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Abstract— Passivity of a large-scale interconnected sys-
tem is often broken down to the passivity of the individual
subsystems that compose it. Nevertheless, there are cases
in which the individual elements are not all passive, yet the
overall large-scale system is. In such scenarios, we need
to directly solve very large problems to conclude on the
passivity. This letter proposes a methodology to analyze
passivity based on the topology of the multi-agent system.
In many cases, large multi-agent systems are formed by
interconnected clusters, which are groups of agents densely
interconnected. The clusters are sparsely interconnected
with each other and this leads to a time scale-separation with
a fast dynamics inside the clusters and a slow one between
them. The purpose of this letter is twofold. First, we exploit
the time-scale separation property inherent to such a system
to provide a computationally efficient alternative to analyze
its passivity. Second, we provide insight into how robust
its passivity is with respect to the inter- and intra-cluster
agent interactions. To achieve this, we consider the singular
perturbation framework with respect to the ratio of the
strength of the controls between and within the clusters, and
rely on the connection between positive realness, passivity,
and multi-input multi-output system phase. We consider
agents with identical linear time-invariant dynamics. The
method is illustrated on a numerical example.

Index Terms— Agents-based systems; singular perturba-
tion analysis; passivity; positive realness; phase shift.

I. INTRODUCTION

MULTI-agent systems (MAS) are systems composed
of interconnected autonomous dynamical agents, with

research focusing on consensus, agreement, rendezvous, swarm-
ing, or other characteristics. There are many engineering
applications of this framework, such as power networks [1],
biological systems [2], and cyber-physical systems [3], for
example. A particular case of MAS are that of clustered network
systems, where connections inside the clusters are dense, while
those between clusters are sparse.

Specific to clustered networks is the time-scale separation
(TSS) property, in which one can decouple its dynamics into
slow and fast ones. This property has been emphasized in [4]
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and has been used for analysis [5], design of synchronization
laws [6], [7], aggregation [1], [3], model reduction [8]. It is
noteworthy that the enumerated results, except for [8], use the
Standard Singular Perturbation Form (SSPF) [9] of a system to
study the previous aspects, proving it to be an effective tool for
such problems. To the best of the authors’ knowledge, there
are no results concerning the passivity of the MAS based on
its SSPF properties, as available research focuses mainly on
network synchronization using passivity-based techniques.

The concept of passivity has been of high interest since its
conception in the 1970s, because it is a natural generalization
of the stability of a dynamical system [10]. It is useful both
to analyze and impose system properties [11], but also for
synthesis of networked systems, due to the fact that parallel
and feedback connections of passive systems remain passive.
Passivity has been used to impose group coordination [12], in
control over networks [13] and synchronization using phase
analysis [14]. Unfortunately, for large-scale MAS, the direct
approach to check passivity is not tractable, due to the high
dimension of the conditions to solve, which are generally
further combined with other performance criteria.

Our scope is to provide sufficient conditions for the passivity
of clustered MAS using its SSPF. We consider multi-input and
multi-output (MIMO) linear time-invariant (LTI) agents with
identical dynamics, leading to homogeneous clustered MAS.
The ratio of the strength of the controls between and within the
clusters can be seen as a singular perturbation parameter ε > 0.
This, in turn, is considered in the ε-bound computation problem
as a sensitivity measure to determine how close the overall
network system is to losing its passivity if a new connection
appears or is removed from the network. The contributions of
this letter are: (i) to extend the framework in [15] for passivity
analysis to include fast actuation alongside the implicit slow
actuators of the SSPF; (ii) to directly apply said extension
for the passivity analysis of homogeneous clustered MAS. We
thus bypass the passivity check for the full system, which
significantly reduces the computational overhead, and convert
it into a passivity test for its reduced-order subsystem alongside
phase conditions on a variation of the boundary layer subsystem
in SSPF.

After providing a set of necessary tools in Section II,
Section III provides the network setup and problem statement,
Section IV applies the standard coordinate changes to enforce
the time-scale separation in the MAS. Section V presents
the novel results for passivity analysis of the resulting SSPF



with slow and fast actuation. A brief numerical example is
presented in Section VI, followed by remarks and extensions
in Section VII.

II. NOTATIONS AND NECESSARY TOOLS

The set of natural, real, complex numbers and n-dimensional
vectors with components in {0, 1} are denoted by N, R, C,
Zn
2 . The column vectors with zero and one values of size

n are represented by 0n ≡ 0 and 1n ≡ 1. Furthermore,
O and I are the zero and identity matrices of appropriate
dimensions. An orthonormal matrix M ∈ Rn×n has the
property M⊤M = MM⊤ = In. We denote the Kronecker
product by the symbol ⊗. ∥·∥2 denotes the Euclidean norm.
A vector-valued function f(x, ε) is said to be O(ε) on a
compact set Dx if there exist constants k, ε⋆ > 0 such that
∥f(x, ε)∥2 ≤ kε, ∀ε ∈ [0, ε⋆] , ∀x ∈ Dx.

