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Abstract

Distributed systems consist of interconnected, lower-dimensional subsystems. For such sys-
tems, distributed analysis and design present several advantages, such as modularity, easier
analysis and design, and reduced computational complexity. A special case of distributed
systems is when the subsystems are connected in a string. Applications include distributed
process control, traffic and communication networks, irrigation systems, hydropower valleys,
etc. By exploiting such a structure, in this paper, we propose conditions for the distributed
stability analysis of Takagi-Sugeno fuzzy systems connected in a string. These conditions are
also extended to observer and controller design and illustrated on numerical examples.
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1. Introduction

Takagi-Sugeno (TS) fuzzy systems [1] are nonlinear, convex combinations of local linear
models, that can exactly represent a large class of nonlinear systems.

For the stability analysis and observer and controller design for TS models, Lyapunov’s
direct approach can be used, employing common quadratic [2, 3], piecewise quadratic [4] or,
recently, non-quadratic [5, 6, 7, 8] Lyapunov functions. Based on these Lyapunov functions,
the stability or design conditions are generally derived in the form of linear matrix inequalities
(LMIs).

Although a real improvement in the design conditions for discrete-time systems [5, 9,
10, 11] has been brought by the use of nonquadratic Lyapunov functions, such Lyapunov
functions have also been used for continuous-time TS models [12, 13, 14, 7]. To reduce
the conservativeness of the conditions, properties of the membership functions have been
introduced [15], or the complexity of the LMI was reduced [16, 17].

Many physical systems, such as power systems, communication networks, economic sys-
tems, and traffic and communication networks, irrigation systems, hydropower valleys, etc.,
are composed of interconnections of lower-dimensional subsystems. Recently, decentralized
analysis and control design for such systems has received much attention [18, 19, 20, 21, 22, 23].
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Stability analysis of distributed TS systems mainly relies on the existence of a common
quadratic Lyapunov function for each subsystem [24, 25, 22]. Most results make use of the
assumption that the number of subsystems and some bounds on the interconnection terms
are known a priori, and the analysis of the subsystems is performed in parallel. For instance,
an early result has been formulated in [24] and relaxed in [26]. In these approaches, LMI
conditions for establishing the stability of the individual subsystems are solved in parallel,
and afterward the stability of the whole system is verified. For hybrid linear-fuzzy systems,
a similar method for establishing the stability of the distributed system has been proposed
in [25]. For distributed TS systems with affine consequents, but linear interconnection terms
among the subsystems, an approach based on piecewise Lyapunov functions has been devel-
oped in [22]. Stability analysis of uncertain distributed TS systems has been investigated e.g.,
in [19].

All the above mentioned results assume that any two subsystems in the distributed system
may be interconnected. While this assumption makes the results generally applicable, it also
introduces conservativeness. In this paper we develop conditions for the stability analysis of
string-connected TS systems, i.e., distributed TS systems in which each subsystem is con-
nected only to its two neighbors. The coupling between the subsystems is realized through
their states. The approach is also extended to controller and observer design. To our best
knowledge, analysis and design of this specific structure have not been addressed in the lit-
erature. By exploiting the structure, less conservative conditions are obtained. Moreover, to
develop the conditions, we employ nonquadratic Lyapunov functions.

The structure of the paper is as follows. Section 2 presents the general form of the TS
models and the notations used in this paper. Section 3 describes the proposed stability condi-
tions. Sections 4 and 5 present the conditions for observer and controller design, respectively,
and illustrate them on numerical examples. Finally, Section 6 concludes the paper.

2. Preliminaries

A centralized TS fuzzy system is of the form1

ẋ =
m∑

i=1

wi(z)(Aix + Biu)

y =
m∑

i=1

wi(z)Cix

where x ∈ Rnx is the vector of the state variables, u ∈ Rnu is the input vector, y ∈ Rny is the
measurement vector. In the equations above, Ai ∈ Rnx×nx , Bi ∈ Rnx×nu , and Ci ∈ Rny×nx ,
i = 1, 2, . . . , m represent the matrices of the ith local linear model and wi, i = 1, 2, . . . , m

1Since all the variables in the system description are time-varying, for the ease of notation, we do not
explicitly denote the time.
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are the corresponding membership functions, which depend on the scheduling variables z. The
scheduling variables generally may depend on the states, inputs, or other exogenous variables.
In order to avoid the need of solving implicit equations, for the controller design, it is assumed
that the scheduling variables do not depend on the input. The membership functions wi(z)
are assumed to be normalized, i.e., wi(z) ∈ [0, 1] and

∑m
i=1 wi(z) = 1, ∀z. In what follows,

for simplicity, we will use the notation Xz =
∑m

i=1 wi(z)Xi, X−1
z = (

∑m
i=1 wi(z)Xi)

−1.
In this paper we focus on distributed systems where the subsystems are connected in a

bidirectional string, as shown in Figure 1.

