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Abstract—Recently, adaptive fuzzy observers have been in-
troduced that are capable of estimating uncertainties along with
the states of a nonlinear system represented by an uncertain
Takagi-Sugeno (TS) model. In this paper, we use such an
adaptive observer to estimate the uncertainties in the state
matrices of a two-degrees-of-freedom robot arm model. The
TS model of the robot arm is constructed using the sector
nonlinearity approach. The estimates are used in updating the
model, and the updated model is used to design a controller for
the robot arm. We analyze the improvement in the achievable
controller performance when using the adaptive observer.

I. INTRODUCTION

A large class of nonlinear systems can be represented by

Takagi-Sugeno (TS) fuzzy models [1], [5]. The TS model

consists of a rule base, where the consequent of each rule

is a linear or affine state-space model. One way to obtain

an exact TS representation of a given nonlinear model is the

sector nonlinearity approach [4].

Uncertainty that exists in the parameters of the nonlinear

system can be represented in an uncertain TS fuzzy model

as unmodelled dynamics. Adaptive observers that are able

to estimate the unmodelled dynamics have been developed

in [2]. These observers are designed such that, given an

upper bound on the uncertainty norm, the error dynamics are

asymptotically stable and the uncertainties are estimated. The

observer design is based on a common quadratic Lyapunov

function.

In this paper, we consider a 2-DOF robot arm operating

in the horizontal plane. A TS model of the robot arm

is constructed using the sector nonlinearity approach. The

uncertainty in the damping coefficients in the individual

joints is represented as uncertainty in the state matrices and

we use an adaptive observer to estimate this uncertainty.

All the states are measured and hence the adaptive observer

estimates only the uncertainties. The design of uncertainty

estimation experiments based on the structure of the TS fuzzy

model is also investigated.

We analyze the influence of the obtained uncertainty

estimates on the controller design. The estimates given by

the adaptive observer are used to update the TS model of

the robot arm. Subsequently, the updated model is used to re-

design a stabilizing controller. We analyze the improvements

in the controller performance due to the use of an updated

model. To use the updated model in controller design, we

need a design method which uses the same uncertainty

distribution structure as the adaptive observer. Hence, we use

a robust controller design approach for the same uncertainty

distribution structure. Uncertainty estimation in the presence

of a stabilizing controller is also studied.

The paper is organized as follows. Section II presents

the robot arm model. In Section III, an adaptive observer

is designed for the robot arm. In this section we also discuss

the use of the structure of the TS model in setting up the

uncertainty estimation experiments. Section IV presents the

robust controller design for the robot arm. Section V presents

the uncertainty estimation in the presence of a controller

stabilizing the plant. Finally, Section VI concludes the paper.

II. TS MODEL OF THE 2-DOF ROBOT ARM

Robot manipulators are of great importance for automation

not only in traditional industries, such as car manufacturing,

but more importantly in new upcoming domains, such as

agricultural harvesting and product handling, or in house-

hold tasks. Rather than big, heavy and therefore dangerous,

these new-generation robots need to be human-friendly. This

requires light-weight, soft and compliant mechanical design,

combined with novel control solutions to achieve the desired

precision and repeatability.

In this paper we use an adaptive observer to estimate the

uncertainties in the state matrices of a 2-DOF robot arm

model. The TS model of the robot arm is constructed using

the sector nonlinearity approach. The estimates are used in

updating the arm model, and the updated model is used to

design a controller for the arm.

A schematic representation of a 2-DOF robot arm is given

in Figure 1.

The nonlinear model of the arm operating in the horizontal

plane is:

MR(θ)θ̈ + CRθ̇ = τ (1)

with

MR(θ) =

»

P1 + P2 + 2P3 cos θ2 P2 + P3 cos θ2

P2 + P3 cos θ2 P2

–

(2)

CR(θ, θ̇) =

»

b1 − P3θ̇2 sin θ2 −P3(θ̇1 + θ̇2) sin θ2

−P3θ̇2 sin θ2 b2

–

(3)



Fig. 1. A 2-DOF robot arm.

where MR is the mass matrix, CR is the Coriolis and

centrifugal force matrix, θ1 and θ2 are the joint angles, θ̇1 and

θ̇2 are the angular velocities, τ1 and τ2 are the torque inputs,

P1 = m1c1
2 + m2l1

2 + I1, P2 = m2c2
2 + I2, P3 = m2l1c2,

l1 and l2 are the lengths, m1 and m2 are the masses, I1

and I2 are the inertias, c1 and c2 are the centers of mass

of the first and the second link, respectively, and b1 and b2

are the damping coefficients of the first and second joint,

respectively.