We use the descriptor state-space system (DSS) framework
throughout the letter. We denote by Σ the continuous-time
DSS, with input-state-output interface (u, x, y) and transfer
matrix Σ|y,u ≡ Σ(s) = C(sE − A)−1B + D, having the
equivalent signals (U,X, Y ) in Laplace domain. We consider
its inverse, series, and parallel connections as in [15]. We
denote the derivative of a signal x as ẋ in standard time t,
dx(ts)/dts ≡ dx/dts in slow time scale ts, dx(tf )/dtf ≡
dx/dtf in fast time scale tf . System Σ is in time scale ts,
while its counterpart in time scale tf is denoted by tfΣ.

For X ∈ Cm×p, XH denotes its complex conjugate
transpose. The concept of phase of a MIMO LTI system is well
established in the literature, see, e.g., [14, Section 3], [15]:

Definition 1 ([14]): Let Ω be the frequency set for which
jΩ is the set of imaginary axis poles of Σ. Given a frequency
ω ∈ [−∞,∞]\Ω = Ω, the phases of Σ at ω are the interval
based on the eigenvalues of its sectorial decomposition [16]:

φ(Σ(jω)) =
[
ϕ(Σ(jω)), ϕ(Σ(jω))

]
= [θ1, θnu ], (1)

where Σ(jω) = X ·diag(ejθ1 , . . . , ejθnu ) ·XH , with invertible
matrix X , −α ≤ θ1 ≤ · · · ≤ θnu ≤ α, with sector α ∈ [0, π

2 ),
and the phases of the system are φ(Σ) = [ϕ(Σ), ϕ(Σ)], with:

[ϕ(Σ), ϕ(Σ)] = [ inf
ω∈Ω

ϕ(Σ(jω)), sup
ω∈Ω

ϕ(Σ(jω))]. (2)

We denote the vector relative degree of Σ by ρ(Σ), as in [17].
Definition 2 ([17]): A nu×nu linear system Σ = (A,B,C)

has a vector relative degree ρ(Σ) = (ρ1, . . . , ρnu
) ∈ Nnu iff:

1) ∀j ∈ 1, nu, ∀k ∈ 0, ρj−2: C(j,·)A
kB = 0nu ;

2) rank
(
(C(1,·)A

ρ1−1B)⊤ . . . (C(nu,·)A
ρnu−1B)⊤

)⊤
= nu.

The passivity property is both an energy- and frequency-
based characterization of the input–output behavior of a DSS,
inherent to the system, and does not depend on the control law.

Definition 3 ([10]): System Σ is input-output passive if
there exists a continuously differentiable positive semidefinite
storage function V (x) such that: u⊤y ≥ V̇ = ∂V

∂x ẋ, ∀(x, u).
For LTI systems, passivity and positive realness are equiva-

lent properties [19], with necessary and sufficient conditions
expressed in terms of stability, MIMO phase and relative degree.

Lemma 1 ([14]): An r × r MIMO transfer matrix Σ for
which Σ(s) + Σ(−s)⊤ ̸≡ 0 is strictly positive real if and only
if Σ(s) is Hurwitz and φ(Σ) ⊆

(
−π

2 ,
π
2

)
. If Σ is semi-stable

and φ(Σ) ⊆
[
−π

2 ,
π
2

]
, then the system is positive real only.

III. PROBLEM STATEMENT

Consider a network of n identical square (i.e. same number
of inputs and outputs) MIMO agents partitioned into m non-
empty clusters C1, . . . , Cm ⊂ V . A clustered network (in the
sense of [1], [4]) refers to a network that is partitioned into
distinct groups of agents having dense connection structures,
whereas the connections between the clusters are sparse. We
denote by M = {1, 2, . . . ,m} the set of clusters, while nk

represents the cardinality of cluster Ck, with n =
∑m

k=1 nk.
Each agent in the network is identified by a couple (k, i) ∈ Ck,
where k refers to the cluster Ck and i is the index of the
agent in cluster Ck. The notation (k, j) ∈ Nk,i represents the
neighbors of agent (k, i) in the same cluster Ck. Each agent
(k, i) ∈ Ck, k ∈ M, is assigned a state xk,i ∈ Rnx :

ẋk,i = Axk,i +Buk,i, yk,i = Cxk,i, (3)

where uk,i, yk,i ∈ Rnu , A ∈ Rnx×nx , B ∈ Rnx×nu and C ∈
Rnu×nx . For each cluster Ck, let xk = (x⊤

k,1, . . . , x
⊤
k,nk

)⊤ ∈
Rnk·nx be its state, uk = (u⊤

k,1, . . . , u
⊤
k,nk

)⊤ ∈ Rnk·nu its
control input and yk = (y⊤k,1, . . . , y

⊤
k,nk

)⊤ ∈ Rnu·nk its output.
Thus, the cluster dynamics takes the form, for all k ∈ M:

ẋk = (Ink
⊗A)xk +(Ink

⊗B)uk; yk = (Ink
⊗ C)xk. (4)

The overall network dynamics will have the following form:

ẋ = (In ⊗A)x+ (In ⊗B)u; y = (In ⊗ C)x, (5)

where x =
(
x⊤
1 , . . . , x

⊤
m

)⊤ ∈ Rn·nx , u =
(
u⊤
1 , . . . , u

⊤
m

)⊤ ∈
Rn·nu , and y =

(
y⊤1 , . . . , y

⊤
m

)⊤ ∈ Rn·nu are the network state,
network control input, and network output, respectively.