Figure 1: Subsystems connected in a string.

Such interconnections are common e.g., in flow processes or production processes. The ns

subsystems are described by the TS models

ẋl =

ml∑
i=1

wl
i(zl)(A

l
ixl + Al,l−1

i xl−1 + Al,l+1
i xl+1 + Bl

iul)

yl =

ml∑
i=1

wl
i(zl)C

l
ixl

or
ẋl = Al

zxl + Al,l−1
z xl−1 + Al,l+1

z xl+1 + Bl
zul

yl = C l
zxl

(1)

for l = 1, 2, . . . , ns, with A1,0
i = 0, i = 1, 2, . . . , m1, x0 ≡ 0, and Ans,ns+1

i = 0, i =
1, 2, . . . , mns , xns+1 ≡ 0, i.e., for the ease of notation the states of the 0th and the ns + 1th
subsystems are considered to be identical to 0.

In the above descriptions, Al
i ∈ Rnxl

×nxl , Bl
i ∈ Rnxl

×nul , C l
i ∈ Rnyl

×nxl , Al,l−1
i ∈ Rnxl

×nxl−1 ,
and Al,l+1

i ∈ Rnxl
×nxl+1 , i = 1, 2, . . . , ml, i.e., the dimensions of the subsystems may differ

from one another.
Throughout the paper it is assumed that the membership functions of each subsystem are

normalized, i.e., wl
i(zl) ≥ 0,

∑m
i=1 wl

i(zl) = 1, ∀zl, l = 1, 2, . . . , ns. Moreover, the matrices
I and 0 denote the identity and the zero matrices of the appropriate dimensions, and (∗)
denotes the term induced by symmetry, i.e.,

(
A B
(∗) C

)
=

(
A B
BT C

)
and A + (∗) = A + AT .

In what follows, we consider first stability analysis, and next observer and controller
design for the string-connected TS model. To derive the stability and design conditions, we
use nonquadratic Lyapunov functions.
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3. Stability analysis

Consider the string-connected, autonomous TS fuzzy model composed of ns subsystems
as follows:

ẋl = Al
zxl + Al,l−1

z xl−1 + Al,l+1
z xl+1 (2)

for l = 1, 2, . . . , ns, with A1,0
z = 0, x0 ≡ 0, and Ans,ns+1

z = 0, xns+1 ≡ 0.

3.1. Stability conditions

For the system (2), the following result can be formulated:

Theorem 1. The string-connected TS system with the subsystems described by (2) is locally
asymptotically stable if there exist matrices P l

i = (P l
i )

T > 0, i = 1, 2, . . . , ml, and scalars
dl > 0, l = 1, . . . , ns, so that

(
dl−1P

l−1
z Al−1

z + (∗) + dl−1Ṗ
l−1
z Xl,l−1

(∗) dlP
l
zA

l
z + (∗) + Ṗ l

z

)
< 0

for l = 2, . . . , ns − 1, where Xl,l−1 = 2dl(A
l,l−1
z )T P l

z + 2dl−1P
l−1
z Al−1,l

z .

Proof. Following the lines of the proof in [27], consider the composite nonquadratic Lyapunov
function V =

∑ns

l=1 2dlx
T
l P l

zxl, P l
z =

∑ml

i=1 wi(z)P l
i with P l

i = P lT
i > 0, i = 1, 2, . . . , ml, and

dl > 0, l = 1, . . . , ns. The derivative V̇ can be written as

V̇ =
ns−1∑

l=2

2dlx
T
l P l

z(A
l
zxl + Al,l−1

z xl−1 + Al,l+1
z xl+1) + (∗)

+ 2d1x
T
1 P1(A

1
zx1 + A1,2

z x2) + (∗)

+ 2dnsx
T
ns

Pns(A
ns
z xns + Ans,ns−1

z xns−1) + (∗) +
ns∑

l=1

2dlṖ
l
z

=
ns−1∑

l=2

2dl




xl−1

xl

xl+1




T 


0 (∗) 0

P l
zA

l,l−1
z P l

zA
l
z + (∗) + Ṗ l

z P l
zA

l,l+1
z

0 (∗) 0







xl−1

xl

xl+1




+ 2d1

(
x1

x2

)T (
P 1

z A1
z + (∗) + Ṗ 1

z (∗)
P 1

z A1,2
z 0

)(
x1

x2

)