The above model can be written in the state-space form

as follows:

ẋ =

[
−M−1

R CR 0
I 0

]
x +

[
M−1

R

0

]
τ (4)

where x = [θ̇1 θ̇2 θ1 θ2]
T , or as

ẋ = A(θ, θ̇)x + B(θ)τ (5)

where

A =





A11 A12 0 0
A21 A22 0 0
1 0 0 0
0 1 0 0





A11 =
P2(b1 − P3θ̇2 sin(θ2)

P 2

3
cos2(θ2) − P1P2

−

P3θ̇2 sin(θ2)(P2 + P3 cos(θ2))

P 2

3
cos2(θ2) − P1P2

A12 = −

b2(P2 + P3 cos(θ2))

P 2

3
cos2(θ2) − P1P2

−

P2P3 sin(θ2)(θ̇1 + θ̇2)

P 2

3
cos2(θ2) − P1P2

A21 =
P3θ̇2 sin(θ2)(P1 + P2 + 2P3 cos(θ2))

P 2

3
cos2(θ2) − P1P2

−

(P2 + P3 cos(θ2))(b1 − P3θ̇2 sin(θ2))

P 2

3
cos2(θ2) − P1P2

A22 =
b2(P1 + P2 + 2P3 cos(θ2))

P 2

3
cos2(θ2) − P1P2

+
P3 sin(θ2)(P2 + P3 cos(θ2))(θ̇1 + θ̇2)

P 2

3
cos2(θ2) − P1P2

(6)

B =




−

P2

P 2

3
cos2(θ2) − P1P2

P2 + P3 cos(θ2)

P 2

3
cos2(θ2) − P1P2

P2 + P3 cos(θ2)

P 2

3
cos2(θ2) − P1P2

−
P1 + P2 + 2P3 cos(θ2)

P 2

3
cos2(θ2) − P1P2





Examining the above nonlinear model reveals the presence

of six nonlinear terms:

z1 =
1

P3
2 cos(θ2)

2
− P1 P2

z2 =
cos(θ2)

P3
2 cos(θ2)

2
− P1 P2

z3 =
θ̇2 sin(θ2)

P3
2 cos(θ2)

2
− P1 P2

z4 =
θ̇2 cos(θ2) sin(θ2)

P3
2 cos(θ2)

2
− P1 P2

z5 =
θ̇1 sin(θ2)

P3
2 cos(θ2)

2
− P1 P2

z6 =
θ̇1 cos(θ2) sin(θ2)

P3
2 cos(θ2)

2
− P1 P2

The term A11 for instance can be written in terms of the

above nonlinearities as

A11 = P2b1z1 − 2P3P2z3 − P 2

3
z4

Similarly all other elements in A and B can be written

in terms of the above six nonlinearities. Using the sector

nonlinearity approach [4], TS models of the form

Ri : If z1 is N1

i and z2 is N2

i , . . . and zp is N
p
i , then

ẋ = Aix + Biu

y = Cix

for i = 1, 2, . . . , r can be constructed. The TS model can be

written as:

ẋ =

r∑

i=1

hi(z)(Aix + Biu)

y =

r∑

i=1

hi(z)(Cix) (7)

where r is the number of rules, x is the state vector, u is the

input vector, y is the output vector, x ∈ R
nx , u ∈ R

nu , and

y ∈ R
ny , z = [z1, z2 . . . zp]

T is the vector of scheduling

variables, Ai ∈ R
nx×nx , Bi ∈ R

nx×nu , i = 1, 2, . . . , r

are known state and input matrices of the individual linear

models that are combined to represent the nonlinear system,

and hi(z) are normalized membership degrees of the rules.

Since we have six nonlinear terms, p = 6, and the number

of rules is r = 26.

