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Abstract: The control and path planning of multiple drones in a 3D space with obstacle
avoidance is a complex challenge, subject to ongoing research. In this paper we propose an
optimal control approach, with a baseline controller and filter running on the drones, and a
prediction based optimization algorithm running remotely, as a supervisory controller. The
supervisor is responsible for calculating the minimal deviation from the trajectory given by the
baseline controllers, such that the obstacle is avoided. The approach is tested in simulations
with nonlinear drone models in a realistic setting with noise and transmission delays.

Keywords: Optimal control, networked control, drones, obstacle avoidance.

1. INTRODUCTION

Small unmanned aerial vehicles (sUAVs) have become in-
creasingly popular in multiple areas of applications, rang-
ing from education to research, commercial and military.
The quadcopter (quadrotor) is the most common type of
sUAV used by inexperienced users, teachers, engineers and
scientists, because it is inexpensive, light-weight, has easy
to understand flight principles/high maneuverability, and
simple mechanical design.

Despite its advantages, real life applications impose com-
plex challenges, from the point of view of the control and
estimation algorithms that need to be designed, but also
with respect to the hardware and software performance
that has to be ensured. First, from a classical control per-
spective, the quadcopter is an underactuated mechanical
system (4 actuators with 6 degrees of freedom), nonlinear
and inherently unstable, with input and state constraints.
So designing a control law for stabilization and tracking is
not a trivial task (Emran and Najjaran, 2018). Moreover,
many applications require some degree of robustness to
model uncertainty and external disturbances (Nascimento
and Saska, 2019). Second, not all the states of the drone are
measurable and the information from the onboard sensors
is not always reliable, as it is usually affected by noise
and bias. To alleviate this, Kalman filters are generally
used, along with camera based systems (inside) or GPS
localization (outside). The third issue that needs to be
addressed, besides control and estimation, is path planning
(Marshall et al., 2021), such that a sequence of waypoints
is generated from the drone’s current position to the
target (goal) position. Traditionally this task is executed
separately from the control loop, and involves different
collision avoidance strategies, global or local, online or of-
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fline, depending on whether the environment and obstacles
are known or not. The interrelation with the control loop
and re-planning of the path when detecting unanticipated
objects are still subject of intensive research for the 3D
case, and represents a challenging task in practice (Huang
et al., 2019).

A practical issue that is rarely addressed in the literature
is timing, or how fast can the algorithms run given the
hardware limitations of the sUAV. The computational
capabilities are reduced in comparison with a standalone
PC, while the relatively fast drone dynamics imposes a
small sampling period. Most nonlinear control algorithms
proposed in the literature are designed and analysed in
continuous-time, while the implementation is in discrete
time (Marshall et al., 2021). To mitigate unwanted dis-
cretization effects, many practitioners split the control
structure into a lower level control on the drone (simpler,
running at higher sampling frequency), and a higher level
control running on a remote PC (more complex, running
at a lower sampling frequency). This approach however
introduces synchronisation issues, and the stability of the
overall system is affected by wireless network communica-
tion delays and packet loss.

In this context this paper proposes an optimal control
and planning approach for multiple drones, with obstacle
avoidance. Our starting point is the work of Glotfelter
et al. (2017), who developed a framework for the use of
nonsmooth barrier functions, exemplified on multi-agent
systems (modeled as simple integrators) in a 2D space.
Here we consider the 3D case, agents with complex dy-
namics, and a more realistic setting involving commu-
nication delay and noise. Due to the reduced computa-
tional capabilities of the drones, we first design a baseline
LQR controller and a Kalman filter that can run on a
drone in real-time. Then we develop a prediction-based
optimisation algorithm that runs off-board, acting as a
supervisory controller. Whenever an obstacle is detected,
the supervisor computes the minimal deviation from the
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Fig. 1. Parrot Mambo Drone

trajectory given by the baseline controllers, such that the
obstacle is avoided, and this signal is transmitted to the
drones. The time delays due to the network transmissions
are compensated by performing the optimization based on
predicted values. The efficiency of our control approach is
shown through simulations on the nonlinear model of the
Parrot Mambo drone.