+ 2dns

(
xns−1

xns

)T (
0 (∗)

P ns
z Ans,ns−1

z P ns
z Ans

z + (∗) + Ṗ ns
z

)(
xns−1

xns

)

=
ns∑

l=2

(
xl−1

xl

)T (
dl−1P

l−1
z Al−1

z + (∗) + dl−1Ṗ
l−1
z Xl,l−1

(∗) dlPlA
l
z + (∗) + dlṖ

l
z

)(
xl−1

xl

)

+ xT
1 (d1P

1
z A1

z + (∗) + d1Ṗ
1
z )x1 + xT

ns
(dnsPnsA

ns
z + (∗) + dnsṖ

ns
z )xns
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with Xl,l−1 = 2dl(A
l,l−1
z )T P l

z + 2dl−1P
l−1
z Al−1,l

z . Define

Γl =

(
dl−1P

l−1
z Al−1

z + (∗) + dl−1Ṗ
l−1
z Xl,l−1

(∗) dlP
l
zA

l
z + (∗) + dlṖ

l
z

)
(3)

Note that if Γ2 < 0 then d1P
1
z A1

z +(∗)+d1Ṗ
1
z < 0, and if Γns < 0 then dlPlA

l
z +(∗)+dlṖ

l
z < 0.

Consequently, V̇ < 0 if Γl < 0, for l = 2, . . . , ns. Hence, the string-connected system (2) is
locally asymptotically stable, if Γl < 0, for l = 2, . . . , ns. ¤

Remark: The conditions of Theorem 1 implicitly rely on the assumption that the stability
of the individual subsystems ẋl = Al

zxl, l = 1, . . . , ns, is provable by the Lyapunov function
Vl = xT

l P l
zxl. If this does not hold, one can verify whether the subsystem in question taken

together with one of its neighbors is stable and consider them as one subsystem.

Theorem 1 above explicitly states that the string-connected distributed TS fuzzy system is
locally asymptotically stable, if each subsystem is stable and each pair of adjacent subsystems
is stable. To develop conditions for each subsystem, i.e., circumvent the coupling between
the neighboring subsystems, consider the condition Γl < 0, l = 2, . . . , ns, with Γl defined as
in (3). This condition can be written as

Γl =

(
dl−1P

l−1
z Al−1

z + (∗) + dl−1Ṗ
l−1
z + δI 2dl−1P

l−1
z Al−1,l

z

(∗) −δI

)

+

( −δI (∗)
2dlP

l
zA

l,l−1
z dlP

l
zA

l
z + (∗) + dlṖ

l
z + δI

)
< 0

for some δ > 0. Moreover, we have

Γl+1 =

(
dlP

l
zA

l
z + (∗) + dlṖ

l
z + δI 2dlP

lAl,l+1
z

(∗) −δI

)

+

( −δI (∗)
2dl+1P

l+1
z Al+1,l

z dl+1P
l+1
z Al+1

z + (∗) + dl+1Ṗ
l+1
z + δI

)
< 0

By imposing that both terms concerning P l
z in the above expressions are negative definite and

by introducing δl = δ/dl, l = 1, 2, . . . , ns, the following conditions can be formulated:

Theorem 2. The string-connected TS system (2) is locally asymptotically stable if there exist
matrices P l

i = (P l
i )

T > 0, i = 1, 2, . . . , ml, and scalars δl > 0, l = 1, . . . , ns, so that

(
P l

zA
l
z + (∗) + Ṗ l

z + δlI 2P l
zA

l,l+1
z

(∗) −δlI

)
< 0

(
P l

zA
l
z + (∗) + Ṗ l

z + δlI 2P l
zA

l,l−1
z

(∗) −δlI

)
< 0

for l = 1, . . . , ns

(4)
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In the matrices above, with a redefinition of δl = δ/dl, dl is omitted, as it is positive and
it appears in all terms.

It has to be noted that although Theorem 2 is in principle more conservative than Theo-
rem 1, the conditions of Theorem 2 are decoupled for the subsystems.

The problem of stability analysis is now reduced to verifying the conditions of Theorem 2.
Since the conditions depend on Ṗ l

z, in general they can be hard to verify. However, depending
on how exactly the TS model has been obtained, the properties of the model and the purpose
of the analysis, several results available in the literature can be employed. Some of the
approaches will be discussed below.

