
1 

 

Generalized LMI observer design for discrete-time 

nonlinear descriptor models 

 

 Víctor Estrada-Manzo*(1), Zsófia Lendek(2), and Thierry Marie Guerra(1) 

(1) University of Valenciennes and Hainaut-Cambrésis, LAMIH UMR CNRS 8201,  

Le Mont Houy, 59313, Valenciennes Cedex 9, France. 

email: {victor.estradamanzo, guerra}@univ-valenciennes.fr   

*Corresponding author. 

 
(2) Department of Automation, Technical University of Cluj-Napoca,  

Memorandumului 28, 400114, Cluj-Napoca, Romania. 

email: zsofia.lendek@aut.utcluj.ro 

 

 

Abstract :  

The present paper provides a systematic way to generalize Takagi-Sugeno observer design for discrete-time 

nonlinear descriptor models. The approach is based on Finsler’s lemma, which decouples the observer 

gains from the Lyapunov function. The results are expressed as strict LMI constraints. To obtain more 

degrees of freedom without altering the number of LMI constraints and thus relax the conditions, delayed 

Lyapunov functions and delayed observer gains are considered. Even more relaxed results are developed by 

extending the approach to  -sample variation. The effectiveness of the proposed methods is illustrated via 

examples. 
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1. Introduction 

A large family of nonlinear models can be represented as Takagi-Sugeno (TS) models [1]. Several methods 

to obtain a TS representation exist; the most common are via linearization in several operational points [2] 

and using the sector nonlinearity approach [3]. During the last years, the sector nonlinearity approach has 

been employed since the resulting TS model exactly represents the original nonlinear model in a compact 



2 

 

set of the state space. A TS model is a collection of linear models interconnected by membership functions 

(MFs), which are nonlinear and hold the convex sum property [4]. The analysis of TS models is performed 

through the direct Lyapunov method and one of the main goals is to express the conditions in terms of 

linear matrix inequalities (LMIs) [5], [6]. Using the sector nonlinearity, the number of linear models 

(vertices) exponentially increases with the number of nonlinearities in the original model. For example, 

mechanical systems can involve a high number of states and numerous nonlinearities, thus resulting in a 

standard TS representation with a large number of rules, increasing the computational cost in a way that it 

can be difficult to handle with the actual LMI solvers [4], [7], [8].  

Since the pioneering results of the non-quadratic approach [9], the analysis and design conditions for 

discrete-time TS models have witnessed interesting improvements [9]–[14]. Recently, a non-quadratic 

Lyapunov function using past samples in its MFs has been proposed in [15] for the observer design and 

generalized for state feedback controller design in [16].  

For systems represented via nonlinear descriptor models [17], an interesting way to handle them has been 

given in [18]: a TS descriptor representation. This extension of TS models arises when applying twice the 

sector nonlinearity methodology: once for the right-hand side of the equation and another for the left-hand 

side. Generally, a TS descriptor model reduces the number of linear models and also the number of LMI 

constraints with respect to standard ones [8], [19]–[21]. Moreover, the so-called descriptor redundancy [22] 

has been used to obtain relaxed conditions for those models that do not appear in a natural descriptor form 

[23]–[25]. The motivation of the work is twofold. The first one is considering that numerous models, for 

example in the mechanical field [8] [19] [20], do belong naturally to this family of models, their study 

appeals specific tools. The second is, not only to propose LMI constraints solutions, but also to derive, 

depending on some complexity parameter, conditions that are less and less conservative. 

When the state vector is not fully available an observer has to be implemented. The observer design for 

descriptor models has been discussed in [26]–[29]. For nonlinear systems with a constant rank-deficient 
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descriptor matrix, few results exist that involve LMI conditions [30], [31]. Moreover, existing results 

include restrictions such as linear output matrices, i.e., linear measurements.  

Previous results on descriptor models only consider a constant rank-deficient descriptor matrix. This paper 

develops conditions for the observer design for nonlinear descriptors with a non-constant full-rank 

descriptor matrix.  In a sense, it extends the standard TS observer results [7], [32], [33] to the TS descriptor 

framework. LMI conditions are obtained via non-quadratic Lyapunov functions and Finsler’s lemma. 

Finsler’s lemma  is used to avoid the explicit substitution of the closed-loop dynamics of the estimation 

error [34] and to decouple the Lyapunov function matrices from the observer gains [15], [21]. Furthermore, 

the paper provides a general framework which encompasses previous results for observer design for 

discrete-time descriptor models, both linear and TS. At last, the discrete nature of the Lyapunov function 

via  -sample variation is exploited as in [11] to obtain results whose conservativeness decreases according 

to a complexity parameter, i.e.   the number of past samples considered in the Lyapunov function. 