However, if we neglect the Coriolis and centrifugal forces

in CR, i.e., assuming that θ̇1 sin(θ2) ≃ 0 and θ̇2 sin(θ2) ≃ 0,

leading to CR =

[
b1 0
0 b2

]
, we have only the two following

nonlinearities:

z1 =
1

P 2

3
cos(θ2)

2
− P1P2

(8)

and

z2 =
cos(θ2)

P3
2cos(θ2)

2
− P1P2

(9)

and we obtain the state-space model

ẋ = A(z1, z2)x + B(z1, z2)u (10)



where u is the input voltage [u1 u2]
T and the actual input

torque τ is represented in terms of the input voltage,

τ =

»

km1 0
0 km2

– »

u1

u2

–

(11)

A =

2

6

4

P2b1z1 −P2b2z1 − P3b2z2 0 0
−P2b1z1 − P3b1z2 b2z1(P1 + P2) + 2P3b2z2 0 0

1 0 0 0
0 1 0 0

3

7

5

(12)
and

B =

2

6

4

−P2km1z1 km2(P2z1 + P3z2)
km1(P2z1 + P3z2) −km2(2P3z2 + z1(P1 + P2))

0 0
0 0

3

7

5

(13)

where km1 and km2 are voltage-to-torque motor gains.

To obtain the values of the parameters, we first identified

the parameters of the DC motors in the individual joints,

using SISO identification experiments on a small-scale robot

arm, with the bandwidth of operation around 5 Hz. These

values were used afterwards to find the values of P1, P2

and P3 through nonlinear optimization based on input-output

data from MIMO experiments on the robot arm. The values

obtained through the nonlinear optimization are km1 = 6.59,

km2 = 1.51, b1 = 1.22, b2 = 0.24, P1 = 0.0191, P2 =
0.00039 and P3 = 0.00000967. The angles are limited to

−1.6 ≤ θ1 ≤ 1.6 rad and −1.7 ≤ θ2 ≤ 1.64 rad.

We have compared the model outputs for the model with

a complete CR (Coriolis) matrix and with a simplified

CR matrix consisting of only damping coefficients. The

comparison between the angular positions of the two links

of the robot arm model when excited by a multisine input is

presented in Figures 2 and 3.
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Fig. 2. Comparison between the model outputs – link 1.

It can be observed that the outputs are almost the same.

This indicates that in the considered setting we can neglect

the Coriolis and centrifugal forces in the nonlinear model and

in the sequel we use the simplified nonlinear model. With the

model parameters as described above, a 4-rule TS model is
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Fig. 3. Comparison between the model outputs – link 2.

constructed by using the sector nonlinearity approach [4].

The rules of the TS model are of the form

Ri : If z1 is N1

i and z2 is N2

i then

ẋ = Aix + Biu for i = 1, 2, 3, 4 (14)

and membership functions obtained are

w11(z1) =
z1max − z1

z1max − z1min

w12(z1) =
z1 − z1min

z1max − z1min

w21(z2) =
z2max − z2

z2max − z2min

w22(z2) =
z2 − z2min

z2max − z2min

(15)

Since all the states are measured, the above model can be

rewritten as

ẋ =
r∑

i=1

hi(z)(Aix + Biu)

y = Cx

with C = I , and the normalized membership values of

each rule are given by hi(z) =
wi(z)

r∑
i=1

wi(z)
and w1(z) =

w11(z1)w21(z2), w2(z) = w11(z1)w22(z2), w3(z) =
w12(z1)w21(z2), and w4(z) = w12(z1)w22(z2). The matri-

ces Ai and Bi, i = 1, 2, 3, 4 are obtained by substituting

the minimum and maximum values of the uncertainties,

respectively. For instance, the matrices of the first local

model are

A1 =





−63.77 12.89 0 0
65.35 −629.24 0 0

1 0 0 0
0 1 0 0



 (16)



B1 =





344.93 −81.16
−353.48 3961.4

0 0
0 0



 (17)

Matrices Ai and Bi for i = 2, 3, 4 can computed in the same

way. The output matrix is the identity matrix for all the four

rules, i.e., all the states are available as outputs.

III. ADAPTIVE OBSERVER DESIGN

An adaptive observer that can estimate uncertainties in the

state matrices of a TS model has been proposed in [3]. We

use this observer to estimate the uncertainties, and later on,

to improve the performance of the controller designed for

the robot arm.