3.2. Examples and discussion

In what follows, we present the conditions for different choices of the Lyapunov function.
The simplest case is naturally when P l

i = P l, i = 1, 2, . . . , ml, i.e., a composite quadratic
Lyapunov function is used. Since P l

z =
∑ml

i=1 wi(z)P l
i =

∑ml

i=1 wi(z)P l = P l, the conditions
are reduced (4) to (

P lAl
z + (∗) + δlI 2P lAl,l+1

z

(∗) −δlI

)
< 0

(
P lAl

z + (∗) + δlI 2P lAl,l−1
z

(∗) −δlI

)
< 0

for l = 1, . . . , ns

and actually to (
P lAl

i + (∗) + δlI 2P lAl,l+1
i

(∗) −δlI

)
< 0

(
P lAl

i + (∗) + δlI 2PlA
l,l−1
i

(∗) −δlI

)
< 0

for i = 1, 2, . . . , ml l = 1, . . . , ns

Local asymptotic stability of the distributed TS system can be verified using Theorem
1 in [8], and applying relaxations such as [16, 2, 28]. A practical, although conservative
possibility is using the relaxation in [28], the conditions becoming

find P l
i = (P l

i )
T > 0, i = 1, 2, . . . , ml, and scalars δl > 0, l = 1, . . . , ns, so that

Γl+
ii < 0

2

ml − 1
Γl+

ii + Γl+
ij + Γl+

ji < 0

Γl−
ii < 0

2

ml − 1
Γl−

ii + Γl−
ij + Γl−

ji < 0

(5)
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for i, j = 1, 2, . . . , ml, l = 1, . . . , ns, where

Γl+
ij =

(
P l

i A
l
j + (∗) + δlI 2P l

i A
l,l+1
j

(∗) −δlI

)

Γl−
ij =

(
P l

i A
l
j + (∗) + δlI 2P l

i A
l,l−1
j

(∗) −δlI

)

It is important to note that thanks to conditions existing in the literature [29, 30, 31, 32]
for local asymptotic stability, asymptotically necessary and sufficient conditions for (4) to hold
can be derived as follows. It can be easily seen that with Theorem 1 of [8], the conditions (4)
for local asymptotic stability result in the classical form

r∑
j1=1

r∑
j2=1

wj1(z)wj2(z)Γj1j2 < 0 (6)

where r denotes a generic number of rules.
Using the matrix Pólya theorem (see [29, 30]), the necessary and sufficient condition for

(6) obtained from (4) to hold for any fuzzy partition w is that there exists a large enough n
so that

Γ̃i =
∑

j∈P(i)

Γj1j2 =
∑

j=[j1,j2,...,jn]

wj1(z)wj2(z) . . . wjn(z)Γj1j2 < 0 ∀i ∈ I+
n (7)

where Γ̃i is the extension of (6) to n sums, I+
n denotes the set of n-tuples (multiindices) of

i, and P(i) denotes the set of permutations of the multiindex i. To reduce the number of
decision variables, one can use e.g., the result in [32].

Compared to the results obtained in the discrete-time case using nonquadratic Lyapunov
functions, in the continuous-time case, the number of existing results is extremely small.
However, due to the conditions developed above, the latter results are all directly applicable
for the conditions of Theorem 2. Depending on the knowledge of the system and how the TS
model has been obtained, different results can be applied. For instance, given a bound on the
derivatives of the membership functions, the result in [7] or if the TS model has been obtained
by using the sector nonlinearity approach, the results in [8] can be directly employed.

Thanks to the conditions being developed using a nonquadratic Lyapunov function, we are
now able to prove local asymptotic stability of a distributed system. Such a case is illustrated
in the following example.

Example 1. Consider the string-connected TS model composed of ns = 3 subsystems, each
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subsystem having two rules, i.e., ml = 2, l = 1, 2, 3, with the local matrices being

A1
1 =

(−15.10 −0.66
0.10 −15.34

)
A1

2 =

(−6.78 −2.08
4.75 −8.58

)

A1,2
1 =

(
0.02 0.13
−0.03 −0.08

)
A1,2

2 =

(−0.06 −0.10
−0.05 0.02

)

A2
1 =

(−7.40 1.74
−3.78 −5.07

)
A2

2 =

(−17.02 3.26
3.05 −10.92

)

A2,1
1 =

(
0.01 −0.08
−0.12 −0.04

)
A2,1

2 =

(
0.02 0.04
0.12 −0.11

)

A2,3
1 =

(
0.13 −0.01
0.03 −0.01

)
A2,3

2 =

(−0.07 −0.28
−0.05 −0.01

)

A3
1 =

(−0.16 0.18
−4.93 −0.83

)
A3

2 =

(−2.45 −1.20
−4.03 −7.83

)

A3,2
1 =

(
0.14 0.08
−0.13 0.07

)
A3,2

2 =

(−0.04 −0.002
−0.04 0.13

)

The quadratic stability of this system cannot be proven, even if considering it a centralized
system. However, local asymptotic stability for the string-connected system can be proven
using the conditions of Theorem 2 and applying the relaxation of [28], i.e., solving (5).

