs.

The observers based on neural representations of dynamic systems are more restrictive.
For almost all cases of neural models, the authors consider that the process to be modeled has
to be linearly dominant.

A drawback of both representation is that they do not take into account corrupting noise.
In most of the cases, it is considered that the noise is incorporated in the model mismatch,
which, in this case will necessarily be present.

While for both representations it is possible to consider adaptive models, none of the
authors considered state estimation and model adaptation together.

Chapter 5 gives a short overview of agent systems and the possible estimation problems
in these systems. In most of the cases, it is considered that the an agent knows its environment
and it only has to estimate/filter its own state or that its states are known and has to map
the environment. The only applications that consider state end environment estimations are
the simultaneous localization and mapping problems.

Estimation in multiagent systems is more complex. In a general case, and agent should
have no information about the environment, its own state or about other agents present in the
environment. However, all the studied applications are concerned with or agent estimation or
environment estimation separately.

It is our conclusion, that these problems should be dealt simultaneously, building both
models of the agents studied and the environment.
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6.2. FUTURE RESEARCH DIRECTIONS

6.2 Future research directions

We conclude this survey by identifying several research questions that have not been answered
throughout the literature surveyed.

1. Possible combinations of Kalman and particle filter in order to prevent divergence of the
estimator. While there exist several Kalman-particle filters, none of the is guaranteed
to converge.

2. Automated tuning of unknown model parts: both for Kalman and particle filters it is
assumed that the distribution of the corrupting noise is known. In the case of Kalman
filters, in general another filter is used prior to the state estimation to determine the
covariance of the corrupting noise. However, there might be cases, in which state and
covariance has to be estimated simultaneously.

3. Compensation of model mismatch: the common tendency in case of probabilistic models
is to compensate with noise for the difference between the model and the actual plant.
However, even if the estimates will be close to the real states, the noise on the esti-
mate cannot be filtered. Also, the model mismatch can represent an unmodelled, but
important part of the dynamics.

4. Adapting models: in several situations, the process to be estimated changes on-line. In
this case, the model should also be adapted simultaneously. A solution for this would
be to use fuzzy or neural models, which can be adapted online while estimating. Also,
a method for incorporating new information about the model has to be developed.

5. Estimation in multiagent systems: several estimation issues can be considered in the
context of multiagent systems: state, environment or even estimation/prediction of other
agents’ actions. It can also be considered as an application area for the previous item.

55





List of Symbols

Common notations

· generic placeholder for
vT vector transpose
v∗ optimal value
v̂ estimated value
P (·) probability
P (· | ·) conditional probability
Π(·) possibility distribution

Model notations

k current step in discrete time
xk state vector at step k

yk measurement vector at step k

uk input vector at step k

Fk state transition matrix at step k

Bk input matrix at step k

Hk output matrix at step k

vk state transition noise at step k

ηk measurement noise at step k

f state transition function
h measurement function
p(x0) initial probability density function
p(xk|xk−1) state transition model; the probability p(xk|xk−1) = P (Xk =

xk|Xk−1 = xk−1)
p(yk|xk) measurement model; the probability p(yk|xk) = P (Yk =

yk|Xk = xk)

Probabilistic filters

xk|k−1 predicted state at step k, based on the results obtained in the
previous step

Pk|k−1 predicted state covariance at step k, based on the results
obtained in the previous step
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LIST OF SYMBOLS

Pk updated state covariance at step k

Kk Kalman gain at step k

xi
k sampled state at step k

wi
k the weight of the ith sample at step k

Pxx estimated state covariance
Pyy estimated measurement covariance
Pxy cross-correlation matrix
NS number of samples of the particle filter
ϕk vector of all measurements up to step k ϕk = [y1 y2 ... yk]
N (m,σ) normal distribution with mean m and variance σ

U(m,M) uniform distribution on the interval [m,M ]
N (x; m,σ) the value of the normal probability density function with

mean m and variance σ evaluated in x
p(xk|ϕk−1) the probability density function of the states at step k, given

the measurements up to step k − 1; the prior
p(xk|ϕk) the probability density function of the states at step k, given

all the measurements (including yk); the posterior
q(·) importance density function
δ Dirac delta function

Fuzzy observers

θ premise variables
wi membership function of the ith rule
Ai state transition matrix of the ith rule
Bi input matrix of the ith rule
Ci output matrix of the ith rule
Li observer gain of the ith rule
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Ruiz Vargas, J. and Hemerly, E. (2001). Adaptive observers for unknown general nonlinear
systems. IEEE Transactions on Systems, Man and Cybernetics, Part B, 31:683–690.