Since the states are measured and the uncertainties are

present only in the state matrices, the uncertain TS model is

of the form

ẋ =

r∑

i=1

hi(z)(Aix + Biu + MiAδix)

y = Cx

where C = I and the product MiAδi represents the uncer-

tainty in the state matrices. We assume that this uncertainty

is due to the damping coefficients.

The adaptive observer that is used to estimate the uncer-

tainties is of the form

˙̂x =
r∑

i=1

hi(z)(Aix + Biu + Li(y − ŷ) + Mi(Âδix̂))

ŷ = Cx̂

together with the update law

˙̂
Aδi = hi(z)MT

i PC†
eyx̂T i = 1, 2, . . . , r (18)

where Li, i = 1, 2, . . . , r are the observer gain matrices for

each rule, P is the Lyapunov matrix, and C† is the Moore-

Penrose pseudoinverse of the output matrix C. Given that the

uncertainty norm satisfies ‖Aδi‖ ≤ µmax, the update laws

are determined so that the estimation errors (x − x̂) and

(Aδi − Âδi) asymptotically converge to zero.

Considering the uncertainty in the values of damping

coefficients b1 and b2 to be 0.05 and 0.0002 respectively,

we have

Aδi =

[
−0.26 0.01 0 0
0.26 −0.52 0 0

]
(19)

for i = 1, 2, 3, 4. The uncertainty distribution matrices are

Mi =





1 0
0 1
0 0
0 0



 (20)

for i = 1, 2, 3, 4. The product MiAδi is referred to as the

uncertainty distribution structure, with the notation ∆Ai =
MiAδi.

A multi-sine input signal limited in frequency to 3 Hz that

activates all rules is used to excite the system. This input

is chosen such that the states do not reach their saturation

limits. The duration of 50 s for the simulation of the adaptive

observer has been experimentally determined as sufficient to

obtain a significant reduction in the uncertainty estimation

error.

With the maximum uncertainty norm ‖Aδi‖ being 0.6040,

we can design an adaptive observer with µmax = 2.

However, repeating the experiments for different values of

µmax, we observed that as the value of µmax for which

the adaptive observer is designed increases, the uncertainty

estimation error given by
∑r

i=1
trace(ĀT

δiĀδi) decreases at

a faster rate. Therefore, we have redesigned the observer for

µmax = 200. For this value, we obtain

P =





557.85 0.01 0.00 0.00
0.01 557.69 0.00 0.00
0.00 0.00 557.90 0.00
0.00 0.00 0.00 557.90





and the observer gains Li, i = 1, 2, . . . , r are

L1 =





2681.5 39.06 0.49 0
39.06 2116.5 0 0.50
0.49 0 2745.1 0
0 0.50 0 2745.1





L2 =





2681.5 37.99 0.49 0
37.99 2117.2 0 0.50
0.49 0 2745.1 0
0 0.50 0 2745.1





L3 =





2681.5 39.06 0.49 0
39.06 2116.5 0 0.50
0.49 0 2745.1 0
0 0.50 0 2745.1





L4 =





2681.5 37.99 0.49 0
37.99 2117.2 0 0.50
0.49 0 2745.1 0
0 0.50 0 2745.1





After executing the adaptive observer for 50 s, the uncertainty

estimates are:

Âδ1 =

[
−0.30 0.01 0 0
0.31 −0.55 0 −0.01

]

Âδ2 =

[
−0.06 0 0 0
0.04 −0.18 0 0

]

Âδ3 =

[
−0.19 0 0 0
0.15 −0.52 0 0

]

Âδ4 =

[
−0.09 0 0 0
0.08 −0.20 0 0

]

The activation of the rules is shown in Figure 4. The uncer-

tainty estimation error corresponding to each rule is given

in Figure 5 for µmax = 2, µmax = 20 and µmax = 200.

Note that the uncertainty estimation error converges faster

for larger values of µmax.

The estimation error also converges faster for the rules

with higher activation degrees. For instance, the activation

degrees of R1 and R3 are higher than those of R2 and R4

and the uncertainty estimation error is smaller in case of R1
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Fig. 5. Uncertainty estimation error with different values of µmax.

and R3 compared to R2 and R4. This is due to the update

laws of the uncertainty matrices, which depend on the degree

of rule activation.