4. Observer design

Let us now consider observer design for string-connected TS models. We assume that the
measurements do not depend on the states of the other subsystems, and that the scheduling
variables zl are available and they can be readily used in the observer. Also, the estimates of
the neighboring systems are communicated, i.e., x̂l−1 and x̂l+1 can be used in the observer of
subsystem l, l = 1, 2, . . . , ns. Note that without this assumption, the states of the neighboring
subsystems have to be considered unknown inputs and have to be estimated too.

The observer we consider is

˙̂xl = Al
zx̂l + Al,l−1

z x̂l−1 + Al,l+1
z x̂l+1 + P−l

z Ll
z(yl − ŷl)

ŷl = C l
zx̂l

(8)

for the lth subsystem, where P l
i = (P l

i )
T > 0, and Ll

i, i = 1, 2, . . . , ml, l = 1, 2, . . . , ns are
matrices to be determined.

Consequently, the error dynamics of the lth subsystem are

ėl = (Al
z − P−l

z Ll
zC

l
z)el + Al,l−1

z el−1 + Al,l+1
z el+1 (9)

for l = 1, 2, . . . , ns, which is again a string-connected system.
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4.1. Design conditions

For the error dynamics (9) obtained by using the observer (8), the following result can be
stated:

Theorem 3. The error dynamics (9) are locally asymptotically stable, if there exist P l
i =

(P l
i )

T > 0, Ll
i, i = 1, 2, . . . , ml, δl > 0, l = 1, 2, . . . , ns such that

(
P l

zA
l
z − Ll

zC
l
z + (∗) + Ṗ l

z + δlI 2P l
zA

l,l+1
z

(∗) −δlI

)
< 0

(
P l

zA
l
z − Ll

zC
l
z + (∗) + Ṗ l

z + δlI 2P l
zA

l,l−1
z

(∗) −δlI

)
< 0

for l = 1, . . . , ns

(10)

Proof. Let us first consider the distributed system as a whole. Then, the dynamics can be
written as2

ẋ = Azx + Bzu

y = Czx
(11)

where

x = [xT
1 , xT

2 , . . . , xT
ns

]T u = [uT
1 , uT

2 , . . . , uT
ns

]T y = [yT
1 , yT

2 , . . . , yT
ns

]T

Az =




A1
z A12

z 0 · · · 0 0
A21

z A2
z A23

z · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Ans,ns−1

z Ans,ns
z




Bz = diag
(
B1

z , B2
z , · · · , Bns

z

)
Cz = diag

(
C1

z , C2
z , · · · , Cns

z

)

Consider for the centralized system (11) the observer

˙̂x = Azx̂ + Bzu + P−1
z Lz(y − ŷ)

ŷ = Czx̂
(12)

with Pz and Lz being block-diagonal matrices of the form

Pz = diag
(
d1P

1
z , d2P

2
z , · · · , dnsP

ns
z

)

Lz = diag
(
d1L

1
z, d2L

2
z, · · · , dnsL

ns
z

)

with di > 0 and P l
i = (P l

i )
T > 0, i = 1, 2, . . . , ml, l = 1, 2, . . . , ns. It has to be noted that with

this choice of the matrices, the structure of the estimation error remains block-tridiagonal, and
therefore we can make use of the results obtained for stability analysis. Moreover, although

2diag denotes a block-diagonal matrix composed of the arguments.
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both Pz and Lz contain the scalars dl, l = 1, 2, . . . , ns, which offer an extra degree of freedom
when solving the conditions, these scalars are not required in the observer.

