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Abstract—In this paper we use a fuzzy model to represent the
nonlinear dynamics of the Human Immunodeficiency Virus. To
estimate the unmeasured variables we use an observer and we
design a fuzzy controller to stabilize the system.

I. INTRODUCTION

Human Immunodeficiency Virus (HIV) is a pathogen that
infects T-helper cells of the immune system and can cause
AIDS (Acquired Immune Deficiency Syndrome). In recent
years, two major types of anti-HIV drugs were discovered:
1) the reverse transcriptase inhibitors (RTI) and 2) protease
inhibitors (PI). These two treatments have good results, but
the virus may suffer mutations and sometimes there were side
effects. Using a mathematical model it is easier to study how
the virus evolves in the body. Wodarz and Nowak [8] created
a mathematical model that represents the HIV dynamics and
use the model to observe how the infection progresses in the
body for a specific treatment. Shanonn Kubiak et al [1] use a
mathematical model that represents the HIV dynamics while
testing a new type of cure called Highly Active Anti-Retrovial
Therapy (HAART). This cure had good results but it can also
cause side effects.

Existing results are based on a linearized model, that due to
the linearization and simplification, it is not accurate. In this
paper, we propose to use the full nonlinear model proposed in
[8]. In order to ease both the analysis and design, we use an
exact fuzzy representation of this model.

The paper is structured as follows: Section II presents the
HIV virus mathematical model, Section III explains Takagi-
Sugeno (TS) fuzzy modeling, Section IV is the fuzzy modeling
for HIV dynamics and Section V concludes the paper.

II. HIV MATHEMATICAL MODEL

The model for HIV infection dynamic created by Wodarz
and Nowak [8] studies how the HIV affects the immune system
during the natural course of infection. The model suggest that
the cytotoxic T lymphocyte (CTL) has a memory which helps
them to control the virus. Wodarz and Novak define CTL
memory as long-term persistence of CTL precursors in the
absence of antigen. The CTL memory can be enabled by the
antiviral drug therapy. For the chronically infected patients,
the CTL memory can be re-established by including in the
treatment, either deliberate drug holidays or antigenic boosts
of the immune system. Whether such treatment regimes would
lead to long-term immunologic control deserves investigation
under carefully controlled conditions.

In [1] the authors have changed the original model by
adding an additional state v, which represents the viral load.
The modified model is a coupled system of five ordinary
differential equations with twelve parameters as follows

ẋ(t) = λ− dx(t)− β[1− fu(t)]x(t)v(t)

ẏ(t) = β[1− fu(t)]x(t)v(t)− ay(t)− py(t)z(t)

ẇ(t) = cx(t)y(t)w(t)− cqy(t)w(t)− bw(t)

ż(t) = cqy(t)w(t)− hz(t)

v̇(t) = ky(t)− µv(t)

(1)

where: x denotes the uninfected T helper cells, y–infected T
helper cells, w–immune precursors CTL, z–immune effectors
CTL, v–free virus.

In the model (1) [1] assume that the virus instantaneously
approaches T-cells with no time lag for diffusion. In reality
such a delay exists. v represents only the virions that can infect
uninfected cells, represented by x. The immune precursors (w)
are stimulated by infected cells, not by the virus. u(t) repre-
sents the treatment in this model. Values of u(t) range from 0
to 1, with 0 representing no treatment and 1 representing full
treatment.

In this paper, we consider the parameter values presented
in Table 1, adopted from [1].

Symbol Value Meaning
λ 1 The target cell production rate
d 0.1 Natural death rate of target cells
β 0.02 Rate of viral replication
a 0.2 Natural death rate of infected cells
p 1 Death rate of infected cells due to

immune response
c 0.027 CTL activation rate
q 0.5 Growth rate of CTL effectors and

precursors due to infected cells
b 0.001 Natural death rate of CTL precur-

sors
h 0.1 Natural death rate of CTL effectors
k 25 Growth rate of virions due to in-

fected cells
µ 1 Natural death rate of virions
f 0.75 Treatment efficacy factor

Table 1. Parameter values

For the parameters in Table 1, there are two equilibria which



correspond to the success or failure of the immune system to
control the infection. The equilibria values are presented in
Table 2.

State 1st equilibrium 2nd equilibrium
x 0.4 9.8
y 4.8 0.004
w 0 8751
z 0 4.7
v 120 0.1

Table 2. Equilibria values

Our goal is to stabilize the system (1) in the first equilibrium
values, which corresponds to a successful treatment. To do
this, we derive a Takagi-Sugeno fuzzy model that exactly
represents the system (1). The modeling process is described
in the following sections.