The structure of the paper is as follows: Section 2 describes
the quadcopter and presents the baseline control and filter-
ing. Section 3 details the optimization algorithm used for
collision avoidance and Section 4 illustrates the simulation
results. Finally, Section 5 draws some conclusions and
mentions directions for future work.

2. QUADCOPTER DESCRIPTION AND BASELINE
CONTROL

In this paper we use the Parrot Mambo drone, see Figure 1,
which is a lightweight quadcopter, and offers the possibility
of direct access to the sensing and actuating hardware.
First, we describe the drone model. Next, as a baseline,
a linear tracking controller and a linear Kalman filter
are designed. These algorithms are simple enough such
that they can run on a real drone, despite its reduced
computation capabilities. To anticipate the sampling rate
restrictions, everything is designed in discrete time.

2.1 Parrot Mambo

The Parrot Mambo is a small drone of 0.18× 0.18 meters
and weights only 0.063 kg. The four propellers are actuated
by DC motors. The drone is equipped with an accelerom-
eter that measures the linear accelerations ẍ, ÿ and z̈; a
gyroscope for the Euler angle rates ϕ̇, θ̇ and ψ̇; ultrasound
sensor to measure the vertical distance from the ground z;
a vertical camera, a barometer, and a temperature sensor.
An estimation of the velocities ẋ and ẏ is determined based
on camera images, a combination of an optical flow and
corner detection algorithms (Derbanne, 2013), and some
geometric transformations and corrections (Zeng, 2021).
The drone can receive and transmit signals wireless via
Bluetooth. The software interface with the sensors, actua-
tors and network communication is made possible due to a
firmware specifically developed for Matlab (Matlab, 2022).

2.2 Mathematical model

Next, we describe the mathematical model of the drone.
Its pose in the coordinate frame O(x, y, z), see Figure 1,
is given by

P = [ξT ηT ]T = [x y z ϕ θ ψ]T (1)

where the position is given by x, y, and z and the
orientation by the Euler angles ϕ (roll), θ (pitch), ψ (yaw).
The dynamic model 1 of the drone can be developed using
the Euler-Lagrange formalism - see (Máthé, 2016) - and is
given by 2

ẍ = [c(ϕ)s(θ)c(ψ) + s(ϕ)s(ψ)]
Ucoll
m

ÿ = [c(ϕ)s(θ)s(ψ)− s(ϕ)c(ψ)]
Ucoll
m

z̈ = −g + c(ϕ)c(θ)
Ucoll
mϕ̈θ̈

ψ̈

 = J−1(η)

([
Uϕ
Uθ
Uψ

]
− C(η, η̇)η̇

) (2)

with the Jacobian

J(η) =

 Ix 0 −Ixs(θ)
0 Iyc

2(ϕ) + Izs
2(ϕ) J23

−Ixs(θ) (Iy − Iz)c(ϕ)s(ϕ)c(θ) J33

 (3)

and the Coriolis matrix

C(η, η̇) =

[
c11 c12 c13
c21 c22 c23
c31 c32 c33

]
(4)

where
J23 = (Iy − Iz)c(ϕ)s(ϕ)c(θ)