The nonlinearities in the TS model depend only on θ2.

Moreover, if the uncertainty is only in b2, then the uncer-

tainties can be estimated using only u2, thus avoiding the

need to design the input u1. Let us consider this case, i.e.,

the uncertainty only in b2. Then, assuming that the true

uncertainties are

Aδi =

[
0 0.01 0 0
0 −0.52 0 0

]

the estimates of the uncertainties using input u2 alone with

µmax = 200 are obtained as

Âδ1 =

[
0.02 0.01 0 0
−0.02 −0.54 0 −0.02

]

Âδ2 =

[
0 0 0 0
0 −0.18 0 0

]

Âδ3 =

[
0 0.01 0 0
0 −0.54 0 0

]

Âδ4 =

[
0 0 0 0
0 −0.21 0 0

]

For rules 1 and 3, the uncertainty estimates are close to the

true values. Better estimates for rules 2 and 4 can be obtained

if the simulation is run longer. Thus, we can exploit the

uncertainty structure in the TS model to design the estimation

experiments.

IV. ROBUST CONTROLLER DESIGN

The estimates obtained in the previous section are now

used to update the model of the robot arm. To analyze the

achievable improvements in the controller performance, we

design a controller with the same uncertainty distribution

structure as in the adaptive observer, i.e., ∆Ai = MiAδi.

Robust control designs similar to those available in [6] can

be derived for the uncertainty distribution structure MiAδi.

Using a common quadratic Lyapunov function V (x) =
x

T Px, the following theorems present the robust controller

design with an associated decay rate of α and the maximum

uncertainty norms for which the controller can guarantee

stability. The controller is a parallel distributed compensator

with each rule of the controller containing a linear feedback

law for each corresponding rule of the TS model.

Consider the TS fuzzy system,

ẋ =

r∑

i=1

hi(z)(Aix + Biu + MiAδix) (21)

and the control law

u = −

r∑

i=1

hi(z)Fix (22)

where hi are the normalized membership functions.

Theorem 1: The uncertain fuzzy system (21) is stabilized

by the controller (22) and the closed-loop system has a decay

rate of at least α if there exist a common positive definite

matrix P (X = P−1) and Ni, i = 1, 2, . . . , r (Ni = FiX)

that satisfy

maximize
µi

2,X,N1,N2...Nr

r∑

i=1

βiµi
2

subject to

X > 0,

Ŝii < 0,

T̂ij < 0, i, j = 1, 2, . . . , r and i < j s.t hi hj 6= 0



where r is the number of rules, Fi are the controller gains,

α is the specified decay rate, βi, i = 1, 2, . . . , r are design

parameters and Ŝii and T̂ij , i, j = 1, 2, . . . , r are given by

Ŝii =





(
Ŝ11

ii + 2αX

)
Mi X

MT
i −I 0

X 0 − 1

µ2

i

I



 (23)

T̂ij =





(
T̂ 11

ij + 4αX
)

Mi Mj X X

MT
i −I 0 0 0

MT
j 0 −I 0 0

X 0 0 − 1

µ2

i

I 0

X 0 0 0 − 1

µ2

j

I




(24)

with Ŝ11

ii = AiX + XAT
i − BiNi − NT

i BT
i , and T̂ 11

ij =
AiX + XAT

i + AjX + XAT
j − BiNj − NT

j BT
i

− BjNi − NT
i BT

j .

The maximum uncertainty bounds µi on Aδi (‖Aδi‖ ≤
µi) for which the controller guarantees stability is obtained

as part of the control design procedure. Constraints on the

control input can also be specified, as follows.