Sasiadek, J. and Khe, J. (2001). Sensor fusion based on fuzzy Kalman filter. In Proceedings
of the Second International Workshop on Robot Motion and Control, pages 275–283.

Sasiadek, J. and Wang, Q. (1999). Sensor fusion based on fuzzy Kalman filtering for au-
tonomous robot vehicle. In 1999 IEEE International Conference on Robotics and Automa-
tion, volume 4, pages 2970–2975.

62



BIBLIOGRAPHY

Scheutz, M. and Schermerhorn, P. (2003). Many is more, but not too many: dimensions of
cooperation of agents with and without predictive capabilities. In IEEE/WIC International
Conference on Intelligent Agent Technology, pages 378–384.

Schroder, D., Hintz, C., and Rau, M. (2001). Intelligent modelling, observation and control
for nonlinear systems. IEEE/ASME Transactions on Mechatronics, 6:122–131.

Sen, S., Sekaran, M., and Hale, J. (1994). Learning to coordinate without sharing information.
In Proc. of AAAI-94, pages 426–431, Seattle, WA.

Sentz, K. and Ferson., S. (2003). Combination of evidence in dempster-shafer theory. Technical
report, Sandia National Laboratories.

Shaban, K., Basir, O., Kamel, M., and Hassanein, K. (2002). Intelligent information fusion
approach in cooperative multiagent systems. In 5th Biannual World Automation Congress,
volume 13, pages 429–434.

Sheu, T.-T. and Chen, T.-C. (1999). Self-tuning control of induction motor drive using neural
network identifier. IEEE Transactions on Energy Conversion, 14:881–886.

Simmons, R. and Koenig, S. (1995). Probabilistic robot navigation in partially observable
environments. In Proceedings of the 14th International Joint Conference on Artificial Intel-
ligence, pages 1080–1087.

Simon, D. (2002). Training fuzzy systems with the extended kalman filter. Fuzzy Sets and
Systems, 132:189–199.

Simon, D. (2003). Kalman filtering for fuzzy discrete time dynamic systems. Appl. Soft
Comput., 3(3):191–207.

Simutis, R., Havlik, I., and Lubbert, A. (1992). A fuzzy-supported Extended Kalman filter:
a new approach to state estimation and prediction exemplified by alcohol formation in beer
brewing. Journal of Biotechnology, 24:211–234.

Smets, P. (1991). Varieties of ignorance and the need for well-founded theories. Information
Sciences, 57:135–144.

Smets, P. (1997). Imperfect information : Imprecision - Uncertainty, chapter Uncertainty
Management in Information Systems: from Needs to Solutions, pages 225–254. Kluwer,
Boston.

Smets, P. (1998a). Handbook of Defeasible Reasoning and Uncertainty Management Systems,
volume 1, chapter Probability, Possibility, Belief: Which and Where ?, pages 1–24. Kluwer,
Doordrecht.

Smets, P. (1998b). Numerical Representation of Uncertainty., volume 1, pages 1–24. Kluwer,
Dordrecht.

Smets, P. (1999). Theories of uncertainty. Handbook of fuzzy computation.

Tanaka, K., Ikeda, T., and Wang, H. (1998a). Fuzzy regulators and fuzzy observers: relaxed
stability conditions and LMI-based designs. IEEE Transactions on Fuzzy Systems, 6:250–
265.

63



BIBLIOGRAPHY

Tanaka, K., Kosaki, T., and Wang, H. (1998b). Backing control problem of a mobile robot with
multiple trailers: fuzzy modeling and LMI-based design. IEEE Transactions on Systems,
Man and Cybernetics, 28:329–337.

Tanaka, K. and Sano, M. (1994). On the concepts of regulator and observer of fuzzy control
systems. In Proceedings of the Third IEEE Conference on Fuzzy Systems, 1994. IEEE World
Congress on Computational Intelligence., volume 2, pages 767–772.