The paper is divided as follows: Section 2 introduces the discrete-time TS descriptor model, provides 

useful notations, and motivates this research via an example; Section 3 presents and discusses the main 

results on the observer design and illustrates them; Section 4 extends the results using  -sample variation; 

Section 5 concludes the paper and gives some perspectives. 

2. Preliminaries 

2.1 TS descriptor models 

Consider the following discrete-time nonlinear descriptor model: 

     

 

1

,

k k k k k k

k k k

E x x A x x B x u

y C x x

  


 (1) 

where x

k

n
x   is the state vector, u

k

n
u   is the control input vector, y

k

n
y   is the output vector, and k  

is the current sample. Matrices  kA x ,  kB x ,  kC x , and  kE x  are assumed to be smooth in a compact 

set x  of the state space including the origin. Moreover,  kE x  is assumed to be a regular matrix, at least 
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in the compact set 
x . In what follows, arguments will be omitted when they can be easily inferred. An 

asterisk    will be used in matrix expressions to denote the transpose of the symmetric element; for in-line 

expressions it will denote the transpose of the terms on its left-hand side, i.e., 

 
 , .

T

T TAA B
A B A B C A B C

B CB C

    
            
  

 

Using the sector nonlinearity approach [4], the 
ap  nonlinear terms in the right-hand side of (1) are captured 

via the membership functions (MFs)  ih z ,  1,2, ,2 ap
i  . The 

ep  nonlinear terms in the left-hand side 

of (1) are grouped in MFs  jv z ,  1,2, ,2 ep
j  . These MFs hold the convex sum property in the 

compact set 
x , i.e.,  

1
1

ar

ii
h z


 ,   0ih z  ,  

1
1

er

jj
v z


 ,   0jv z   with 2 ap

ar   and 2 ep

er  . In 

this work, the MFs depend on the premise variables grouped in the vector Pz , a ep pp  , which is 

assumed to be known [7].  

Using the methodology stated above, from the nonlinear model (1) an exact TS descriptor model is 

obtained [19]: 

    

 

1 1

1

1

,

e a

a

r r

j i i

j i

r

j k i k k

k i ki

i

v z E x h z A x B u

y h xz C









 



 



 (2) 

where matrices iA , iB , and iC ,  1,2, , ai r  represent the i-th linear right-hand side model (2) and jE , 

 1,2, , ej r  represent the j-th left-hand side model of the TS descriptor model. The premise vector is 

assumed to be available in time; it does not have to be estimated. 

 

2.2 Properties and lemmas 

Generally in the TS-LMI framework, it is natural to obtain inequality conditions involving convex sums, 

for instance: 

     
1 2 1 2

1 21 1

0,
a ar r

i

i i

i iih z k h z k
 

   (3) 

where 
1 2 1 2

T

i i i i     2 1,2,, , ri ai i   . In order to obtain LMI conditions, the MFs must be removed from (3). 

Throughout this paper, the following sum relaxation scheme will be employed. 

Lemma 1. [35] The double convex-sum (3) is negative if  
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 

 
2 2 2 1 2

1,2, , r ,

1,2,

0,

2
0, , ,

1
, r ,

i i

i i i i

i i i a

i i i i i i i a

a

ii
r

i

i i

 

   

  

   


 (4) 

hold. 

Note that Lemma 1 is one the possible schemes to drop off the convex MFs from (3). Other schemes that 

include slack variables [36], [37] exist in the literature and they apply directly on the results presented in 

this work.  

Due to the different sets of MFs coming from the descriptor form, two different pairs of convex sums may 

appear, i.e., 

            1 2

1 2 1 2 1 2

1 2 1 21 1 1 1

0,
a a e er r r r

i i j j

j j

i i

i i j j

h z h z v z v zk k k k
   

       (5) 

where  1 2 1 2

1 2 1 2

T

i i

j j j j

i i   ,  2 1,2,, , ri ai i   ,  1 2, 1,2, , ej j r . Therefore, an extension of Lemma 1 follows. 

Lemma 2. Sufficient condition for (5) to hold are 

   

 

 

  
 

1 1

1 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

1 1 1 2 1

1 1 1 1 1 1

1

2 2

1

2

21 1 2 1

1 1

1 1 2

1 3 1 2

,

,

2
,

1

4 2 2

1

0, 1,2, , 1,2, , ,

2
0, 1,2, , ,

1

0, 1

1 1 1

,2, , ,

j j

i i a e

j j j j j j

i i i i i i a

j j j j j j

i i i i i i

a

j j j j j j

i i i i i i i

e a e

e

a

r r

r j
r

r i

i j

i j

j i
r

r r r r

     

        


     





   


 
  

 


   

   

1 1

1 1 1 1

1 2 1 2 2 1 2 1

1 2 2 1 1 2 2

2

1

2

1 2 1 2 1 2 1 20 1,2, , , 1,2, , ,, , , , .

j j j j

i i i

j j j j j j j j

i i i i i i i i a er j ri j j ji ii  











 



            

 (6) 

Proof. See appendix A.  