The interactions between the agents in the network are
encoded by the Laplacian matrix L ∈ Rn×n, written as
L = Lint + Lext. The internal Laplacian of the network is
Lint = diag(Lint

1 , . . . ,Lint
m), where each block Lint

k ∈ Rnk×nk

refers to the Laplacian of the cluster Ck excluding the external
connections. The external Laplacian Lext ∈ Rn×n represents
the connections between agents from different clusters.

We start from a composite control comprised of internal
and external synchronization terms (as in [6]), extended with
an exogenous reference input by which the passivity of the
network system (5) is to be analyzed. This leads to the form:

uk = uint
k + uext

k + rk, ∀k ∈ M, (6)

where uint
k = (uint⊤

k,1 , . . . , uint⊤
k,nk

)⊤, uext
k = (uext⊤

k,1 , . . . , uext⊤
k,nk

)⊤,
and rk = (r⊤k,1, . . . , r

⊤
k,nk

)⊤:

uint
k,i = −K int

k

∑
(k,j)∈Nk,i

(xk,i − xk,j) ; (7a)

uext
k,i = −Kext

k

∑
(¬k,j)∈N¬k,i

(xk,i − x¬k,j) , (7b)

where K int
k , Kext

k ∈ Rnu×nx . The notation (¬k, j) ∈ N¬k,i

indicates the neighbors of an agent (k, i) belonging to a
different cluster. The internal control uint

k is the effort required
to achieve local agreement, whereas the external control uext

k

is the command necessary to synchronize the agents between
the clusters. Furthermore, the reference signal rk = rk,s+ rk,f
will be further split into slow and fast references, respectively,
to later exploit the system’s inherent time-scale separation.

This letter provides sufficient conditions to guarantee the
passivity of the MAS (5) with respect to the reference rk, based



on the reduced subsystems specific to its SSPF. The analysis
involves the structural properties of the system and does not
perturb the network consensus provided by the composite
control law (6)–(7). The design of the state feedback matrices
K int

k , Kext
k is assumed from reference [6]. We provide conditions

under which the passivity property is maintained with respect
to the ratio of the strength of the controls between and within
the clusters, which in SSPF corresponds to the perturbation
variable ε. To develop conditions to achieve the above objective,
the following assumption is made, similarly to [6].

Assumption 1: The overall graph and the graphs of the
clusters are undirected and connected. The internal graphs
are very dense for all clusters, i.e. we assume that all non-zero
eigenvalues for an internal Laplacian can be approximated by
nk [18]: λi

(
Lint
k

)
≈ nk, i = 2, nk, ∀k ∈ M. Furthermore, the

agents are controllable, ensuring that the synchronization of the
overall network system via control law (6)–(7) is attainable.

IV. SSPF OF THE NETWORK CONTROL SYSTEM

The current section presents two coordinate changes for the
SSPF of the network system (5), namely the state signal scaling
and the time domain scaling. We follow the overall outline
from [6], with the remark that we extend the network system
to also account for outputs, and our purpose in Section V is
to study the MAS passivity, rather than synchronization with
a cost minimization as in [6].

Consider the coordinate transformation for cluster Ck using
the Jordan canonical form of its symmetric Laplacian Lint

k [7]:

Lint
k = Tk

(
0 0⊤

0 Λint
k

)
T⊤
k , ∀k ∈ M, (8)

where Tk ∈ Rnk×nk is an orthonormal matrix and Λint
k =

diag(λint
k,2, . . . , λ

int
k,nk

) collects the nk − 1 positive eigenvalues
of Lint

k . Consequently, the matrix Tk can be expressed as:

Tk =
(
vk,1 Vk

)
, ∀k ∈ M, (9)

where vk,1 = 1√
nk

1nk
is the eigenvector associated with the

0 eigenvalue and the matrix Vk ∈ Rnk×(nk−1) contains the
eigenvectors corresponding to the nonzero eigenvalues of Lint

k .
We now define the coordinate transformation as:

xk =
(
ζ⊤k ξ⊤k

)⊤
=

(
1√
nk

T⊤
k ⊗ Inx

)
xk, ∀k ∈ M. (10)

From (9)–(10), for all k ∈ M, we obtain a new state:

ζk =
(

1
nk

1⊤
nk

⊗ Inx

)
xk = Hkxk ∈ Rnx ; (11a)

ξk =
(

1√
nk

V ⊤
k ⊗ Inx

)
xk = Zkxk ∈ R(nk−1)·nx , (11b)

with Hk ∈ Rnx×nk·nx and Zk ∈ R(nk−1)·nx×nk·nx . The first
component, ζk, corresponds to the aggregate state [1], i.e., the
average of the agents’ states in clusters Ck. It represents the
collective behavior of the clusters. The second component, ξk,
corresponds to the local state [1], i.e., the synchronization error
around each cluster’s average, which evolves at a faster rate.