J33 = Ixs
2(θ) + Iys

2(ϕ)c2(θ) + Izc
2(ϕ)c2(θ)

c11 = 0

c12 = (Iy − Iz)(θ̇c(ϕ)s(ϕ) + ψ̇s2(ϕ)c(θ))+

(Iz − Iy)ψ̇c
2(ϕ)c(θ)− Ixψ̇c(θ)

c13 = (Iz − Iy)ψ̇c
2(θ)s(ϕ)c(ϕ)

c21 = (Iz − Iy)(θ̇s(ϕ)c(ϕ) + ψ̇s2(ϕ)c(θ))+

(Iy − Iz)ψ̇c
2(ϕ)c(θ) + Ixψ̇c(θ)

c22 = (Iz − Iy)ϕ̇c(ϕ)s(ϕ)

c23 = −Ixψ̇s(θ)c(θ) + Iyψ̇s
2(ϕ)s(θ)c(θ)+

Izψ̇c
2(ϕ)s(θ)c(θ)

c31 = (Iy − Iz)ψ̇c
2(θ)s(ϕ)c(ϕ)− Ixθ̇c(θ)

c32 = (Iz − Iy)(θ̇c(ϕ)s(ϕ)s(θ) + ϕ̇s2(ϕ)c(θ))+

(Iy − Iz)ϕ̇c
2(ϕ)c(θ) + Ixψ̇s(θ)c(θ)− Iyψ̇s

2(ϕ)s(θ)c(θ)

− Izψ̇c
2(ϕ)s(θ)c(θ)

c33 = (Iy − Iz)ϕ̇c
2(θ)s(ϕ)c(ϕ)− Iy θ̇s

2(ϕ)s(θ)c(θ)−
Iz θ̇c

2(ϕ)s(θ)c(θ) + Ixθ̇s(θ)c(θ).

The control inputs are the torques on the three rotational
axes Uϕ, Uθ, Uψ, and the collective force Ucoll. The

1 Throughout this paper we use the dot convention for the time
derivative (ẋ := dx

dt
) and the time dependence is omitted (x := x(t))

whenever the meaning is obvious.
2 s(·) and c(·) are shorthand notations for sin(·) and cos(·)



parameters - moments of inertia {Ix, Iy, Iz}, mass m,
gravitational acceleration g - are known and given in
Table 1.

Table 1. Drone parameters

Parameter Notation Value Units

Mass m 0.063 kg

X-axis inertia moment Ix 0.5829 · 10−4 kg m2

Y-axis inertia moment Iy 0.7169 · 10−4 kg m2

Z-axis inertia moment Iz 1.000 · 10−4 kg m2

gravitational acceleration g 9.8 m/s2

Model (2) can be rewritten as:

ẋ = f(x,u) (5)

where the state is x = [x, y, z, ϕ, θ, ψ, ẋ, ẏ, ż, ϕ̇, θ̇, ψ̇]T and
the input u = [Ucoll, Uϕ, Uθ, Uψ]

T .

Throughout this paper we assume that the drone model
and parameters are known, the linear and angular posi-
tions {x, y, z, ϕ, θ, ψ}, along with their corresponding ve-
locities, can be measured, and the drone can be controlled
directly in torque. This is a realistic assumption for indoor
flights thanks to the availability of camera systems like
OptiTrack (Furtado et al., 2019).

Let the equilibrium point in hovering mode be xe =
[xe, ye, ze, 0, 0, 0, 0, 0, 0, 0, 0, 0]T , with inputs
ue = [Uecoll, 0, 0, 0]

T . The linearized model is of the form

ẋl = Axl +Bul (6)

where xl = x−xe and ul = u−ue, and the expressions for
the matrices A and B are omitted due to space restrictions.
The simplified model can also be written as:

ẍ = θg

ÿ = −ϕg

z̈ =
∆Ucoll
m



ϕ̈ =
Uϕ
Ix

θ̈ =
Uθ
Iy

ψ̈ =
Uψ
Iz

(7)

where ∆Ucoll = Ucoll − mg. In near-hovering mode, a
linear control has been shown to be sufficient in practice
(Nascimento and Saska, 2019).

Finally, for the purpose of controller and observer design,
we discretize (5) and (6) using Euler’s forward method,
leading to

x(k + 1) = x(k) + Tsf(x(k),u(k)) (8)

and, in the linear case

xl(k + 1) = xl(k) + Ts(Axl(k) +Bul(k)), (9)

where Ts is the sampling period and k refers to the current
sample.