Lemma 3. [34] (Finsler’s lemma). Let ,nX  
T n n Q Q , and m nW  such that  rank nW ; the 

following expressions are equivalent: 

 
 a) 0, : 0, 0 .

b) : 0.

T n

n m T T

     



     

    

Q W

M M W W M Q
 

 

2.3  E x  invertible: motivation 

In this work,    
1

er

j jj
E x v z E


  is assumed to be a regular matrix. This is motivated as follows 

1) This case appears in many cases, for example for mechanical systems, matrix  E x  contains the 

inertia matrix and is therefore regular [8], [19].  
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2) Since the matrix  E x  is regular (invertible), from the descriptor model (1) a standard state-space 

form can be computed: 

      1

1 ,k k kx E x A x x B x u

    (7) 

For a standard TS representation of (7), classical results can be directly applied. The nonlinear 

representations (1) and (7) are equivalent in the compact set of interest x ; however, a TS 

representation from (7) may have some drawbacks: a)  the term  1E x
 may introduce a more complex 

structure in  A x  and  B x ; furthermore, if the input matrix is constant, once multiplied by  1E x , it 

yields in    1B x E x B , i.e., it is not longer constant. b) The number of vertices may increase; this 

could lead to numerical problems when using LMI solvers. 

Therefore, the motivation of keeping the structure (1) instead of (7) is to propose solutions via LMI 

framework that reduces the conservatism. Previous works in the continuous case have shown such 

behaviour [8], [18]. Let us begin with an example together with the recent results for standard TS 

representations (7) [9], [15].  

Example 1. Consider the discrete-time nonlinear descriptor system (1) with matrices defined as: 

 
 

 

2

1

2

1

2 1 1

1 1 1

x
E x

x

  
 
 
 

,   
 1cos 1

0.7 1.1

x
A x

  
  

 
,  

0

1
B

 
  
 

,  and  
 1 1sin

0.2

T

x x
C x

 
  
 

.  

Note that      
2

2 4 2

1 1 12det 3 4 1 0E xx x x


    , i.e.,  E x  is regular for all 2x . Thus, the inverse 

of the descriptor matrix gives  
  

1
11

2det
E x

E x





  
  

 
,  2

11 1 x   ; this means that four different 

nonlinearities have to be considered, which results in 16r  . The state variable 1x  is available. Consider 

the observer design problem using the Lyapunov function   k

T

k kV e e e P , where ke  is the estimation error. 

Conditions using one convex sum for the Lyapunov function, i.e.,  kV e  with   
1

r

i iih z k P


P ,  which 

corresponds to the non-quadratic (NQ) approach in [9], rely in solving the following constraints: 

        
 

2

1 1

1 2 2 1 2 1 2 2
1 1 1

0.1
x

x x

r r r

i i T
i i i i i i i i i i

i

ih z h z h
P

z
G A L G P

k k k
C G  

  
 

   




 
  (8) 

Using another powerful non quadratic Lyapunov function, the so-called delayed non-quadratic (DNQ) one 

[15], i.e.,   
1

1
x xx

r

i ii
h z k P


 P  corresponds to solving the LMI conditions issued from: 
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        
 

1 2

1 2 2 1 2 1 2 2 2
1 1 1

0.1
x

x

x x x x x

r r r
i

T
i i i i

i i l

i i i i i ii i i i

h z h z h z
G A

P
k k k

G GL PC  

  
 

  


 




  (9) 

None of the two conditions above have provided (using Lemma 1 for obtaining LMIs) a feasible solution 

for the standard TS model computed from (7). Both sets of conditions involve three convex sums and need 

to solve 3 4112r r   LMIs, where r  represents the number of rules for standard TS models. Although 

these results, even if not conclusive since another TS representation may lead to feasible solutions, exhibits 

clearly the problem: inverting matrix  E x  and following standard way of doing leads to unfeasibility. As 

proposed through this work, a natural option is to keep the descriptor structure within the TS framework, 

even if  E x  is regular. This example will be resumed later on.  

Remark 1. There are recent approaches for discrete-time standard TS models based on multi-instant 

homogenous matrix polynomials [38]–[40] generalizing [15]. Nevertheless, their complexity (the number 

of LMI constraints and slack variables) is, of course, higher and they lead very quickly to numerical 

problems with actual LMI solvers for the system in Example 1. Therefore, Example 1 shows the 

importance of developing specific LMI conditions for TS descriptor models. 