III. TAKAGI-SUGENO FUZZY MODELING

In this section we present fuzzy modeling, stability analysis,
observer and controller design.

1) The fuzzy model: We need mathematical models that
represent the behavior of a physical dynamic system. If
we have nonlinear systems we can decompose them into
sub-systems which are representative for the respective sub-
domains. Fuzzy modeling is a technique to build a multiple-
model of the process based on the input-output data or the
original mathematical model of the system.

Takagi and Sugeno [5] proposed a fuzzy model based on IF-
THEN rules, which represent the local input-output relations
of a nonlinear system. The main feature of the dynamic TS
fuzzy model is to express the local dynamics by a linear system
model.

The IF-THEN rules are of the form [2]:
Model rule i:
If z1 is Zi

1 and ... and zp is Zi
p then y=Ai(z)

where the vector z has p components, zj , j = 1, 2, ...p,
and stands for the vector of antecedent variables. These
variables are also called scheduling variables, as their values
determine the degree to which the rules are active. The sets
Zi
j , j = 1, 2, ...p, i = 1, 2, ...m, where m is the number of

rules, are the antecedent fuzzy sets.
The values of scheduling variables zj , j = 1, 2, ...p belong

to a fuzzy set Zi
j , j = 1, 2, ...p, i = 1, 2, ...m, with a truth

value given by the membership functions hi, i = 1, 2, ...m.
Each membership function is composed using several weight-
ing functions, wji, j = 1, 2, ...p, i = 1, 2.

Assuming that each scheduling variable is bounded, we can
determine min(zj) and max(zj), j = 1, 2, ...p, respectively.
For the min and max we chose a weighting function. For
min(zj) chose wj1 and for max(zj) chose wj2, j = 1, 2, ...p.
The scheduling variable zj , j = 1, 2, ...p, can be represented
using the weighting functions wj1 and wj2, j = 1, 2, ...p, as
follows:

zj = wj1 · min(zj) + wj2 · max(zj) (2)

The weighting functions, wj1 and wj2, j = 1, 2, ...p, have the
form

wj1 =
max(zj)− zj

max(zj)− min(zj)
, wj2 =

zj − min(zj)
max(zj)− min(zj)

and

wj1(zj) + wj2(zj) = 1 (3)

The output of a rule i depends on the scheduling variables.
In Ai, i = 1, 2, ...m, we have min(zj) or max(zj), j =

1, 2, ...p, depending on the rule. If in the rule we have wj1,
j = 1, 2, ...p, we use min(zj) in Ai, for wj2 we use max(zj)
in Ai.

Example Consider the dynamic system

ẋ =

(
z1 a
z2 b

)
x

where z1 and z2 are scheduling variables and x = [x1, x2].
The system matrix is

A(z) =
(

z1 a
z2 b

)
This will be represented by a TS model and z = [z1, z2].
We need four weighting functions, each zj , j = 1, 2 needs
two, one for min(zj) and one for max(zj). So we chose
the following weighting functions: w11(z1), w12(z1), w21(z2),
w22(z2), where wj1(zj) corresponds to min(zj) and wj2(zj)
corresponds to max(zj). The resulting TS model is:
Model rule 1: If z1 is w11 and z2 is w21 then ẋ = A1x
Model rule 2: If z1 is w12 and z2 is w21 then ẋ = A2x
Model rule 3: If z1 is w11 and z2 is w22 then ẋ = A3x
Model rule 4: If z1 is w12 and z2 is w22 then ẋ = A4x
where x = [x1, x2]. The matrices Ai, i = 1 . . . 4 in this case
are

A1(z) =
(

min(z1) a
min(z2) b

)
, A2(z) =

(
max(z1) a
min(z2) b

)

A3(z) =
(

min(z1) a
max(z2) b

)
, A4(z) =

(
max(z1) a
max(z2) b

)
There are 4 membership functions, hi, i = 1 . . . 4:

h1 = w11(z1) · w21(z2)

h2 = w11(z1) · w22(z2)

h3 = w12(z1) · w21(z2)

h4 = w12(z1) · w22(z2)

ẋ can be derived as [4]:

ẋ =
4∑

i=1

hi(z)Ai(z)x (4)

This method will be applied in Section IV on the HIV
mathematical model.



2) Lyapunov stability: An important feature of dynamical
systems is stability. One of the methods used to study the
stability of nonlinear systems is the Lyapunov method.