2.3 Linear control and filtering

For tracking a given reference position [rx ry rz]
T , we

consider the linear state-feedback control law

u = −Kex = −K(x−

 rx
ry
rz

09×1

). (10)

As a baseline, we design an LQR (Franklin et al., 1998),
assuming that the drone is hovering at a constant altitude

and keeps the same orientation during tracking. This
controller will be running as the default one on the
quadcopter.

To design the LQR, we use the linear model (7), and
the weight matrices Re = diag([1/15 1000 1000 100]) and
Qe = diag([0.1 0.1 10 0.01 0.01 0.01 0.01 0.01 1 0.1, 0.1 0.1]).
For tracking, relatively larger weights are used in Qe for
the position. Also, the weights of z and ż are lager than
the rest (10 and 1, respectively), for the controller to
provide sufficiently large thrust for the drone to remain
in hovering. For reducing the oscillations in hovering, the
weights on the angular rates are 10 times larger than those
on the Euler angles.

The control weights are chosen to avoid large input values
that would destabilize the drone, and also avoid satura-
tion. The weight corresponding to ∆Ucoll is considerably
smaller than the rest, in order to permit a large enough
thrust when needed, particularly for take off.

Although we assume that all the states are measured, since
the measurements are not precise and are affected by noise,
plus there are model uncertainties, to use these values for
control, filtering is necessary. The most commonly used
filter is the linear Kalman filter (Grewal and Andrews,
2015), which we will employ in what follows.

The linear discrete-time model (9) is rewritten as

xl(k + 1) = Adxl(k) +Bdul(k) +w(k)

yl(k) = Cdxl(k) + v(k).
(11)

The process w and measurement noise v are assumed
to be independent white noise, with known covariances
E(wwT ) = Q and E(vvT ) = R.

The Kalman filter equations we implement are (Welch and
Bishop, 2006):

• time update equations

x̂pl (k) = Adx̂l(k − 1) +Bdul(k − 1) +w(k − 1),
(12)

Pp(k) = AdP(k − 1)ATd +Q, (13)

• measurement update equations

K(k) = Pp(k)CTd (CdP
p(k)CTd +R)−1, (14)

P(k) = (I −K(k)Cd)P
p(k), (15)

x̂l(k) = x̂pl (k) +K(k)(yl(k)− Cdx̂
p
l (k)) (16)

where the superscript ‘p’ denotes prediction, P is the
covariance of the estimation error, x̂ the estimated state,
and K the Kalman gain.

2.4 Drone network communication

Wireless communication can be used for sending the
control input, reference trajectory, waypoints, etc., thus,
we are actually dealing with a networked control system
(Hespanha et al., 2007; Tipsuwan and Chow, 2003). For
the Parrot Mambo we use the UDP transmission protocol
(Stefan et al., 2010), with the assumption that there
is no packet loss, and the bandwidth is sufficient for
transmitting multiple signals for control purposes.

One of the crucial parameters affecting network transmis-
sion is the sampling period. The sampling period on the



Parrot Mambo is by default 5[ms]. However, our experi-
ments revealed that this sampling period is much too small
for network transmissions, as it leads to a large amount
of packet loss and a transmission delay of over 1s. On
the other hand, by increasing the sampling period too
much we can miss important transient behavior of the
real drone, and the closed loop control performance can
deteriorate significantly. We have determined empirically
that the smallest sampling period for which our data
integrity assumption holds is Ts = 20ms.

Based on experiments with the real drone, the transmis-
sion delay remains rather constant during an experiment,
but can differ from one experiment to the other due to the
initialization of network transmission. Round trip delay
values varied between 100[ms] and 200[ms] in different
experiments. This is consistent with the results of Scola
et al. (2021), where a round trip delay of 170[ms] was
identified experimentally. Although in real life applications
the time delay may vary because the drone moves and
obstacles may dynamically appear or disappear, the values
determined in our experiments can be used as average
values for compensation.