Tanaka, K., Taniguchi, T., and Wang, H. (1998c). Model-based fuzzy control of TORA system:
fuzzy regulator and fuzzy observer design via LMIs that represent decay rate, disturbance
rejection, robustness, optimality. In Fuzzy Systems Proceedings, 1998. IEEE World Congress
on Computational Intelligence., volume 1, pages 313–318.

Tanaka, K. and Wang, H. (1997). Fuzzy regulators and fuzzy observers: a linear matrix
inequality approach. In Proceedings of the 36th IEEE Conference on Decision and Control,
volume 2, pages 1315 – 1320.

Taniguchi, T., Tanaka, K., Ohtake, H., and Wang, H. (2001). Model construction, rule reduc-
tion, and robust compensation for generalized form of Takagi-Sugeno fuzzy systems. IEEE
Transactions on Fuzzy Systems, 9:525–538.

Taniguchi, T., Tanaka, K., Yamafuji, K., and Wang, H. (1999a). A new PDC for fuzzy
reference models. In 1999 IEEE International Fuzzy Systems Conference Proceedings, 1999.
FUZZ-IEEE ’99., volume 2, pages 898–903.

Taniguchi, T., Tanaka, K., Yamafuji, K., and Wang, H. (1999b). Nonlinear model follow-
ing control via Takagi-Sugeno fuzzy model. In Proceedings of the 1999 American Control
Conference, volume 3, pages 1837–1841.

Teixeira, M. and Zaverucha, G. (2003). Fuzzy Markov predictor in multi-step electric load fore-
casting. In Proceedings of the International Joint Conference on Neural Networks, volume 4,
pages 3065–6070.

van den Berg, J., Kaymak, U., and van den Bergh, W.-M. (2002). Fuzzy classification using
probability-based rule weighting. In Proceedings of the 2002 IEEE International Conference
on Fuzzy Systems, volume 2, pages 991–996.

van der Merwe, R., de Freitas, J. F. G., and Doucet, A. (2001). The unscented particle filter.
In Advances in Neural Information Processing Systems, Cambridge, MA. MIT Press.

van der Merwe, R. and Wan, E. (2003). Gaussian mixture sigma-point particle filters for se-
quential probabilistic inference in dynamic state-space models. In Proceedings of IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), Hong Kong.

Voorbraak, F. (1995). Reasoning with uncertainty in AI. In Reasoning with Uncertainty in
Robotics, pages 52–90.

Wang, C.-H., Lin, T.-C., Lee, T.-T., and Liu, H.-L. (2002). Adaptive hybrid intelligent
control for uncertain nonlinear dynamical systems. IEEE Transactions on Systems, Man
and Cybernetics, Part B, 32:583–597.

64



BIBLIOGRAPHY

Wang, H., Li, J., Niemann, D., and Tanaka, K. (2000). T-S fuzzy model with linear rule
consequence and PDC controller: a universal framework for nonlinear control systems. In
The Ninth IEEE International Conference on Fuzzy Systems, 2000. FUZZ IEEE 2000.,
volume 2, pages 549–554.

Wang, H., Tanaka, K., and Griffin, M. (1996). An approach to fuzzy control of nonlinear
systems: stability and design issues. IEEE Transactions on Fuzzy Systems, 4:14–23.

Welch, G. and Bishop, G. (2002). An introduction to the Kalman filter. Technical Report TR
95-041, Department of Computer Science, University of North Carolina, NC, USA.

Yu, Y. and Cheng, Q. (2005). Particle filters for maneuvering target tracking problem. Signal
Processing, In Press, Corrected Proof.

Zadeh, L. A. (1984). Fuzzy probabilities. Inf. Process. Manage., 20(3):363–372.

Zadeh, L. A. (2005). Toward a generalized theory of uncertainty (GTU) - an outline. Infor-
mation Sciences, 172(1-2):1–40.

Zhang, S.-T. and Wei, X.-Y. (2003). Fuzzy adaptive Kalman filtering for DR/GPS. In Inter-
national Conference onMachine Learning and Cybernetics, volume 5, pages 2634–2637.

65