The inverse of transformation (10), ∀k ∈ M, yields:
xk = (

√
nkTk ⊗ Inx

)xk = (1nk
⊗ Inx

)ζk+

+ (
√
nkVk × Inx

)ξk = H̃kζk + Z̃kξk,
(12)

where H̃k ∈ Rnk·nx×nx and Z̃k ∈ Rnk·nx×(nk−1)·nx .

For the overall network, we obtain:

ζ = Hx; ξ = Zx; x = H̃ζ + Z̃ξ, (13)

with the stacked vectors ζ = (ζ⊤1 , . . . , ζ⊤m)⊤ ∈ Rm·nx

and ξ = (ξ⊤1 , . . . , ξ⊤m)⊤ ∈ R(n−m)·nx , alongside matrices
H = diag(H1, . . . ,Hm), Z = diag(Z1, . . . , Zm), H̃ =
diag(H̃1, . . . , H̃m), and Z̃ = diag(Z̃1, . . . , Z̃m). Next, we
recast the overall network dynamics in terms of the new
coordinate variables. The overall network system (5)–(7) is:

ẋ =
[
(In ⊗A)− (In ⊗B)K int(Lint ⊗ Inx

)

− (In ⊗B)Kext(Lext ⊗ Inx
)
]
x+ (In ⊗B)r; (14a)

y = (In ⊗ C)x, (14b)

where K int = diag((In1
⊗ K int

1 ), . . . , (Inm
⊗ K int

m )), Kext =
diag((In1 ⊗Kext

1 ), . . . , (Inm ⊗Kext
m )) and stacked exogenous

reference r = (r⊤1 , . . . , r
⊤
m)⊤ ∈ Rn·nu . Using the transforma-

tion (13), the MAS (14) is recast in new coordinates:

ζ̇ = Â11ζ + Â12ξ + B̂1r; (15a)

ξ̇ = Â21ζ +
(
Â1

22 + Â2
22

)
ξ + B̂2r; (15b)

y = Ĉ1ζ + Ĉ2ξ, (15c)

where Ĉ1 = (In ⊗ C)H̃; Ĉ2 = (In ⊗ C)Z̃;

Â11 = [(Im ⊗A)−H(In ⊗B)Kext(Lext ⊗ Inx)H̃];

Â12 = −H(In ⊗B)Kext(Lext ⊗ Inx)Z̃; B̂1 = H(In ⊗B);

Â21 = −Z(In ⊗B)Kext(Lext ⊗ Inx)H̃; B̂2 = Z(In ⊗B);

Â1
22 = −Z(In ⊗B)Kext(Lext ⊗ Inx)Z̃;

Â2
22 = [(In−m ⊗A)−(In−m ⊗B)K int

n−m(Λint⊗Inx)],

K int
n−m = diag((In1−1⊗K int

1 ), . . . , (Inm−1⊗K int
m )), and Λint =

diag(Λint
1 , . . . ,Λint

m).
We define the network parameters based on [4], [6], ac-

cording to the density of connections inside and between the
clusters of the consensus framework:

µext =
∥∥(In ⊗B)Kext(Lext ⊗ Inx

)
∥∥
2
; (17a)

µint = mink∈M
∥∥Λint

k ⊗BK int
k

∥∥
2
; ε = µext/µint. (17b)

The ratio of the strength of the controls between and within
the clusters is the perturbation parameter ε in SSPF [9].

References [1] and [4] define the time-scale separation in
system (15) based on the above definition of ε and time
variables: the fast time-scale tf = µint · t and the slow time-
scale ts = ε · tf . This allows us to represent system (15) in
(ζ, ξ)-coordinates in SSPF as the system Σε:

dζ/dts = A11ζ +A12ξ +B1r; (18a)
ε dξ/dts = εA21ζ +A22ξ +B2r; (18b)

y = C1ζ + C2ξ, (18c)

where A11 = Â11/(εµ
int); A12 = Â12/(εµ

int); A21 =
Â21/(εµ

int); A1
22 = Â1

22/(εµ
int); A2

22 = Â2
22/µ

int; A22 =
εA1

22+A2
22; B1=B̂1/(εµ

int); B2 = B̂2/µ
int; C1=Ĉ1; C2=Ĉ2.