For sake of brevity and clarity, the notation from [16] will be used throughout this paper.  

Definition 1. (Multiple sum) A multiple sum with 
h

n terms and delays evaluated at sample k of the form 

        1 1 220

21

2

1 1

1

1

: ,
a a a

hn n
h

h
n

h

r r r

n iH
i

i i i i i

i i

h z h z h zk d k d k d
 


  

       

where 0H   is the multiset of delays  1 20 , , ,
h

nH d dd


  . 

Definition 2. (Multiset of delays) 0H   denotes the multiset containing the delays in the multiple sum 

involving   at sample k . H

  denotes the multiset containing the delays in the sum   at sample k  . 

Definition 3. (Cardinality) The cardinality of a multiset 
0H  , 

0 h
H n

 , is defined as the number of 

elements in 
0H  . 

Definition 4. (Index set) The index set of a multiple sum H  is  : 1,2, , , 1,2, ,H s s ai i r s H  I , 

the set of all indices that appear in the sum. An element i  is a multiindex. 

Definition 5. (Multiplicity) The multiplicity of an element x  in a multiset H ,  H x1  denotes the number 

of times this element appears in the multiset H . 

Definition 6. (Union) The union of two multisets AH  and BH  is C A BH H H   such that 

      , max ,
C A BHC H Hx H x x x  1 1 1 . 



8 

 

Definition 7. (Intersection) The intersection of two multisets 
AH  and 

AH  is 
AC BH H H   such that 

      , min ,
C A BHC H Hx H x x x  1 1 1 . 

Definition 8. (Sum) The sum of two multisets 
AH  and 

BH  is 
C A BH H H   such that 

     ,
C A BC H HHx x x xH   1 1 1 . 

Definition 9. (Projection of an index) The projection of the index 
AHIi , to the multiset of delays BH , 

BHpr i  is the part of the index that corresponds to the delays in A BH H . 

Example 2. Consider the following multiple convex sum: 

              
1 2 3 4 5 1 2 3 4 5

1

0

2 3 4 51 1 1 1 1

1 1 1 3 .
a a a a a

i i i i i i i i i i

r r r r r

H
i i i i i

h z k h z k h z k h z k h z k

    

        (10) 

Then the delays contained by the multiset 
0H   in (10) are given by  0 1,0,1,1,3H     or 

 1, , 1, 1, 3H          . The cardinality of 
0H   is 

0 5H   . The set of the multiple sum (10) is 

 : 1,2, , , 1,2, ,5H s s ai i r s  I . The multiplicity of the elements in 
0H   is:  1 1H  1 ,  0 1H 1 , 

 1 2H 1 , and  3 1H 1 . Define multiset  2, 2,0,1,2,3AH   ; thus  0 2, 2, 1,0,1,1,2,3AH H      , 

 0 0,1,3AH H   , and  0 2, 2, 1,0,0,1,1,1,2,3,3AH H      .  

Using the above definitions, the discrete-time TS descriptor model (2) can be expressed as 

0 0 0

0

1

,

E A B

C

k

H

k k

k

H

k

H
E x A x B

x

u

y C

  



V
 (11) 

where the subscript denotes the dependence of the corresponding membership functions on the premise 

variables at the time indices in the corresponding multiset, e.g., 
0

AH , 
0

BH , and 
0

CH  stand for MFs  ih z  

 1,2, , ari   ; while 
0

EV  stands for MFs  jv z ,  1,2, , erj  . Since there are no delays in the original 

system (2), the multisets in (11) are  0 0E V , corresponding to   jv z k ,  1,2, , ej r   and  

 0 0 0 0A B CH H H    representing   ih z k ,  1,2, , ai r  .  

 

2.4 Problem statement 

The goal is to obtain conditions for observer design for TS descriptor models. The observer considered for 

the TS descriptor model (11) is given by: 

 
0 0 0 0 0 0 0

0

1

1ˆ

,ˆ

ˆ ˆ

ˆ

E A B G G L L

C

k k k k k

k k

H H H H

H

E x A x B u G L y y

y xC



   



V V V
 (12) 
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where 
0 0
G GH

G
V

 and 
0 0
L LH

L
V

 are the observer gains to be determined. These gains include delays given by 

multisets 
0

GH , 
0

LH , 
0

GV , and 
0

LV . Note that these multisets must not contain positive delays, since a 

positive delay refers to future state variables, which are not available for computation. 