3. OPTIMAL CONTROL AND PLANNING WITH
OBSTACLE AVOIDANCE

Up until this point, we considered a single drone, with a
given control law, that ensures tracking a given reference,
and that can be run on the drone. In what follows, we treat
the problem of obstacle avoidance in the case of multiple
drones. We consider the scenario, similar to (Glotfelter
et al., 2017), where the starting position and the end
position of the drones are known and nominal controllers
have already been designed. Obstacles are detected and
should be avoided during flight with a minimal deviation
from the trajectory given by the nominal controllers. A
challenge that appears here is due to the reduced computa-
tional capabilities of the drones, which makes optimization
performed on the drones impossible. Therefore, in the
considered setting, all information regarding the states of
the drones, detected obstacles, etc., are transmitted to a
server, which acts as a supervisory controller. If deviation
from the nominal control is necessary, an optimized con-
trol input that e.g., ensures avoidance of the obstacle, is
computed and transmitted to the drones. If the nominal
control is satisfactory, then nothing is transmitted. An
issue that we consider is the presence of transmission
delays: we assume a 100[ms] transmission delay, corre-
sponding to 5 sampling periods. To compensate for this
delay, the optimization is performed based on predicted
values. Furthermore, due to the delay in transmitting the
information from the drones to the server, the update of
the drones’ position is also performed with a delay.

In what follows, we explain the basic approach, then
prediction-based optimization, first without and then in
the presence of delay and measurement noise, and finally
way-point generation.

3.1 Approach and setting

The approach we use is an adaptation and extension of the
approach of Glotfelter et al. (2017), whose main theoretical

results, that represent the starting point of this work, will
be summarized next.

Consider the control-affine continuous-time dynamics:

ẋ(t) = f(x) +G(x)u (17)

where x ∈ Rnx denotes the states of the system; u ∈ Rnu

is the control input, given by any pre-designed control law;
f : Rnx → Rnx , and G : Rnx → Rnx×nu .

Let hi : D ⊂ Rnx → R, i = 1, 2, . . . , nc continuously dif-
ferentiable candidate nonsmooth barrier functions (NBF)
– in our case, corresponding to constraints regarding ob-
stacle avoidance –, with locally Lipschitz derivatives, and
hmin : D ⊂ Rn → R defined as hmin = mini{hi(x)}.
Furthermore, let us assume that there exists a locally
Lipschitz, extended class-K function α : R → R such that
ḣmin(x) ≥ −α(hmin(x)).

Consider u∗ : D ⊂ Rnx → Rnu , solution of the optimiza-
tion problem

u∗(x) = argminu∈Rm(uTH(x)u+ b(x)Tu)

s.t. ∇hi(x)T (f(x) +G(x)u) + α(hi(x)) > 0,

i = 1, 2, . . . , nc

(18)

where H : D ⊂ Rnx → Rnu×nu is locally Lipschitz,
symmetric, positive definite, and b : D ∈ Rnx → Rnu is
locally Lipschitz. If hmin is a candidate NBF and there
exist feasible solutions of the optimization problem (18),
then u∗ is locally Lipschitz and hmin is a valid NBF for
the closed-loop system using the controller u∗. For more
details, please see (Glotfelter et al., 2017).

The results above have been exemplified by Glotfelter et al.
(2017) on a team of 8 robots with planar, single-integrator
dynamics, which have to drive from their initial condition
to some desired points, while avoiding obstacles, defined
as discs with given centers and radii. In this paper, we
consider agents with more complex dynamics in a realistic
setting with communication delay and noise, as will be
described next.