Next, we analyze the slow and fast dynamics of system (18)
using the standard convention, i.e., ζ = ζs(ts) + ζf (tf ), ξ =
ξs(ts)+ξf (tf ), r = rs(ts)+rf (tf ), y = ys(ts)+yf (tf ). The
reduced-order (slow) dynamics, using the standard approach for



singular perturbation analysis [9], is obtained by setting ε = 0.
As such, (18b) degenerates into A2

22ξs(ts) + B2rs(ts) = 0.
This equation has the unique solution:

ξs(ts) = −(A2
22)

−1B2 · rs(ts) = h(rs(ts)), (19)

Substituting (19) into (18a) leads to the system Σs:

dζs/dts = A11ζs +Bsrs; ys = C1ζs +Dsrs, (20)

with Bs = B1 − A12(A
2
22)

−1B2 and Ds = −C2(A
2
22)

−1B2.
In our setting, the slow dynamics (20) represents the collective
behavior of the clusters and it may or may not be stable.
Moreover, writing (18b) in the fast time scale tf , we have:

dξf/dtf = εA21ζf +A22ξf − εA1
22(A

2
22)

−1(rs + rf )

+B2rf + ε
∂h

∂rs
drs/dts ,

(21)

which includes the derivative drs/dts . Setting ε = 0, we have
dζf/dtf = 0, leading to the boundary layer (fast) dynamics:

dξf |ε=0/dtf = A2
22ξf |ε=0 +B2rf ; yf = C2ξf |ε=0, (22)

where ζf , ξf , rf , yf are the fast parts of the corresponding
variables in (18). The above singular perturbation framework
is valid in the following conditions, achievable by the design
of the control gains.

Assumption 2: There exist an external gain Kext and an
internal gain K int such that the slow average dynamics (20)
is synchronized (i.e., A11 is Hurwitz, using Kext), the fast
synchronization error dynamics (22) is stabilized (i.e., A2

22 is
Hurwitz, using K int), and the network parameter ε ≪ 1 is
small enough such that the time-scale separation occurs.

The above assumption can be satisfied by an adequate
selection of Kext and K int using [6, Lemmas 1–3]. The gains
further influence the TSS derived from Assumption 1, as
ε, different from [4], does not depend only on the graph
structure. Furthermore, ε allows a decoupling between the
state matrices from (15): ∥Â11∥2, ∥Â12∥2, ∥Â21∥2, ∥Â1

22∥2 ≤
c1εµ

int, ∥Â2
22∥2 ≥ µint, c1 > 0, which, in SSPF [9], makes

ζ and ξ to be slow and fast variables, respectively. With
Assumption 2 in mind, we can approximate the dynamics of
(18) based on its reduced-order and boundary layer subsystems,
according to Tikhonov’s theorem, stated next for this particular
setup.

Theorem 1 ([6], [9]): Let Kext such that ∥A∥ ≤ c1µ
ext,

c1 > 0. Under Assumption 2, because Re
{
λ(A2

22)
}
< 0, there

exists ε⋆ > 0 such that, for all ε ∈ (0, ε⋆], system (18), starting
from any bounded initial conditions ζ0 and ξ0, is approximated
for all finite time intervals t ≥ t0 by:

ζ = ζs(ts) +O(ε); ξ = ξs(ts) + ξf (tf )|ε=0 +O(ε), (23)

where ζs ∈ Rm·nx and ξs, ξf ∈ R(n−m)·nx are the respective
variables from the slow and fast dynamics.

V. PASSIVITY ANALYSIS OF THE NETWORK SYSTEM

This section presents conditions for system (18) to be
passive based on the passivity of its reduced-order system
alongside adequate phase conditions on a necessary variation
of its boundary layer system. Furthermore, the current section

presents an extension of the mathematical apparatus described
in [15] needed to develop such conditions. Specifically, the
singularly perturbed system in question additionally receives
fast actuation rf alongside the previously-considered slow
actuation rs. This leads to the summation of the reference
r = rs(ts) + rf (tf ) in (6), typical in control of SSPF [9].

As described in [15], the passivity of a system in SSPF
requires conditions involving the reduced-order system along-
side a modified variant of the boundary layer (22), as the
passivity of the full singularly perturbed system cannot be
directly assessed using the passivity of its reduced-order and
boundary layer systems. We make the following assumption.

Assumption 3: Subsystem Σs from (20) is strictly input-
output passive from input rs to output ys.
As noted in Section II, the passivity of the slow subsystem
(20) is given by its structure, and its relative degree cannot
be altered through state feedback. This assumption is also
necessary for the ε-bound computation problem in which we
will further compute the maximum value ε⋆ > 0 such that
system (18) is passive for all ε ∈ [0, ε⋆], if such a value exists.