Since the scheduling variables do not depend on unmeasured states, the estimation error ˆ
k k kxe x   

dynamics are 

 
0 0 0 0 0 0 0

1

1 .E A G G L L CH H Hk kH
E e A G L C e

  
V V V

 (13) 

Thus, the observer design consists in finding 
0 0
L LH

L
V

 and 
0 0
G GH

G
V

 such that (13) is asymptotically stable.  

3. Main results 

In order to design the observer (12), consider the following Lyapunov function: 

 
0 0 0 0 0 0 0 0, ,

, 0, , .P P P P P P P P

T T

H Hk k kV e e P e P P   
V Vi j i j

i jI I  (14) 

Then the following result can be stated: 

Theorem 1. The estimation error dynamics in (13) are asymptotically stable if there exist 
, ,P P P P

s s s s

TP P
i j i j

, 

P
s

P

s H
pr i

i , P
s

P

s pr
V

j
j , 

0 0,L LL
i j

, 
0

0 L

L

H
pr i

i , 
0

0 L

L pr
V

j
j , and 

0 0,G GG
i j

, 
0

0 G

G

H
pr i

i , 
0

0 G

G pr j
j

V
, 

0Hi I , 
0

V

j I , 

0,1s  , where    0 0 1 0 0 0 0

P P L C G AH H H H H H H       ,  0 0 1 0 0 0

P P L G E     V V V V V V  such that 

 
0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1

0.
P P

G G A L L C G G E E G G P P

H

T T

H H H H H H H

P

G A L C G E E G P

   
  

    
 

V

V V V V V V V

 (15) 

Proof. The variation of the non-quadratic Lyapunov function (14) along the estimation error is 

 
1 1 0 0

0 0

1 1

1 1

1 1

0
0.

0

P P P P

P P

P P

T T

k k k k k

T

k

H

k

H

kH

k H

e e

e

V e e P e

e

e e P

P

P

 

 

    
     
   

 







V V

V

V

 (16) 

Note that (13) can be expressed as the equality constraint 

0 0 0 0 0 0 0

1

1

0.A G G L L C EH H H
k

H

ke
A G L C E

e





 
     

 
V V V

 (17) 

Through Lemma 3, inequality (16) under constraint (17) is equivalent to finding 2 x xn n
M  such that: 

  0 0

0 0 0 0 0 0 0

1 1

1
0

0.
0

P P

A G G L L C E

P P

H

H H H H

H

P
A G L C E

P

 
 
      

    

V

V V V

V

M  (18) 
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The choice 
0 0

0 G G

T

H

T

G 
 V

M  yields directly (15), thus concluding the proof.■  

Example 3. Consider the multisets  0 0 0 0, 1G L GH H   V ,  0 0,0, 1L  V ,  and  0 0 1P PH   V , i.e., 

         

                  

               

0 0

20 1 1 1 1 2

1 1 2

1 1 1 1

0

0 0

1 , 1

0, 1 , 0,0, 1

0, 1

,

1 1

,

1 1 1 1 1

, 0 ,, 1

1 1

1 1

1 1

a e

x x x x

x x

a a e e e

x x

x

P P

L L
x x

x

G G
x xx x

i i

r r

jH
i j

r r r r r

j j j i j jH
i

j

i i i

i j j j

j j i jH
j

j

i i i j

k kP P h z v z P

L L h z h z v z v z v z L

G G h z h z v z v z

k k k k k

Gk k k k

 

 

 

 

    

   

 





 









V

V

V

1 11 1 1 1

.
x

a a e e

x

r r r r

i i j   



 (19) 

Then, recall that  0 0 0 0 0E A B CH H H   V  and therefore the conditions in Theorem 1 are   

     

                           

1 , 1

0, 1 , 0, 1 0 0, 1 , 0,0, 1 0 0, 1 , 0, 1 0 0 0, 1 , 0, 1 0 , 0

0,
T T

P

G A L C G E E G P

 

       

   
  

     

 (20) 

or 

                 

 

1 1

1 2

2 2 1 2 1 2 1 2 2 1 1 2

2 2

2 2

2 1

2

,

1 1 1 1 1 1

, , , , ,

1 1

0.

a a a e e

x

x x

x x

e

x x

x

x x x x x x

i i i

i j j

r r r r r r

j j j

i i i j j j

i j

T T

i i i i i j j i ii j j j i j j i j j j

h z h z h z v z v z v z

P

G A L C G E E G

k k k k k

P

k
     

   
 

   

 




 (21) 

Note that the co-negativity problem (21) involves six convex-sums.  

Remark 2. It is possible to consider 
0 0 0 0
G G P PH H

G P
V V

. This yields a classical non-PDC-like observer. 

However, with respect to conditions (15), the number of decision variables will be reduced while the 

number of LMI conditions remains the same, i.e., it will be more conservative. 