There is no general procedure for finding Lyapunov func-
tions for nonlinear systems. The Lyapunov function can be
chosen to be quadratic, that is [2]

V (x) = xTPx, P > 0, P = PT

In the case of fuzzy systems, the system model is [2]:

ẋ =
m∑
i=1

hi(z)Aix

The Lyapunov function will be:

V (x) = xTPx
V̇ (x) = ẋTPx + xTP ẋ =

=
m∑
i=1

hi(z)(Aix)TPx +
m∑
i=1

hi(z)xTPAix =

=
m∑
i=1

hi(z)xT (AT
i P + PAi)x

In this case the system is stable if there exists P = PT > 0
so that AT

i P + PAi < 0, ∀i = 1 . . .m.
3) The estimator: Applying a control low requires knowing

the values of states. In practice it is not possible to measure
all the system states. The solution for this problem are state
observers. A state observer estimates the process states relying
on the process mathematical model, using the input and the
output of the process.

A TS fuzzy system has the form:

ẋ(t) =
m∑
i=1

hi(z)(Aix(t) +Biu(t))

y(t) =
m∑
i=1

hi(z)Cix(t)

where hi are the membership functions, Bi are the input matri-
ces, Ci are the output matrices, i = 1...m, x = [x1, x2, ..., xn]–
vector of systems states, u(t)–input, y = [y1, y2, ..., yl]–output
of the system, Ai–state matrix of rule i, i = 1...m, m–number
of rules. Assuming that the scheduling variables are known,
the general form of a fuzzy estimator is:

˙̂x(t) =
m∑
i=1

hi(z)(Aix̂(t) +Biu(t) + Li(y − ŷ))

ŷ(t) =
m∑
i=1

hi(z)Cix̂(t)

The error between the original system and the estimator is

ė(t) = ẋ − ˙̂x =

m∑
i=1

hi(z)
m∑
j=1

hj(z)(Ai − LiCj)e

where e = [e1, e2, ..., en]–vector of errors, n–number of states.
To verify the stability of the error dynamics, one can use the
Lyapunov function V , of the form:

V = eTP e, P > 0

V̇ =
m∑
i=1

hi(z)
m∑
j=1

hj(z)eT [P (Ai − LiCj)+

+ (Ai − LiCj)
TP ]e

The error system is stable if V̇ < 0 which is satisfied if P (Ai−
LiCj) + (Ai − LiCj)

TP < 0, i = 1...m, j = 1...m. If we
denote Mi = PLi then the stability condition become

PAi−MiCj+(PAi−MiCj)
T < 0, i = 1...m, j = 1...m (5)

which is an LMI (linear matrix inequality) that can be easily
solved.

If we denote Gij = PAi − MiCj + (PAi − MiCj)
T ,

i = 1...m, j = 1...m then we have the following stability
conditions [6]:

Gii < 0

2

m− 1
Gii +Gij +Gji < 0

where m is the number of rules and Gii = PAi − MiCi +
(PAi −MiCi)

T .
4) Controller: The PDC (parallel distributed compensator)

controller used in fuzzy control has the following form

ẋ(t) =
m∑
i=1

hi(z)(Aix(t) +Biu(t))

u(t) = −
m∑
j=1

hj(z)Fjx(t)

where Fi represent the local feedback gains, hi–membership
functions, Ai–state matrix of fuzzy rule i, i = 1...m, Bi–input
matrices, u(t)– control input.

To verify the stability of the controller, one can use the
Lyapunov function:

V = xTPx, P > 0

V̇ = xT
m∑
i=1

hi(z)
m∑
j=1

hj(z)(P (Ai −BiFj)+

+ (Ai −BiFj)
TP )x < 0

The controller is stable if P (Ai−BiFj)+ (Ai−BiFj)
TP <

0, i = 1...m, j = 1...m. Denoting X = P−1 the relation
becomes

(Ai −BiFj)X +X(Ai −BiFj)
T < 0, i = 1...m, j = 1...m

If we denote Mj = FjX , j = 1...m then we have

AiX −BiMj +XAT
i −MT

j BT
i < 0, i = 1...m, j = 1...m,

(6)
which is a LMI. Let Gij = AiX−BiMj , i = 1...m, j = 1...m
and the stability conditions are [7]

GT
ii +Gii < 0 (7)



(
Gij +Gji

2
)T + (

Gij +Gji

2
) < 0 (8)

where Gii = AiX − BiMi. If we have B1 = B2 = B3 =
... = Bm then we need to find P > 0 that satisfies only the
inequality (7).