We consider the multiplicative factorization of Σε from (18)
based on its reduced-order model Σs from (20), known as the
actuator form [9]: Σε = Σs · Σε

f , as Σε
f is placed at the input

of Σs. Then, Σε
f , named quotient system, can be written as:

Σε
f = (Σs)

−1 · Σε = S(Σε, (Σs)
−1). (24)

Remark 1: By definition, we have Σs = Σε|ε=0. This
means that the trivial expression of Σε

f |ε→0 is not isomorphic
to that of the quotient boundary layer system Σε

f |ε=0 = I ,
due to the reduction of a differential equation to an algebraic
one. In time scale ts, this cancels the possibility to study the
existence of ε⋆ > 0 such that system (18) is passive.
As in [15], we proceed to characterize both systems involved
in the above multiplication, i.e., (Σs)

−1 and Σε, in order to
provide an analytical state-space expression for Σε

f . Standard
SSPF techniques allow rewriting Σε as:

dζs/dts = A11ζs +Bsrs; (25a)

dζf/dts = A11ζf +A12ξf + B̃1rs +B1rf ; (25b)
ε dχf/dts = εA21ζf +A22χf +B2rs +B2rf ; (25c)

y = C1ζs + C1ζf + C2χf , (25d)

with B̃1 = A12(A
2
22)

−1B2. To remove the derivative drs/dts
of the slow input from (21), we perform the change of variables
χf = ξf − (A2

22)
−1B2rs. The system’s interface is now

((r⊤s , r
⊤
f )

⊤, (ζ⊤s , ζ⊤f , χ⊤
f )

⊤, y).
The inverse of Σs can be computed using the descrip-

tor system framework [15]. Denote its inverse input-output
interface ri ∈ Rn·nu 7→ yi ∈ Rn·nu and extended state
(ζi1⊤s , ζi2⊤s )⊤ ∈ Rm·nx+n·nu , with the resulting model:

dζi1s
/
dts =A11ζ

i1
s +Bsζ

i2
s ; ri=C1ζ

i1
s +Dsζ

i2
s ; yi=ζi2s . (26)

In Laplace transfer matrix notation, Σε from (25) is split into:

Y (s) = Σε ·
(
R⊤

s (s) R⊤
f (s)

)⊤
= Yd1(s) + Yd2(s)

= Σε|yd1,rs ·Rs(s) + Σε|yd2,rf ·Rf (s). (27)

Furthermore, in the case of Σs, we have Yi(s) = (Σ−1
s ) ·Ri(s),

according to (26). Thus, the expression of Σε
f can be written as



a parallel connection between two standard series connections.
The quotient system Σε

f in time scale ts is a system with two
vector inputs (rs, rf ) and one vector output yi = yi1 + yi2:

Yi(s) = Σε
f ·

(
R⊤

s (s) R⊤
f (s)

)⊤
= Yi1(s) + Yi2(s)

=
[
(Σs)

−1 Σε|y1,rs

]
Rs(s) +

[
(Σs)

−1 Σε|y2,rf

]
Rf (s)

= Σε
f

∣∣
yi1,rs

·Rs(s) + Σε
f

∣∣
yi2,rf

·Rf (s). (28)

Due to space constraints, we present the equations only
for Σε

f |yi1,rs , with an identical procedure to be applied to
Σε

f |yi2,rf . The quotient system Σε
f |yi1,rs has the interface

(rs, (ζ
⊤
s1, ζ

⊤
f1, χ

⊤
f1, ζ

i1⊤
s1 , ζi2⊤s1 )⊤, y⊤i1) and state-space:

dζs1/dts = A11ζs1 +Bsζ
i2
s1; (29a)

dζf1/dts = A11ζf1 +A12χf1 + B̃1ζ
i2
s1; (29b)

ε dχf1/dts = εA21ζf1 +A22χf1 +B2ζ
i2
s1; (29c)

dζi1s1
/
dts = A11ζ

i1
s1 +Bsζ

i2
s1; (29d)

rs = C1ζ
i1
s1 +Dsζ

i2
s1; yi1 = C1ζs1+C1ζf1+C2χf1. (29e)

In an identical manner, system Σε
f |yi2,rf has the interface

(rf , (ζ
⊤
s2, ζ

⊤
f2, χ

⊤
f2, ζ

i1⊤
s2 , ζi2⊤s2 )⊤, y⊤i2), with two modifications

compared to (29): the counterpart of (29a) lacks the Bs effect,
while the counterpart of (29b) has B1 instead of B̃1. Now, we
switch to the fast time scale tf . Σε

f |yi1,rs in time scale tf will
be denoted tfΣε

f |yi1,rs . It has the expression:

dζs1/dtf = εA11ζs1 + εBsζ
i2
s1; (30a)

dζf1/dtf = εA11ζf1 + εA12χf1 + εB̃1ζ
i2
s1; (30b)

dχf1/dtf = εA21ζf1 +A22χf1 +B2ζ
i2
s1; (30c)

dζi1s1
/
dtf = εA11ζ

i1
s1 + εBsζ

i2
s1; (30d)

rs = C1ζ
i1
s1 +Dsζ

i2
s1; yi1 = C1ζs1+C1ζf1+C2χf1. (30e)

Setting ε = 0, we overcome the problem from Remark 1, as
the resulting system has an invariant number of differential and
algebraic constraints in the transition from ε → 0+ to ε = 0.
The quotient boundary layer subsystems are tfΣ0

f |yi1,rs and
tfΣ0

f |yi2,rf , with the former having the model:

dζs1/dtf = 0; dζf1/dtf = 0; dζi1s1
/
dtf = 0; (31a)

dχf1/dtf = A2
22χf1 +B2ζ

i2
s1; rs = C1ζ

i1
s1 +Dsζ

i2
s1; (31b)

yi1 = C1ζs1 + C1ζf1 + C2χf1. (31c)