Consider n drones in 3D space, each with a predefined
control law that ensures driving the drones from their
initial to their final positions, and m ball-shaped obstacles
in this space. Our goal is to modify the control input u
as little as possible such that the robots avoid obstacles
and each other. Assuming that, to ensure a safe flight, the
minimum distance between the positions of two drones ξi
and ξj should be at least rij , and between the position of
a drone ξi and the position of an obstacle ξoj is at least roj ,
the constraints are defined as:

hdij(ξ) = ||ξi − ξj ||2 − r2ij ≥ 0, i, j = 1, 2, . . . , n

hoij(ξ) = ||ξi − ξoj ||2 − roj
2 ≥ 0,

i = 1, 2, . . . , n, j = 1, 2, . . . , m

(19)

Similar to (Glotfelter et al., 2017), we stack the dynam-
ics (5) of the n drones, denote x = [xT1 , x

T
2 , . . . , x

T
n ]
T ,

u = [uT1 uT2 , . . . , u
T
n ]
T , and use a Boolean composition of

the nc = n(n − 1)/2 + nm constraints, i.e., hmin(x) =
∧i,j=1,n,i<jhij(x)∧i=1,n,j=1,m hoij(x), this being the inter-
section of all constraints, thus arriving to the optimization
problem:



u∗(x) = argminu∈Rm(uTu− unomTu)

s.t. ∇hi(x)T f(x,u) + α(hi(x)) > 0,

i = 1, 2, . . . , nc

(20)

where the superscript nom denotes the nominal value of
the input, given by the predesigned control law, and the
overline denotes the stacked variables/ functions.

Solving this optimization problem is not straightforward,
due to two reasons: 1) the constraints only involve the po-
sitions, not the full state vector and 2) for implementation
on actual Parrot Mambo drones, a discrete-time solution is
required. Thus, in what follows we propose a discrete-time
prediction-based algorithm.

3.2 Prediction based optimization

In order to compute the optimal control input, we first
rewrite the objective function and the constraints as an
optimization problem for the velocities of the n drones,

ξ̇ = [ξ̇T1 , ξ̇
T
2 , . . . , ξ̇

T
n ]
T , not directly the inputs, obtaining

ξ̇
opt

= argmin ˙
ξ
∥ξ̇

nom

− ξ̇∥2

s.t. ∇hi(ξ)T ξ̇ + α(hi(ξ)) ≥ 0

i = 1, 2, . . . , nc

(21)

For this particular case, each constraint is expressed as:

• in case of two drones i and j

hij(ξ) = [ξTi ξ
T
j ]Rij

[
ξi
ξj

]
+ ωTij

[
ξi
ξj

]
+ δij (22)

with Rij =

(
I3 −I3
−I3 I3

)
, ωij = 0, δij = −r2ij

• in case of a drone i and an obstacle j

hoij(ξ) = ξTi R
o
i ξi + ωoTij ξi + δoij (23)

with Roi = I3, ω
o
ij = −2ξoj , δ

o
ij = −ro2j .

Given the current state x for all the drones, the posi-
tions ξoi and radii roi of the obstacles, and if there is a
feasible solution, the quadratic optimization problem (21)

can easily be solved to obtain the optimal velocities ξ̇i,
i = 1, 2, . . . , n. Note however, that this does not solve
the problem of optimizing the input to attain the optimal
velocities. Therefore, we use a prediction-based optimiza-
tion, i.e., we will optimize the future velocities, as will be
described next.

Since for controlling the real drone a discrete-time control
input is required, in what follows, we use model (9). Note
that the maximal relative order of the system is 4, and,
under the assumption that at time k the current states
x(k) and inputs unom(k) are available, a 4-step ahead
prediction of the positions x and y and a 2-step ahead
prediction on z can be performed. Using the predicted
values, the optimization problem becomes:

ξ̇
opt

(k) = argmin ˙
ξ
∥ξ̇

pred

(k)− ξ̇(k)∥2

s.t. ∇hi(ξ
p
(k))T ξ̇(k) + α(hi(ξ(k))) ≥ 0

i = 1, 2, . . . , nc

(24)

where, with a slight abuse of notation, we used ξ̇(k) to
denote the linear velocities at sample k and the superscript
pred denotes predicted values.