Remark 3. Considering 
0 0

P G V V  and  0 0 0 0 0P G L LH H H   V  the conditions in Theorem 2 of [41] 

are recovered. 

Remark 4. The total number of sums involved in  (15)  is 
0 0Hn H   V V . Moreover, considering that the 

system matrices do not contain delays, the maximum number of sums involved in (15) is given by 

2 2 2
h v h v h vH P L LP G Gn n n n n n n      V , where 

0h
n H A

A
, e.g., 

0h

P

Pn H . 

 

3.1 Selecting multisets 

Note that at this point no decision has been made on the multisets involved in the observer gains and in the 

Lyapunov function. Actually, (15) is a sufficient condition for the stabilization of the estimation error 

dynamics independent of the choice of the multisets. However, they should be selected such that the 
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conditions are the least conservative. To this end, constructive steps are given. 

Step 1: the system (10) does not contain delays in its MFs, i.e.,  0 0 00 0E BA CH H H   V . In order to 

apply multiple sums relaxations, the multisets 
0

GH ,
0

LH , 
0

GV , and 
0

LV  should, at least, contain  0 . 

Therefore introducing only one  0  will give the minimum representation for (15): 

 

                       

0 0

1 1
0 , 0 0 0 , 0 0 0 , 0 0 0 0 , 0

0.
P P

P P

H

T T

H

P

G A L C G E E G P

   
  

     

V

V

 (22) 

Now, provided that either 0

PH , 
0

PV  or 1

PH , 
1

PV  contain  0 , for 0

PH  and 
0

PV , two options are possible. 

Notice that a positive delay is possible in 
1 1
P PH

P
V

, as it is not part of the observer. In case  0 0 0P PH  V , 

we obtain the Lyapunov function in [9]. The case of  0 0 1P PH   V  corresponds to the delayed Lyapunov 

function [15]. In this latter case (22) writes: 

     

                           

1 , 1

0 , 0 0 0 , 0 0 0 , 0 0 0 0 , 0 0 , 0

0.
T T

P

G A L C G E E G P

 
   
  

     

  (23) 

Step 2: when possible, complete the multisets with delays that do not increase the number of sums. For 

example, (23) contains three sums of the form           
1 21 21 1 1

: 1
a a a

xx

r r r

i i i i i ih h z k h z k h z k
  

    and 

three sums of the form           
1 21 21 1 1

: 1
e e e

xx

r r r

j j jj j j
v v z k v z k v z k

  
   . Thus, it is possible to 

include the delay  1  in each multiple sum of 
0 0
G GH

G
V

 and 
0 0
L LH

L
V

 while keeping the same number of sums. 

Moreover, since there is no product involving 
0 0
L LH

L
V

 and 
0
EE
V

, the MFs  v  of 
0 0
L LH

L
V

 should be chosen as 

0 0 0

L G E V V V , thus (23) gives 

     

                           

1 , 1

0, 1 , 0, 1 0 0, 1 , 0,0, 1 0 0, 1 , 0, 1 0 0 0, 1 , 0, 1 0 , 0

0
T T

P

G A L C G E E G P

 

       

   
  

     

  (24) 

without increasing the number of sums. 

Step 3: (24) represents the “best” option with  0  and  1 . Based on the previous steps a generalization to 

multiple delays at the same instant, for example  0 0,1, 1, 1 ,
h

P P

PH H n     , is direct. Table 1 

presents some of the various possibilities that respect the constructive steps.  
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Matrix Multisets in Theorem 1 

0 0
P PH

P
V

 
 0 0,1, 1, 1 ,

h

P P

PH H n      

 0 0,1, 1, ,1
vP

P P n    V V  

0 0
L LH

L
V

 

 0 00,0, 1, 1,0, , 1, , 2
h

P Ph h
n n

L L

PH H n      

 0 00,0,0, 1, 1, , 1 2,0, , 1
v

Pv Pv
n n

L L

Pn     V V  

0 0
G GH

G
V

 

 0 00,0, 1, 1,0, , 1, , 2
h

P Ph h
n n

G G

PH H n      

 0 00,0, 1, 1,0, , 1, , 2
v

P Pv v
n n

G G

Pn   V V  

Table 1. How to select multisets for Theorem 1. 

 

Following the steps provided above, the number of sums in (15) is 2 2 2
h vH P Pn n n  V . Table 2 states the 

complexity (number of scalar decision variables, number of LMIs, and number of rows in the LMI 

problem) of the proposed approach as well as some issued from the literature. 