Assuming that the scheduling variables do not depend on states that have to be estimated,
we have the following estimation error dynamics for the whole system

ė = ẋ− ˙̂x = (Az − P−1
z LzCz)e (13)

with Az − P−1
z LzCz having the block-tridiagonal form

Az − P−1
z LzCz =



A1
z − (P 1

z )−1L1
zC

1
z A12

z 0 · · · 0 0
A21

z A2
z − (P 2

z )−1L2
zC

2
z A23

z · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Ans,ns−1

z Ans,ns
z − (P ns

z )−1Lns
z Cns

z




(14)
Consider now the Lyapunov function V = 2eTPze. Its derivative is

V̇ = 2eT (Pz(Az − P−1
z LzCz) + (∗) + Ṗz)e

= 2eT (PzAz − LzCz + (∗) + Ṗz)e

= 2eT




G1
z,z (∗) 0 · · · 0 0

G2,1
z,z + (G1,2

z,z)
T G2

z,z (∗) · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Gns,ns−1

z,z + (Gns,ns+1
z,z )T Gns

z,z


 e

where Gl
z,z = dlP

l
zA

l
z − dlL

l
zC

l
z + (∗) + dlṖ

l
z, Gl,l−1

z,z = dlP
l
zA

l,l−1
z , Gl,l+1

z,z = (dlP
l
zA

l,l+1
z )T ,

l = 1, 2, . . . , ns. Following the same reasoning as in Theorems 1 and 2, i.e., adding and
subtracting −2δI we obtain

V̇ =
ns∑

l=1




el−1

el

el+1




T 


−δI (∗) 0
2Gl,l−1

z,z 2Gl
z,z + 2δI (∗)

0 2(Gl,l+1
z,z )T −δI







el−1

el

el+1




which, further decoupled, leads to the conditions (10).

4.2. Examples and discussion

While for nonquadratic stability of TS systems some results exist in the literature, consid-
erably fewer results are available for observer design. In what follows, we discuss what results
can be applied for the proposed conditions.

Similarly to stability analysis, the simplest case is when the Lyapunov function is a com-
posite quadratic one, and Pz is reduced to P . On the resulting conditions, several relaxations
can be used, including the results of [16, 2, 33, 34, 28, 5]. For instance, using the results
of [28], we have
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Corollary 1. The estimation error dynamics of the observer (8) are globally asymptotically
stable if there exist matrices P l

z = P lT
z > 0, Ll

i, and scalars δl > 0, i = 1, 2, . . . ,ml, l =
1, 2, . . . , ns, so that (5) holds with

Γl+
ij =

(
P lAl

i − Ll
iC

l
j + (∗) + δlI 2P lAl,l+1

i

(∗) −δlI

)

Γl−
ij =

(
P lAl

i − Ll
iC

l
j + (∗) + δlI 2P lAl,l−1

i

(∗) −δlI

)

Existing results are again directly applicable for Theorem 3. Local asymptotic stability
of the error dynamics can be verified using Theorem 1 of [8], and applying relaxations such
as [16, 2, 28]. Given a bound on the derivatives of the membership functions, the result
of [3, 7] can be properly modified for this case. If the TS model has been obtained by using
the sector nonlinearity approach, the results of [35] can be directly applied.

An important result is that, similarly to stability analysis, asymptotically necessary and
sufficient conditions can be stated for the conditions of Theorem 3 for the local asymptotic
stability of the estimation error dynamics. Using the result of [8], the conditions of Theorem 3
are again of the classical form (6). By the extension of the matrices to n sums, the results
from [30, 29] can be applied.

Example 2. Consider the string-connected TS model composed of ns = 3 subsystems, each
subsystem having ml = 2, l = 1, 2, 3 rules, with the local matrices being

A1
1 =

(−23.68 −1.92
−6.25 −2.50

)
A1

2 =

(−10.27 2.83
1.40 3.44

)

A1,2
1 =

(−0.06 0.01
0.03 0.13

)
A1,2

2 =

(
0.15 0.14
−0.05 0.02

)

A2
1 =

(−5.9 2.37
−3.7 −6.4

)
A2

2 =

(−9.32 3.66
−9.40 −1.61

)

A2,1
1 =

(
0.18 0.15
0.20 0.06

)
A2,1

2 =

(−0.02 0.20
0.04 −0.05

)

A2,3
1 =

(−0.15 −0.16
−0.15 0.01

)
A2,3

2 =

(−0.27 −0.16
0.07 0.03

)

A3
1 =

(−1.33 −2.33
9.66 −7.57

)
A3

2 =

(−5.73 −6.5
−3.53 −11.39

)

A3,2
1 =

(
0.06 −0.1
−0.06 0.03

)
A3,2

2 =

(−0.03 −0.08
0.001 0.001

)

For each subsystem, the first state is measured, i.e., C l =
(
1 0

)
, l = 1, 2, 3.

