
Stabilization of TS fuzzy systems with
time-delay and nonlinear consequents
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Abstract: This paper proposes a controller design method for Takagi-Sugeno fuzzy systems
with nonlinear consequents when the input is affected by time-delay. We consider that the
membership functions may depend on both current and delayed states. To handle the nonlinear
consequents a slope bounded condition is used. The design conditions are formulated in terms
of linear matrix inequalities. A numerical example illustrates the obtained results.
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1. INTRODUCTION

Time-delay systems are common in real-life, in partic-
ular in transportation (Laurain et al., 2017), biological
systems (Chang and Chen, 2010), networked control sys-
tems (Ma et al., 2013), etc. When there is a significant
distance between the actuator and the system, the effect
of the actuator is not instantaneous, but happens with
a delay. In networked controlled systems, where the con-
troller and the actuator are not at the same location, the
time-delay varies also based on the load of the communi-
cation network (Ma et al., 2013). Time-delays are usually
non-negligible factors, and need to be considered in the
controller design.

Therefore, stability and stabilizing control of time-delay
systems are major research topics, and they have been
widely explored in the past years. A general overview of
delay-dependent and delay-independent stability analysis
of linear time-delay systems and the Lyapunov functionals
used to derive stability conditions have been presented
in (Fridman, 2014), together with some results on stability
and stabilization of nonlinear time-delay systems. The
problem of stabilizing controller design for single input
single output linear systems where the delay is a transport
delay and input-dependent, has been explored in (Bresch-
Pietri et al., 2014), where a prediction based controller
has been designed. Yin et al. (2011) presents a robust H∞
controller for Lur’e systems with bounded nonlinearities.
Although there is an extension in the direction of nonlinear
systems, the case of input delays are not discussed in (Yin
et al., 2011), and the nonlinearities need to fulfill slope and
sector bounded conditions.

Nonlinear time-delay systems are often represented in a
polytopic form, among which widely used are the Takagi-
Sugeno (TS) fuzzy models. The TS model is classically
a convex combination of local linear models. Conditions
in this framework are usually formulated as Linear Matrix
Inequalities (LMIs), as these are easy to solve with existing
convex optimization methods (Lendek et al., 2011).

Recently, stability analysis and controller design of time-
delay TS models has attracted significant interest. (Yang
et al., 2014) propose a stability criteria based on a quadrat-
ically convex combination approach for continuous-time
TS systems with time-varying delay using an augmented
Lyapunov-Krasovskii functional. (Zhang et al., 2020) de-
velop conditions for the stabilization of TS models using
a PDC controller based on an impulse-time-dependent
Lyapunov function. (Gao et al., 2019) present improved
delay-dependent conditions for stability and stabilization
of TS models. However, in all the results, the delay in the
input is rarely considered. This is an important issue, as,
when using a fuzzy controller, a delay in the input leads
to delay in the membership functions of the controller.

TS models are often developed using the sector nonlinear-
ity approach (Ohtake et al., 2001), as this leads to a fuzzy
model that is equivalent to the original nonlinear model
in a convex set of the state-space. However, when using
this approach the number of local models may increase
exponentially with the number of nonlinearities, and the
analysis or design problem may become computationally
intractable. A possibility to avoid the exponential increase
of the local models is to keep some of the nonlinearities
in their original form and consider them as local nonlin-
earities. This idea has been used for both observer and
controller design in several results, both in continuous and
discrete-time case, see e.g., (Dong et al., 2009, 2010; Moodi
and Farrokhi, 2013, 2015; Nagy and Lendek, 2019).

Therefore, in this paper we consider time-delay TS sys-
tems with nonlinear consequents. A similar approach has
been presented by Moodi and Kazemy (2019), where the
nonlinearities fulfill a sector bounded condition. In our
approach we use a slope bounded condition, which can
handle different types of nonlinearities. Furthermore, we
consider TS models with time-delay in the input and where
the membership functions may depend on both current
and delayed states.

The rest of the paper is organized as follows. In Sec-
tion 2 we introduce the necessary concepts for time-delay



TS fuzzy models with nonlinear consequents. Section 3
presents the considered controller structure and the con-
ditions developed for controller design. The controller is
illustrated on an example in Section 4 and a comparison
with another result from the literature is also presented
here. Section 5 concludes the paper.