Once the optimal velocities become available, based on the
discrete-time linear model and the predicted values, the
input to be applied is computed. As an example, consider
Uθ for the first drone. Based on the current state x1(k) and
current nominal input unom

1 (k), the position xpred(k + 4),
the velocity ẋpred(k+3), etc., can be pre-computed. At this
point the optimal velocity ẋopt(k + 3) can be computed
as the solution of the optimization problem. Using the
discrete-time linear model (9), finite differences, and the
predicted values at different sampling instants, the input
Uopt
θ (k) can be recovered.

3.3 Optimization in the presence of noise and delay

An issue that appears in the experimental application is
the presence of measurement noise and model mismatch,
which in this paper we consider as state noise. Assuming
zero mean white noises with covariancesQ and R, affecting
the states and the outputs, the Kalman filter, as described
in Section 2 can be used to obtain a better estimate of
the states. Note that the prediction-based optimization
remains the same even in the presence of noise: the
prediction – and optimization – is made based on the
current states only, this being consistent with the zero
mean white noise.

Another problem is represented by the computational
capacity of the drones. Although the drones can handle
simple computations, e.g., computing the control input,
their processing power is not enough to solve complex
optimization problems. Therefore, the input optimization
has to be performed off-board, on a stronger processing
unit. This implies transmission of the current states and of
the optimal input. As discussed in Section 2, the delay is of
100− 200[ms], corresponding to up to 5 sampling periods,
and can be considered constant during an experiment. The
delay affects both the input optimization – the transmitted
input will be available with a delay –, and the filtering/
estimation of the states – which can be performed with a
delay.

To handle this issue we propose the following algorithm.
Assuming a constant delay of τ samples, an updated
estimate of the states at sample k is available off-board
for sample k − τ , i.e., x̂(k − τ). Based on the nonlinear
model (2) and the nominal or optimized inputs u(k − τ),
u(k− τ +1), . . . , u(k+ τ − 1) the states xpred(k− τ +1),
xpred(k − τ + 2), . . . , xpred(k + τ) can be predicted. Note
that if a given input u(d) at sample d has been optimized
and transmitted, then it has been applied; on the other
hand, if nothing has been transmitted, the nominal control
input computed on the drone – which may differ from the
one computed off-board – will be applied. Based on the
predicted state xpred(k+τ) and the corresponding nominal
input, the control input can be optimized as in Section 3.2;
afterwards, it can be transmitted, if required.

Consider now that at sample k a measurement is received,
a measurement that actually refers to the state at time
k − τ + 1. At this point, the Kalman filter can be used to
update the prediction xpred(k−τ+1), i.e., obtain x̂(k−τ+
1). In turn, the states xpred(k−τ+2), xpred(k−τ+3), . . . ,
xpred(k + τ + 1) and the corresponding inputs that have
not been transmitted to the drone can be re-predicted.



3.4 Waypoint generation

Although the goal is to track a given reference point,
instead of using it directly in the control law, waypoints
are generated along the shortest path from the drone to
the goal. Next to potentially reducing the overshoot due
to obstacle avoidance, intermediate goal points have the
advantage of limiting the control input, and thus avoiding
saturation. Waypoints are regenerated every I iterations
during flight, and the next points are placed at a distance
p from the current positions on the direction to the final
point.

4. SIMULATION RESULTS

This section presents the simulation results. The system
has been implemented in discrete time in Matlab version
R2022a. The scenario we consider concerns 2 robots and 2
obstacles. The initial positions 3 of the robots are ξ1(0) =

(−2 0.5 0.5)
T
and ξ2(0) = (−2 −0.5 −0.5)

T
and the goal

points are ξ1g = (2 −0.5 −0.5)
T

and ξ2g = (2 0.5 0.5)
T
,

respectively. The minimum safe distance between the two
robots is r12 = r21 = 0.6. The obstacles’ positions are