IV. FUZZY MODELING OF HIV DYNAMICS

In this section we derive the equivalent fuzzy model for the
system described by (1). Using the 1st equilibrium values from
Table 2, we modify the system so that it has an equilibrium
in zero.

To move the system equilibrium in zero we make the
following replacement: x = x+0.4, y = y+4.8, w = w+0,
z = z + 0 and v = v + 120. Assuming a constant input, the
new system is:

ẋ = (−2.5− 0.02v)x− 0.008v

ẏ = (2.4 + 0.02v)x+ 0.008v + (−0.2− z)y − 4.8z

ẇ = (0.027y + 0.1296)xw + (−0.0027y − 0.014)w

ż = (0.0135y + 0.0648)w − 0.1z

v̇ = 25y − v

(9)

As we can see in (9), there are six nonlinear terms, so we
need to chose six scheduling variables: z1, z2, z3, z4, z5, z6.
The nonlinearities associated to the scheduling variables are

z1 = −2.5− 0.02v,

z2 = 2.4 + 0.02v,

z3 = 0.027yw + 0.1296w,

z4 = −0.2− z,

z5 = −0.0027y − 0.014,

z6 = 0.0135y + 0.0648.

The matrix of system (9) is

A(x) =


z1 0 0 0 −0.008
z2 z4 0 −4.8 0.008
z3 0 z5 0 0
0 0 z6 −0.1 0
0 25 0 0 −1

 (10)

To define the weighting functions, we calculate the mini-
mum and the maximum values of z1(t), z2(t), z3(t), z4(t),
z5(t) and z6(t), which under the assumption x, y, w, z, v ∈
[0, 10] are:

min(z1(t))=-2.7 max(z1(t))=-2.5
min(z2(t))=2.4 max(z2(t))=2.6
min(z3(t))=0 max(z3(t))=3.996
min(z4(t))=-10.2 max(z4(t))=-0.02
min(z5(t))=-0.041 max(z5(t))=-0.014
min(z6(t))=0.0648 max(z6(t))=0.1998

Therefore w11, w12 ,w21, w22, w31, w32, w41, w42, w51,
w52, w61, w62 can be represented using the scheduling vari-
ables z1, z2, z3, z4, z5 z6, as follows:

w11(z1) = 0.1v, w12(z1) = 1− 0.1v

w21(z2) = 1− 0.1v, w22(z2) = 0.1v

w31(z3) = 1− 0.0068yw − 0.0324w

w32(z3) = 0.0068yw + 0.0324w

w41(z4) =
z

10.18
, w42(z4) = 1− z

10.18
w51(z5) = 0.1y, w52(z5) = 1− 0.1y

w61(z6) = 1− 0.1y, w62(z6) = 0.1y

(11)

and we have

wj1(zj) + wj2(zj) = 1, j = 1...6

The scheduling variables represented using the weighting
functions are:

z1 = w12 · (−2.7) + w12 · (−2.5)

z2 = w21 · (2.4) + w22 · (2.6)
z3 = w31 · (0) + w32 · (3.996)
z4 = w41 · (−10.2) + w42 · (−0.02)

z5 = w51 · (−0.041) + w52 · (−0.014)

z6 = w61 · (0.0648) + w62 · (0.1998)

The model rules in this case are complex. The number
of rules in the case of HIV virus system is 64, but since
w11 = w22, w12 = w21, w51 = w62 and w52 = w61, we have
only 16 rules. For instance, one of the rules is:

Model rule 1:
If z1(t) is w11 and z3(t) is w31 and z4(t) is w41 and z5(t) is
w51 Then ẋ = A1x
where

A1 =


−2.7 0 0 0 −0.008
2.5 −10.2 0 −4.8 0.008
0 0 −0.041 0 0
0 0 0.1998 −0.1 0
0 25 0 0 −1


Each model rule is a combination of w1k, w3k, w4k, w5k where
k = 1, 2. If in the rule we have wj1, for each j we will use
in matrix (10) the minimum value or maximum of zj , at the
proper position of zj , j = 1...6. If in the rule we have wj2,
for each j we will use in matrix (10) the maximum value of
zj , at the proper position of zj , j = 1...6.