Notations. Let F = FT ∈ Rn×n be a real symmetric ma-
trix; F > 0 and F < 0 mean that F is positive definite and
negative definite, respectively. I denotes the identity ma-
trix and 0 the zero matrix of appropriate dimensions. The
symbol ∗ in a matrix indicates a transposed quantity in

the symmetric position, for instance

(
P ∗
A P

)
=

(
P AT

A P

)
,

and A+ ∗ = A+AT . The notation diag(f1, ..., fn), where
f1, ..., fn ∈ R, stands for the diagonal matrix, whose
diagonal components are f1, ..., fn; ‖x‖, where x ∈ Rnx ,
is the Euclidean norm of x.

2. PRELIMINARIES AND PROBLEM STATEMENT

The time-delay TS fuzzy model is a convex combination
of linear models, having the form:

ẋ(t) =

s∑
i=1

s∑
j=1

hi(z(t))hj(z(t− τ(t)))

(Aijx(t) +Dijx(t− τ(t)) +Biju(t− τ(t)))

(1)

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the
control input, s is the number of rules, z(t) ∈ Rnz is
the premise vector. τ(t) is the varying time-delay and hi,
i = 1, ..., s are nonlinear functions with the property

hi ∈ [0, 1], i = 1, ..., s,

s∑
i=1

hi(z) = 1. (2)

These nonlinear functions are called the membership func-
tions. Matrices Aij , Bij , and Dij represent the local mod-
els. Note that in this paper we consider state-feedback
controller design, and we assume that all the states are
available and accurately measured. For simplicity in what
follows we omit in the notation the explicit time depen-
dency of the delay function, i.e. we use τ instead of τ(t).
Throughout this paper, the following shorthand notations
are used to represent convex sums of matrix expressions:

Fz =

s∑
i=1

hi(z(t))Fi, (3)

Fzτ =

s∑
i=1

hi(z(t− τ))Fi, (4)

Fzzτ =

s∑
i=1

hi(z(t))

s∑
j=1

hj(z(t− τ))Fij . (5)

Based on this notation, (1) can be rewritten as

ẋ(t) =Azzτx(t) +Dzzτx(t− τ) +Bzzτu(t− τ) (6)

To develop our results the following lemmas and property
are considered.

Lemma 1. (Congruence). Given matrix P = PT and a full
column rank matrix Q, it holds that

P > 0 ⇒ QPQT > 0.

Estimation and control problems with varying time-delay
will be defined as a triple sum negativity problem having
the form
s∑
i=1

s∑
j=1

s∑
k=1

hi(z(t))hj(z(t− τ))hk(z(t− τ))Fijk < 0, (7)

with symmetric matrices Fijk, and nonlinear functions hi,
i = 1, ..., s, satisfying the convex sum property in (2).

Lemma 2. (Tuan et al. (2001)). Equation (7) is satisfied if
the following conditions hold

Fijj ≤0

2

s− 1
Fijj + Fijk + Fikj ≤0 ∀i, j, k = 1, ..., s, j 6= k.

(8)

Property 1. (Schur complement) Let M = MT =[
M11 M12

MT
12 M22

]
, with M11 and M22 square matrices of ap-

propriate dimensions. Then:

M < 0⇔
{
M11 < 0

M22 −MT
12M

−1
11 M12 < 0

⇔
{
M22 < 0

M11 −M12M
−1
22 M

T
12 < 0

(9)

As mentioned before, a shortcoming of TS models obtained
by the sector nonlinearity approach is that the number
of local models may be exponential in the number of
nonlinearities. In order to reduce the number of local
models, we consider a form with nonlinear consequents,
i.e.,

ẋ(t) =Azzτx(t) +Dzzτx(t− τ)

+Bzzτu(t− τ) +BzzτGψ(Hx(t)).
(10)

The quantity ψ(Hx(t)) ∈ Rr is an r-dimensional vector
where H ∈ Rr×nx and each entry is a function of a linear
combination of the states, i.e.

ψi = ψi(

n∑
j=1

Hijxj), i = 1, ..., r.

To develop our results, the elements in vector ψ(Hx(t))
must fulfill the following assumption.