ξo1 = (0.3 −0.25 0.25)
T

and ξo2 = (0.3 0.25 −0.5)
T
, and

the minimum distance to be maintained from them is
ro1 = ro2 = 0.3. The initial, goal, and obstacle positions
are chosen such that the nominal trajectories (without
obstacle avoidance) intersect and go through the obstacles.
Drones are using by default the linear controller designed
in Section 2. It is important to note that although the
optimization is performed using the linear model of the
drones, the input, independent of the employed controller,
is applied to the nonlinear model. Furthermore, for predic-
tion during delay compensation also the nonlinear model
is used. Waypoints are recomputed after every 30 samples
and positioned at a distance of 0.75.

Each robot detects objects (obstacles and drones) in a
range of 0.6. To simulate on-line detection, the distance be-
tween robots and obstacles are checked every sampling pe-
riod. Once an object is detected, optimization is activated,
i.e., the optimization problem (24) is solved. We chose
α(hi) = 100h3i , a possibility suggested by Glotfelter et al.

(2017). Whether all constraints satisfy ḣi(x) ≥ −α(hi(x))
is verified a posteriori.

First, we consider a scenario without noise and delay. It
is assumed that all states are perfectly known and the
computed inputs are transmitted instantly. The results for
this scenario are presented in Figure 2. As can be seen, the
drones avoid the obstacles and arrive at their goal position
in 390 samples.

Second, we consider the case when all states are measured,
but the measurements are corrupted by zero mean white
noise, with covariances Q = 10−4I, R = 10−4I. Still,
we assume that the inputs can be instantly transmitted,
i.e., there is no delay. The Kalman filter described in
Section 2 is employed to filter the states. Due to the
presence of noise, the drones are stopped when the norm
of the difference between their current state and their goal
position is less then 0.3. Based on 20 tests, the average

3 In what follows, all values are given in meters.

Fig. 2. Obstacle avoidance without noise and delay.

number of samples required to get to the goal position
was 795.2, with standard deviation 273.58. A trajectory is
shown in Figure 3.

Fig. 3. Obstacle avoidance in the presence of noise.

Finally, we consider the realistic scenario when next to
the presence of noise there is a 5-sample delay due to
network transmission, both when transmitting the inputs
and receiving the measurements. Thus, the Kalman filter
is used to update the past estimates of the states; states
and inputs are predicted up to 5 samples to compensate
for the delay, and based on the prediction, the input is
optimized and transmitted, if necessary. Similarly to the
previous case, 20 tests have been performed, the drones
having been stopped when the difference between the
states of the drones and the goal positions is less then
0.3. The average number of samples necessary to reach
the final position was 756.6, with a standard deviation
of 326.9. Although the average number of steps is about
the same, the standard deviation is understandably higher
than in the no-delay case, as the optimization is based on
predictions with larger uncertainty. A trajectory for this
case is shown in Figure 4, illustrating the extra samples
due to the uncertainty.



Fig. 4. Obstacle avoidance in the presence of noise and
transmission delay.

5. CONCLUSIONS AND FUTURE WORK

This paper presented an optimal control approach for mul-
tiple drones, for obstacle avoidance in a 3D space. The lim-
ited computation capabilities of the drones was taken into
account by splitting the control structure in two: a baseline
linear controller and filter running on the drone, and a
remote supervisory controller responsible for planning and
obstacle avoidance. The supervisory controller consists in a
prediction based optimization algorithm which calculates
the minimal deviation from the trajectory given by the
baseline controllers, such that collisions are avoided. Mul-
tiple simulations using the nonlinear model of a Parrot
Mambo, realistic noise and network transmission delays,
illustrate that our approach works well, the drones arriving
at the goal points, while avoiding each other and the obsta-
cles. Our future work will focus on testing this approach in
experiments on the Parrot Mambo drones, where some of
the states will be measured with OptiTrack cameras, while
others will be estimated using extended Kalman filters.
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