Considering the system above as a centralized one, a quadratic Lyapunov function can be
used to design an observer for it. However, for the string-connected system, the conditions
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of Theorem 3 when considering a composite quadratic Lyapunov function are infeasible. A
locally asymptotically stable observer can be designed using the conditions of Theorem 3 by
solving the conditions (5) with

Γl+
ij =

(
P l

i A
l
j − Ll

iC
l
j + (∗) + δlI 2P l

i A
l,l+1
j

(∗) −δlI

)

Γl−
ij =

(
P l

i A
l
j − Ll

iC
l
j + (∗) + δlI 2P l

i A
l,l−1
j

(∗) −δlI

)

for i, j = 1, 2, l = 1, 2, 3.
Solving3 the conditions above we obtain

P 1
1 =

(
1.66 −1.02
−1.02 0.84

)
P 1

2 =

(
1.10 −0.54
−0.54 0.35

)
L1

1 =

(−32.10
17.59

)
L1

2 =

(−10.56
6.25

)

P 2
1 =

(
0.56 0.12
0.12 0.13

)
P 2

2 =

(
0.82 −0.04
−0.04 0.21

)
L2

1 =

(−3.19
−0.60

)
L2

2 =

(−6.71
1.50

)

P 3
1 =

(
1.75 −0.28
−0.28 0.16

)
P 3

2 =

(
1.64 −0.25
−0.25 0.19

)
L3

1 =

(−4.58
0.09

)
L3

2 =

(−7.99
−6.97

)

δ1 = 0.066 δ2 = 0.56 δ3 = 0.54

i.e., a locally asymptotically stable observer. Moreover, the region of stability of the estimation
error can be determined taking into account the membership functions and bounds on their
derivatives.

5. Controller design

We now consider the design of a stabilizing state-feedback controller for a string-connected
TS system, with the l-th subsystem of the form:

ẋl =Al
zxl + Al,l−1

z xl−1 + Al,l+1
z xl+1 + Bl

zul (15)

for l = 1, 2, . . . , ns. We assume for this case that the scheduling variables do not depend on
the input, and use a control law of the form

ul = −F l
zP

−l
z xl (16)

The closed-loop system dynamics are

ẋl =
(
Al

z −Bl
zF

l
zP

−l
z

)
xl + Al,l−1

z xl−1 + Al,l+1
z xl+1 (17)

3To solve the LMI conditions, the SeDuMi solver within the Yalmip [36] toolbox has been used. The results
given are rounded to two decimal places.

12



5.1. Design conditions

For the closed-loop system (17) the following result can be stated:

Theorem 4. The closed-loop system (17) is locally asymptotically stable if there exist matrices
P l

i = P lT
i > 0, F l

i , i = 1, 2, . . . , ml, and scalars δl > 0, l = 1, 2, . . . , ns, such that

(
Al

zP
l
z −Bl

zF
l
z + (∗)− Ṗ l

z + δlI 2(Al,l+1
z P l

z)
T

(∗) −δlI

)
< 0

(
Al

zP
l
z −Bl

zF
l
z + (∗)− Ṗ l

z + δlI 2(Al,l−1
z P l

z)
T

(∗) −δlI

)
< 0

(18)

for l = 1, 2, . . . , ns.

Proof. The full system can be written in a centralized form as

ẋ = Azx + Bzu

where Az is block-tridiagonal and Bz is block-diagonal, similarly to (11). The control law for
the centralized system is

u = −FzP−1
z x

with Fz and Pz block-diagonal

Fz = diag
(
d1F

1
z , d2F

2
z , · · · , dnsF

ns
z

)

Pz = diag
(
d1P

1
z , d2P

2
z , · · · , dnsP

ns
z

)

dl > 0, and P l
i = P lT

i > 0, i = 1, 2, . . . , ml, l = 1, 2, . . . , ns. The resulting closed-loop
dynamics are given by

ẋ = (Az − BzFzP−1
z )x

Consider the Lyapunov function V (x) = 2xTP−1
z x. The derivative V̇ is obtained as

V̇ (x) = 2xT
(
P−1

z

(
Az − BzFzP−1

z

)
+ (∗) + Ṗ−1

z

)
x

and taking into account that PzṖ−1
z Pz = −Ṗz, it can be written as

V̇ (x) = 2xTP−1
z

(
AzPz − BzFz + (∗)− Ṗz

)
P−1

z x

Given that AzPz is block-tridiagonal, BzFz is block-diagonal and Ṗz is block-diagonal, we obtain
a similar relation as in Theorem 3:

V̇ (x) = 2xTP−1
z




G1
z,z (∗) 0 · · · 0 0

G2,1
z,z + (G1,2

z,z)
T G2

z,z (∗) · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Gns,ns−1

z,z + (Gns−1,ns
z,z )T Gns

z,z


P

−1
z x

13



where Gl
z,z = dlA

l
zP

l
z − dlB

l
zF

l
z + (∗) − dlṖ

l
z, Gl−1,l

z,z = dlA
l−1,l
z P l

z, Gl+1,l
z,z = dlA

l+1,l
z P l

z, l =
1, 2, . . . , ns.