Theorem 2: [6] The system (21) is stabilized by (22) and

given an upper bound φ on the initial state (i.e., ‖x(0)‖ ≤
φ), the constraint on the control input ‖u(t)‖ ≤ ζ is satisfied

for all t > 0, if the following LMIs are satisfied
[
X Ni

T

Ni ζ2I

]
≥ 0 for i = 1, 2, . . . , r

X ≥ φ2I

Using Theorems 1 and 2, a robust controller is designed

for the nominal TS model with α = 1, φ = 1 and

ζ = 1. The maximum uncertainty norms obtained from

the controller design are µi = 0.63, i = 1, 2, 3, 4. These

values guarantee stability of the nominal model since the

maximum uncertainty norm of the four rules is 0.6040. When

the adaptive observer is used to estimate the uncertainties, the

norms of the residual uncertainty, i.e., ‖Aδi− Âδi‖ after 50 s

are obtained as 0.0738, 0.4195, 0.1360 and 0.3774 for the

four rules. Consequently, the norm of the uncertainties for

which a controller will have to be designed with the updated

model, are smaller, and an improvement in the controller

performance can be expected. Designing the controller with

α = 2, φ = 1 and ζ = 1 for the updated model, the

maximum uncertainty norms guaranteed to be stabilized by

the controller are µi = 0.47, i = 1, 2, 3, 4.

V. CLOSED-LOOP UNCERTAINTY ESTIMATION IN A

CONTROLLED SYSTEM

In the case of systems for which open-loop experiments

cannot be performed (such as open-loop unstable systems),

closed-loop uncertainty estimation must be considered. In

this section, we investigate this case. A robust controller that

stabilizes the system is designed for the nominal TS model

with α = 1, φ = 1 and ζ = 1, and an adaptive observer with

µmax = 200 is designed to estimate the uncertainties. The
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Fig. 6. Rule activation when the system is stabilized by a controller.
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Fig. 7. Uncertainty estimation error comparison with and without the
controller.

activation of the different rules and the individual uncertainty

estimation errors are shown in Figures 6 and 7.

The uncertainty estimates obtained after 50 s are

Âδ1 =

[
−0.28 0.01 0 0
0.30 −0.56 0.01 0

]

Âδ2 =

[
−0.01 0 0 0
0.01 −0.05 0 0

]

Âδ3 =

[
−0.04 0 0 0
0.03 −0.12 0 0

]

Âδ4 =

[
0 0 0 0
0 −0.01 0 0

]

The uncertainty estimation error obtained in closed loop is

higher than then error obtained in open loop. It can be seen

from Figure 7 that the estimation error converges faster in

the case of rule R1. This is due to the fact that the stabilizing

action by the controller takes the states of the system towards

zero. Since θ2 is close to zero, the degree of activation of

R1 is high, but the activation of the other rules is lower.



VI. CONCLUSIONS AND DISCUSSIONS

In this paper we presented an adaptive observer to estimate

uncertainties in the model of a 2-DOF robot arm. The results

show that the value of the upper bound on the uncertainty

norm µmax for which the adaptive observer is designed

behaves as an uncertainty convergence rate. However, in our

model, uncertainty is present only in the state matrices. This

behavior has to be verified in situations where uncertainties

exist in the input matrices as well. The uncertainty estimates

were used to obtain an updated model. Simulation results

indicate that with lower uncertainty in the updated model,

the controller can guarantee stability with a higher decay

rate.

It is important to note that in general the value of µmax

to be used will depend on the extent to which the initial

uncertain model represents the plant, with larger mismatch

between the plant and the model requiring higher values of

µmax.

The possibility to exploit the structure of the uncertainty

in the TS model in designing the experiments was also

discussed. However, since not all rules are activated with

a high degree, in this case, the uncertainty convergence rate

becomes very small for those rules that are not activated.

Hence, the experiment duration and the type of input signal

required to obtain better estimates for these other rules should

be further investigated.
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“Adaptive observers for TS fuzzy systems with unknown polynomial
inputs,” Fuzzy Sets and Systems, vol. 161, no. 15, pp. 2043–2065, 2010.

[4] H. Ohtake, K. Tanaka, and H. Wang, “Fuzzy modeling via sector non-
linearity concept,” in Proceedings of the Joint 9th IFSA World Congress

and 20th NAFIPS International Conference, vol. 1, Vancouver, Canada,
July 2001, pp. 127–132.

[5] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modeling and control,” IEEE Transactions on Systems,

Man, and Cybernetics., vol. 15, pp. 116–132, 1985.
[6] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis

- A Linear Matrix Inequality Approach. John Wiley & Sons, Inc, 2001.