We base the forthcoming passivity results on Lemma 1. As
time-rescaling is a geometric invariant of a dynamical system,
it does not alter its input-output behavior, which means that
passivity is invariant from time scale ts to tf . The MAS (27)
is the parallel connection (28) premultiplied by Σs from (20):

Σε = Σs·Σε
f |yi1,rs+Σs·Σε

f |yi2,rf = Σε|y1,rs+Σε|y2,rf . (32)

A sufficient condition [10] for the passivity of Σε is that each
of its components from (32) must also be passive. We can now
state the conditions for the existence of a ratio ε > 0 such that
the MAS is strictly passive, based on its reduced-order and
quotient boundary layer subsystems.

Theorem 2: If Assumptions 1–3 hold, Σ0+
f is Hurwitz and

one of the following conditions apply:

A)
tf
Σ

0+
f |yi2,rf

is strictly passive, if ρ(Σs) = (0, . . . , 0) ≡ 0;

B) φ(
tf
Σ

0+
f |yi2,rf

) ⊆ (0, π), if ρ(Σs) = (1, . . . , 1) ≡ 1;

C) φ(
tf
Σ

0+
f |yi2,rf

) ⊆ (0, π
2 ), if ρ(Σs) ∈ Zm·nx

2 \ {0, 1},

then there exists ε⋆>0 such that system Σε⋆ is strictly passive.
Proof: In order for lim

ε→0+
Σε to be strictly passive, we

need to ensure that its symmetric part is not identically zero,
it is Hurwitz, and φ(Σε) ⊆ (−π

2 ,
π
2 ), according to Lemma 1.

First, the precondition from Lemma 1 always holds for this
class of systems described in (14) ⇔ (18), due to the existence,
by Assumption 2, of matrices K int and Kext. It follows that
the conditions from Lemma 1 can be enforced.

To ensure the strict passivity of all subsystems in (32), we
have, for Σε|yd1,rs , using Definition 1 and the phase property
of a series connection [14, Lemma 2]:

φ(
tfΣε|yd1,rs) ⊆ φ(tfΣs) + φ(tfΣε

f |yi1,rs), (33)

and similarly for tfΣε|yd2,rf . Due to Assumption 3, Σs is also
Hurwitz and φ(Σs) ⊆ (−π

2 ,
π
2 ) with its vector relative degree

ρ(Σs) ∈ Zm·nx
2 . It then follows that Σε

f must also be Hurwitz.
Furthermore, for the strict passivity of Σε|y1,rs , due to

the TSS property, ensured through Assumptions 1–2, in time
scale tf , the slow input is only perceptible at the initial
moment, i.e., rs(0), which leads to the frequency equivalent
of Rs(∞), according to the Initial Value Theorem [20].
This leads for the slow subsystem in (27) to Yd1(∞) =
tfΣs(∞)

tf
Σ

0+
f |yi1,rs(∞) ·Rs(∞), which reduces to a static

feedthrough term. Its passivity is ensured if and only if it is
positive semidefinite. Specifically for the MAS setup, (31) does
not have a feedthrough term, so tfΣ0+ |yd1,rs(∞) = O ≥ 0.
This means that the first subsystem is irrelevant for the existence
of ε > 0 to guarantee the passivity of the full MAS. It will
only impact the ε-bound computation problem.

We now turn our attention to the fast subsystem Σ
0+
f |yi2,rf

and focus on the adapted phase condition (33):

lim
ε→0+

φ(
tfΣε|yd2,rf ) ⊆ φ(tfΣs) + lim

ε→0+
φ(tfΣε

f |yi2,rf ). (34)

Because φ(Σs)⊆(−π
2 ,

π
2 ), due to the TSS, φ(tfΣs), ε→0+,

will be perceived in one of three possible ways: A)
φ(tfΣs) = [0, 0], if ρ(Σs) = 0, the implication being
φ(tfΣε

f |yi2,rf )⊆(−π
2 ,

π
2 ), i.e., Σε

f |yi2,rf is strictly passive;
B) φ(tfΣs)=[−π

2 ,−
π
2 ], if ρ(Σs) = 1, so the implication

becomes φ(tfΣε
f |yi2,rf ) ⊆ (0, π); C) φ(tfΣs) = [−π

2 , 0], if
ρ(Σs) ∈ Zm·nx

2 , leading to φ(tfΣε
f |yi2,rf ) ⊆ (0, π

2 ). The proof
ends, as, thanks to Assumption 3, there are no other possible
relative degree configurations ρ(Σs) ̸∈ Zm·nx

2 .
A similar result can be easily adapted for non-strict passivity.

In this case, Assumption 3 can be relaxed to having Σs passive
instead of strictly passive.