In the same manner as in Theorems 1 and 3, by adding and subtracting 2δI a sufficient
condition can be obtained as




−δI (∗) 0
2(Gl−1,l

z,z )T Gl
z,z + 2δI (∗)

0 2Gl+1,l
z,z −δI


 < 0

which can be further decoupled for each subsystem leading to conditions (18).

5.2. Examples and discussion

Similarly to stability analysis and observer design, existing results from the literature on
non-quadratic stabilization of TS models readily apply with the developed conditions. If a
composite quadratic Lyapunov function is used, P l

z is reduced to P l, and conditions similar
to observer design are obtained. Of interest is the local asymptotic stabilization of string-
connected TS models. For instance, using the results from [37], and the relaxation of [28],
the conditions can be formulated as

find P l
i = P lT

i > 0, F l
i , i = 1, 2, . . . , ml, and scalars δl > 0, l = 1, . . . , ns, so that (5)

holds with

Γl+
ij =

(
Al

iP
l
j −Bl

iF
l
j + (∗) + δlI 2(Al,l+1

i P l
j)

T

(∗) −δlI

)
< 0

Γl−
ij =

(
Al

iP
l
j −Bl

iF
l
j + (∗) + δlI 2(Al,l−1

i P l
j)

T

(∗) −δlI

)
< 0

(19)

Also, in this case, for the local asymptotic stability of the closed-loop system, asymptot-
ically necessary and sufficient conditions can be stated for the conditions of Theorem 4. By
the extension of the matrices obtained by applying Theorem 1 of [8] to n sums, the results
from [30, 29] apply, and the conditions become asymptotically necessary.

Furthermore, depending on the knowledge on the derivatives of the membership functions,
the results of [7] can be appropriately modified or those in [37] can be directly used. In what
follows, we give an example for the local nonquadratic stabilization of string-connected TS
systems.

Example 3. Consider the string-connected TS model composed of ns = 3 subsystems, each
subsystem having two rules, with the local matrices, adopted from Example 1 of [37], given by

Al
1 =

(
3.6 −1.6
6.2 −4.3

)
Al

2 =

(−5 −1.6
6.2 −4.3

)
Bl

1 =

(−0.45
−3

)
, Bl

2 =

(−1
−3

)

A12
i = A21

i = A23
i = A32

i = 10−2 ·
(

2 1
−5 10

)

for l = 1, 2, 3, i = 1, 2. The system above is a homogenous string-connected system, i.e., the
subsystems and the interconnection terms, respectively are the same.
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Using a quadratic Lyapunov function for the stabilization of the system results in unfeasible
conditions. However, the system is locally asymptotically stabilizable using a nonquadratic
Lyapunov function. Thus, we obtain

P 1
1 =

(
2.43 9.70
9.70 38.89

)
P 1

2 =

(
3.48 7.56
7.56 18.12

)
F 1

1 =
(
11.08 30.33

)
F 1

2 =
(
23.46 8.39

)

P 2
1 =

(
2.17 8.77
8.77 35.65

)
P 2

2 =

(
3.13 6.63
6.63 15.35

)
F 2

1 =
(
10.16 27.69

)
F 2

2 =
(
20.52 6.24

)

P 3
1 =

(
2.43 9.70
9.70 38.89

)
P 3

2 =

(
3.48 7.56
7.56 18.12

)
F 3

1 =
(
11.08 30.33

)
F 3

2 =
(
23.46 8.39

)

δ1 = 1.77, δ2 = 1.64, δ3 = 1.77

6. Conclusions

In this paper, we have considered stability analysis and controller and observer design for
TS fuzzy systems connected in a string. Sufficient stability and observer and controller design
conditions have been derived, and illustrated on numerical examples.

In this paper, we have considered a special class of distributed systems. In our future
research, we will extend the results presented in this paper to more general, sparsely intercon-
nected systems. Other special cases that deserve investigation are distributed system where
the interconnections are symmetrical, or homogeneous distributed systems.
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