 

 

Approach Number of scalar decision variables 
Number of 

LMIs 

Row size of the 

LMI 

NQ in [9]   20.5 1x x x x yn n r n r n n r    3r r  
32x xn r n r  

DNQ in [15]   2 2 20.5 1x x x x yn n r n r n n r    3r r  
32x xn r n r  

Theorem 1   20.5 1 P P G L Lh v h Gv h v
n n n n nn

x x a e x a e x y a en n r r n r r n n r r    

h v

Ph Pv

n n

a e

n n

a e

r r

r r

 


 

2

Ph Pv

h v

n n

x a e

n n

x a e

n r r

n r r 


 

Theorem 1 

using the 

choices in 

Table 1 

 
 2 12 2 220.5 1

PP P P P P vh v h v h
nn n n n n

x x a e x a e x y a en n r r n r r n n r r


    

   2 1 2 1Ph Pv

Ph Pv

n n

a e

n n

a e

r r

r r

 


 

   2 1 2 1
2

Ph Pv

Ph Pv

n n

x a e

n n

x a e

n r r

n r r
 


 

Table 2. Number of scalar decision variables, number of LMIs, and row size of the LMI for several approaches. 

 

In what follows, we illustrate the proposed conditions on Example 1. Recall that state-of the art methods in 

the literature did not provide a feasible result. 
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Example 1 (continued). Considering the compact set  2

x x   , then keeping the descriptor structure 

and computing an exact TS descriptor models gives in the left-hand side 2er   due to  2

11 1 x . In the 

right-hand side we have: 4ar   due to the terms  1cos x  and  1 1sin x x . The constant matrices are 

1

2 1

1 1
E

 
 
 

 , 2

2 0

0 1
E 

 
 
 

, 1 2

1 1

0.7 1.1
AA








 
 

, 3 4

1 1

0.7 1.1
AA

 


 


 
 

, 
0

1
B

 
  
 

,  1 3 1 0.2CC  , 

and  2 4 0.2167 0.2C C   . The MFs are defined as:  2

1 11 1v x  , 2 11v v  , 1 0

2

0

1h   , 
2 0

2

1

1h   , 

3 1

2

0

1h   , 
4 1

2

1

1h   ;  with   0 1

1 0.5 cos 1x   , 
0

1 1

1 1   ,   0 1 1

2 sin / 0.2167 1.2167x x   , and 

0

2 2

1 1   . Applying conditions in Theorem 1 with 
0 0

P G V V  and  0 0 0 0 0P G L LH H H   V  (this 

configuration corresponds to Theorem 2 in [41]) the following values have been obtained: 

11

22 32 4

1

1 1

2 3 4

0.60 0.36 0.66 0.32 0.68 0.34 0.75 0.18

0.36 0.46 0.32 0.45 0.34 0.45 0.18

0.06
, , , , ,

0.12

0.14 0.44 0.57
, , ,

0.14 0.04 0

0.41

0.

.16

P P P L

L L L G

P
 

     
 

     

     

 
        

   

    
        

          

   
2

38 0.13 0.32 0.07
and

0.08 0.38 0.13 0
, .

.37
G 

    
   
    

 

Thus, an observer of the form (12) has been designed. Simulation results are shown in Figure 1 for the 

initial conditions    0 1 1
T

x    and    ˆ 0 0 0
T

x  ; the input is    0.5sinu t t . 

 

 

Figure 1. Simulation results: (A) States (black-line for x1 and blue-line for x2) and their estimates (dashed lines); (B) The 

estimation error for Example 1. 

Recall that via the approaches given in [9], [15], no solution was found when a standard TS model from the 

given nonlinear descriptor model. However, via a TS descriptor model and conditions in Theorem 1, a 

feasible solution is obtained, with only 132 LMI constraints instead of 4112. Table 3 summarizes these 

findings. 
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Approach 
Number of scalar 

decision variables 

Number of 

LMIs 

Number of 

rows 

Feasible 

solution 

Standard TS + 

NQ in [9] 
144  4112  16416  NO 

Standard TS + 

DNQ in [15] 
1584  4112  16416  NO 

TS descriptor 

+ Theorem 1 
44  132  520  YES 

Table 3. Computational complexity indexes for Example 1.  

 

This example clearly illustrates the importance of keeping the descriptor representation.  

Example 4. Consider a nonlinear discrete-time descriptor model (1) with 0ku   and matrices as follows 
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where the nonlinear functions are    2 2cosRf x x  and    2

2 22 1Lf x x  . Consider the compact set 

 2

x x   . The parameters are defined as  1.5,1.5a   and  1.5,1.5b  . In x , both nonlinear 

functions are smooth and bounded as follows    2 1,1Rf x   ,    2 0,2Lf x  . This produces a global [3] 

sector nonlinearity. An equivalent TS descriptor model can be constructed with 2a er r  , 
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. The MFs are defined as follows   1 2cos5 10.h x  , 2 11h h  ,  2

1 22 1v x  , and 

2 11v v  . 