Corollary 1: If Assumptions 1–3 hold, Σ0+
f is semi-stable,

Σε from (32) has poles with multiplicity one on the imaginary
axis, and one of the following conditions apply:

A)
tf
Σ

0+
f |yi2,rf

is passive, if ρ(Σs) = (0, . . . , 0) ≡ 0;

B) φ(
tf
Σ

0+
f |yi2,rf

) ⊆ [0, π], if ρ(Σs) = (1, . . . , 1) ≡ 1;

C) φ(
tf
Σ

0+
f |yi2,rf

) ⊆ [0, π
2 ], if ρ(Σs) ∈ Zm·nx

2 \ {0, 1},



then there exists ε⋆>0 such that system Σε⋆ is passive.
Given that system Σε from (18) is simply a reformulation

of system (14) through the invertible coordinate transformation
(10) and different time scalings ts, tf , it follows that the
passivity of Σε is equivalent to the passivity of the overall
network system with respect to the exogenous reference rk.

The conditions of Theorem 2 and Corollary 1 can be
easily verified numerically using any environment which
supports linear algebra manipulations, such as LAPACK, BLAS,
SciPy, Eigen, etc., as they imply only eigenvalue problems
and sectorial matrix decompositions. Additionally, once the
existence of ε > 0 is confirmed, we are left with the ε-bound
computation problem, i.e., to find the largest value ε⋆ such that
the MAS (18) is passive ∀ε ∈ [0, ε⋆]. This can be performed in
a convex manner (see [15], [21]) by employing two decoupled
optimizations to each subsystem from (32): one for Σε|y1,rs ,
leading to a solution ε⋆s > 0, and one for Σε|y2,rf , leading to
ε⋆f > 0. Then, ε⋆ = min(ε⋆s, ε

⋆
f ). Furthermore, given that ε

from (17b) is a parameter of the network structure, this allows
us not only to infer if the MAS is passive using the proposed
model, but to also have a measure of robustness as to how far
from the upper bound ε⋆ it is.

VI. ACADEMIC EXAMPLE

We briefly illustrate the proposed method via a simple
numerical example, representing, e.g., a power network [1].
Consider a network consisting of m = 3 clusters Ck, each with
nk = 10 agents with dynamics A =

( −1 −1
1 0

)
, B = (1 0)⊤,

C = (1 1). As a baseline for robustness analysis, each cluster
is initially fully connected, i.e., Lint

k = 10I10 −110×10, k=1, 3,
with additional external connections between pairs of agents
(1, 1)–(2, 1), (1, 1)–(3, 1), (2, 1)–(3, 1), (1, 1)–(3, 5). Consider
the state feedback gains K int

i = (39 399), corresponding to the
closed-loop poles of the agents λint

cl1,2 = −20, and Kext
j = (3 3),

leading to λext
cl1,2 = −2.

Using (15)–(17), the network parameters are µext = 16.97,
µint ≈ 4009, which gives the MAS ratio ε = 0.00423 ≪ 1.
Subsystem Σs from (20) is passive, with φ(Σs) ⊆ [−π

2 , 0]
and φ(Σs(j∞)) = [0, 0], i.e., ρ(Σs) = 0, meaning that
Assumptions 1–3 hold and condition A) of Corollary 1,
φ(

tf
Σ

0+
f |yi2,rf

) ⊆ [−π
2 ,

π
2 ], also holds. For the ε-bound on

(18), we determine ε⋆ = 0.05539, which means that the
network SSPF model is passive ∀ε ∈ [0, ε⋆], including the
default ratio. From this value, we conclude that the inter-cluster
links are very weak compared to the dense intra-cluster links,
which means that the network’s passivity is very robust to
adding and removing links. To demonstrate this, we consider
three sets of 50 Monte Carlo experiments, in which we drop
at most n ∈ {5, 10, 15} arbitrary connections between nodes
from each cluster Ck, k = 1, 3, which are still subject to
Assumption 1. The computed ε⋆ bounds degrade with means
and standard deviations ranging from (0.0533, 0.0019)|n=5, to
(0.0521, 0.0026)|n=10, and (0.0507, 0.0039)|n=15.

In contrast, a slightly different output matrix C = (1 10)
leads to a non-passive network irrespective of ε, which justifies
that the current theory provides: (i) a reduced-dimensionality
method to ascertain if such a network system is passive and

(ii) a precursory means to analyze its sensitivity with respect
to adding/removing connections in the network graph.

VII. CONCLUSION AND FURTHER EXTENSIONS

The proposed passivity analysis tailored to systems in SSPF
bypasses the computationally-inefficient passivity checks for
large-scale systems (14), while also providing insight on its
sensitivity to adding/removing links between the agents, i.e.,
changes to Lint and Lext. The proof of Theorem 2 can be easily
adapted to more general SSPF structures. The current case
(extended from [15]) considers both slow and fast actuators.

This tool will be further used as a starting point for control
synthesis to design a composite law such that the network
ratio ε from (17) is less than the guaranteed passivity bound
ε⋆ with an imposed robustness margin, without affecting the
synchronization. Other research directions can be to extend the
proposed framework to heterogeneous networks and nonlinear
agent dynamics.
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