For instance, the rule corresponding to A1 is the following
combination of weighting functions: w11, w31, w41, w51, and
the matrix A1, in terms of min(zj) and max(zj), j = 1...6 is

A1 =


min(z1) 0 0 0 −0.008
max(z2) min(z4) 0 −4.8 0.008
min(z3) 0 min(z5) 0 0

0 0 max(z6) −0.1 0
0 25 0 0 −1





Now, ẋ can be derived as:

ẋ = h1(z(t))A1x(t) + h2(z(t))A2x(t)+
+ h3(z(t))A3x(t) + . . .+ h16(z(t))A16x(t)

where z = [z1, z3, z4, z5] and

h1(z(t)) = w11(z1(t)) · w31(z3(t)) · w41(z4(t)) · w51(z5(t))

h2(z(t)) = w11(z1(t)) · w31(z3(t)) · w41(z4(t)) · w52(z5(t))

h3(z(t)) = w11(z1(t)) · w31(z3(t)) · w42(z4(t)) · w51(z5(t))

. . .

h16(z(t)) = w12(z1(t)) · w32(z3(t)) · w42(z4(t)) · w52(z5(t))

The dynamic system is the same as the original (9).
The evolution of the states is presented in Fig. 1. Since the

considered equilibrium point, (0.4;4.8;0;0;120), is unstable,
we need to calculate a controller. In the following sections we
will present the observer and the controller design.
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Fig. 1. Evolution of states

A. The estimator

In order to know all the states and to use them for control, an
estimator is needed. The estimator equations have been given
in Section III.

For this estimator we consider that there are three states that
can be measured: x, y and v. The output matrix C will have
the form:

C =

 1 0 0 0 0
0 1 0 0 0
0 0 0 0 1


Because we have only a matrix C, to verify the stability is
sufficient to use only the criterion

Gii < 0

where Gii = PAi −MiC + (PAi −MiC)T , i = 1...16. To
design a stable estimator, like it is presented in Section III,
we need to calculate a matrix P which is positive definite.

Solving the LMI (5) using the Sedumi solver of the Yalmip
[3] toolbox in Matlab we obtain:

P =


0.0488 −0.0001 0.001 −0.0004 0
−0.0001 0.0564 0.0139 0.0162 0.0085
0.001 0.0139 0.53 −0.2983 0.0036

−0.0004 0.0162 −0.2983 0.3159 0.0032
0 0.0085 0.0036 0.0032 0.0488


and 16 observer gains are obtained. For instance, the first gain
is

L1 =


−0.4939 0.0033 0.0016
2.6148 −7.2330 −0.0373
−0.0065 −1.3604 −0.2081
−0.0032 −2.2936 −0.3466
−0.0097 24.5733 1.2521

 (12)

Fig. 2 presents the estimated values of the system states
w and z. For the simulation, the initial conditions were
x = [0.2, 0.6, 0.4, 0.7, 0.9]T , while the estimated initial states
were x̂0 = [0.1, 0.5, 0, 0.3, 0.7]T . The error between the
estimated values and the system states is presented in Fig. 3.
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Fig. 2. Estimated states

Like we see in Fig. 3 at the beginning of estimation is a
large error, but in time that error converges to zero.

B. The controller

The form of the controller is given in Section III. For this
model we calculate a controller that stabilizes the system.

To test the controller we used the following input matrix B

B = (0 0 1 0 0)T

Because we have only one B to design the controller is enough
to use

GT
ii +Gii < 0 (13)

where P is a positive define matrix and Gii = AiX − BMi,
i = 1...16. Solving the LMI (6) using the Sedumi solver of
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Fig. 3. Estimation error of states w and z

the Yalmip [3] toolbox in Matlab we obtain X−1 = P :

P =


0.4174 0.5191 −0.0342 −1.4161 0.0303
0.5191 0.7112 −0.0445 −1.7951 0.0364
−0.0342 −0.0445 0.003 0.1194 −0.0024
−1.4161 −1.7951 0.1194 4.9286 −0.1041
0.0303 0.0364 −0.0024 −0.1041 0.0028


(14)

The local feedback gains Fi, i = 1...16 have been calculated
using Fi = MiX

−1, X = P−1. For example, the first gain is

F1 = [ −2.4513 −3.1574 0.208 8.5414 −0.1766 ]

The evolution of the closed-loop states is presented in Fig. 4.
As can be seen, the states of the system are stabilized.
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Fig. 4. Evolution of the closed-loop states

V. CONCLUSION

The model used in this work is nonlinear but using the fuzzy
modeling we can work with linear sub-systems. The controller

stabilizes the nonlinear system, like we can see in Fig. 4. In
our future research, we will investigate a more realistic model
and the inclusion of the performance indices in the design.
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and Bart De Schutter. Stability and Observer Design Using
TS Models. STUDFUZZ 262. Springer-Verlag Berlin
Heidelberg, 2010.
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