Figure 2 shows the feasible regions for three different configurations of Theorem 1: 

 Configuration 1 [41]: Multisets 0 0

P G V V  and  0 0 0 0 0P G L LH H H   V    . 

 Configuration 2: Multisets 0 0 0 {0}G L GH H  V ,  0 0,0L V , and 0 0

P PH  V    . 

 Configuration 3: Multisets 0 0 0 {0, 1}G L GH H   V ,  0 0,0, 1L  V , and  0 0 1P PH   V    . 

Figure 2 shows that conditions in Theorem 1 outperform the ones presented in [41], i.e., Configuration 1. 

Note that Theorem 1 can be used in several ways, depending on the selection of the multisets as it was 
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discussed before. Selecting multisets as 
0 0 0 {0}G L GH H  V ,  0 0,0L V , and 

0 0

P PH  V , one obtains 

two double convex sums as (5), therefore Lemma 2 has been implemented. On the other hand choosing 

0 0 0 {0, 1}G L GH H   V ,  0 0,0, 1L  V , and  0 0 1P PH   V  yields conditions of the form (21). 

 

Figure 2. Feasible regions for several values for Example 4.  

 

Configuration 3 performs better than the others due to the number of sums, but it also has a higher 

computation complexity.   

4. Extension to α-sample variation 

This section shows an extension of the previous approach via the so-called  -sample variation. This 

approach has been stated in [11], where the stability analysis of discrete-time standard TS models has been 

relaxed by replacing the classical one-sample variation of the Lyapunov function 

      1 0V x k V x k    by its variation over several samples       0V x k V x k   . In other 

words, instead of asking the variation of the Lyapunov function to decrease at each consecutive sample, it 

is required to decrease at each   sample;   plays the role of a complexity parameter, as the more   

increases, the more complex the conditions (number of variables and of LMI constraints) and the less 

conservative are the results. By using this idea, the following result can be stated. 
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 (25) 

Proof. Consider the Lyapunov function (14) and its  -sample variation as follows [11], [15], [16]: 
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The error dynamics (13) on α-samples can be summarized in the following equality constraints: 
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In order to obtain strict LMI conditions a natural choice [11] of the matrix M  is: 
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leading to (25), thus concluding the proof. ■  

Example 5. Consider a discrete TS descriptor model as (2) with 0ku  , 2a er r  , 1
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 . The 

parameters are defined as  0.5,1a   and  0.5,0.5b  . Defining multisets of Lyapunov matrix and 

observer gains matrices as 
0 0 0 {0, 1}G L GH H   V ,  0 0,0, 1L  V , and  0 0 1P PH   V . Two sets of 

conditions have been tested. Figure 3 shows the feasible set for: 

 Conditions in Theorem 2 for 1  , i.e., the conditions in Theorem 1   . 

 Conditions in Theorem 2 for 2     . 

 

 

Figure 3. Feasible solution set for Theorem 2 for α=1 (□) and  α=2 (×) in Example 5.    

 

5. Concluding remarks 

In this paper, novel LMI conditions for the observer design of discrete-time nonlinear descriptor models 

have been established. The descriptor models under investigation are assumed to have a non-constant full-

rank descriptor matrix. Such descriptor systems have been expressed as TS descriptor models. Using 

delayed non-quadratic Lyapunov functions and non-PDC-like observers, LMI conditions are achieved. An 

arbitrary number of past samples can be systematically added in order to relax conditions, thus the 

proposed approach generalizes the previous ones in the literature. The validity of the proposed 

methodology has been illustrated via numerical examples.  
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Based on proposed methodology, future directions are numerous. A first one, following [13] or [37] is to 

derive asymptotically necessary and sufficient conditions. A second one, very challenging, is to consider 

MFs with unmeasured premise variables such as [42] using properties on      ˆ
i ih z k h z k , i.e., 

Lipschitz or Mean Value Theorem. A third one, a natural extension of observer design, concerns fault 

detection and can be worked following [43]–[45]. A fourth one is an important issue and corresponds to 

output feedback control such as [40], [46] and develop observer-based control conditions for TS descriptor 

models. At last, although conditions may appear with some complexity, their use to real-time applications 

does not present problems and are already used for biomechanical applications such as [8], [20], or very 

recently for seated disabled people (work in progress). 
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Appendix A 

Proof of Lemma 2. Applying Lemma 2 on the double convex sum of  h z  in (5) produces 
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Additionally, using Lemma 2 for the first inequality of (29) gives 
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Following a similar procedure with the second inequality in (29), we obtain: 
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This concludes the proof. ■   