Assumption 1. For any i ∈ {1, ..., r} there exist constants
0 < bi ≤ ∞, so that

0 ≤ ψi(v)− ψi(w)

v − w
≤ bi, ∀v, w ∈ R, v 6= w. (11)

As a remark, let us consider the case when the nonlinear-
ities do not satisfy (11), but the following is true:

Assumption 2. For any i ∈ {1, ..., r} there exist constants
0 ≤ ai < bi ≤ ∞, so that

ai ≤
ψi(v)− ψi(w)

v − w
≤ bi, ∀v, w ∈ R, v 6= w. (12)

If ai 6= 0, a new function can be defined ψ̃i(v) := ψi(v)−
aiv, which satisfies (11), with ãi = 0, and b̃i = bi − ai,
and the new terms are added to Azzτ . Assumption 2
intuitively bounds the rate of change of the nonlinearity,
and corresponds to a global Lipschitz property of ψi, when
ψi is continuously differentiable. This assumption is made
by Arcak and Kokotović (1999, 2001); Chong et al. (2012);
Draa et al. (2018).



As in (Chong et al., 2012), in view of (11), there exist
δi(t) ∈ [0, bi], so that for any v, w ∈ R

ψi(v)− ψi(w) = δi(t)(v − w). (13)

Let δ(t) = diag(δ1(t), ..., δr(t)).

A somewhat restrictive assumption we make is on the form
of the nonlinear part, i.e. BzzτGψ(Hx(t)). Note however
that such a form often appears, e.g. for mechanical systems
in classical state-space form obtained from Euler-Lagrange
equations. To see this, let us consider the model of a robot
arm

M(θ)θ̈ = −F (θ, θ̇) + u, (14)

where u represents the torque; θ, θ̇ and θ̈ are the angles,
angular velocities and angular accelerations. M(θ) is the

mass matrix, F (θ, θ̇) contains the Centrifugal, Coriolis and
gravity matrices. For the classical state-space representa-
tion equation (14) must be multiplied with the inverse of
the mass matrix. In this context Bzzτ is M(θ)−1.

3. MAIN RESULTS

In this section we develop sufficient conditions for con-
troller design.

To this end, the following control law is considered:

u(t) = −Kzx(t)−Gψ(Hx(t)), (15)

where Kz =
∑s
k=1 hk(z(t))Kk, contains the TS fuzzy

controller gains. Based on (10) and (15), the closed loop
system is:

ẋ(t) =Azzτx(t) +Dzzτx(t− τ) +BzzτGψ(Hx(t))

+Bzzτ (−Kzτx(t− τ)−Gψ(Hx(t− τ)))

=Azzτx(t) + (Dzzτ −BzzτKzτ )x(t− τ)

+BzzτG(ψ(Hx(t))− ψ(Hx(t− τ))).

(16)

Furthermore, by using Assumption 1 we obtain:

ψ(Hx(t))− ψ(Hx(t− τ)) =δ(t)(Hx(t)−Hx(t− τ))

=δ(t)H(x(t)− x(t− τ)),
(17)

and for simplification we denote η := H(x(t) − x(t − τ)).
This leads to the following form for (16):

ẋ(t) =Azzτx(t) + (Dzzτ −BzzτKzτ )x(t− τ)

+BzzτGδ(t)η

η =H(x(t)− x(t− τ)).

(18)

In (Fridman, 2014) several candidate Lyapunov function-
als are presented to prove stability for delayed-time sys-
tems. We chose the following simple one for our approach:

V (t, x) =xT (t)Px(t) +

∫ t

t−τ
xT (s)Qx(s)ds (19)

This form of the Lyapunov function allows us to find delay-
independent conditions, i.e. the conditions depend only on
the derivative of the delay function but not the magnitude.
In the following theorem we summarize the main result of
this work.

Theorem 1. Consider the closed loop system (18), and
assume that τ is differentiable, τ̇ ≤ d and d ∈ [0, 1) is
a given constant. If there exist matrices P = PT > 0,
Q = QT > 0, M = diag(m1, ...,mr) > 0, Ni, i = 1, ..., s,
and constant ε > 0 so that

Fijj ≤0

2

s− 1
Fijj + Fijk + Fikj ≤0 ∀i, j, k = 1, ..., s, j 6= k.

(20)
where
Fijk =
PATij + ∗+Q DijP −BijNk BijGM + PHT P

∗ −(1− d)Q −PHT 0
∗ ∗ ν(M) 0
∗ ∗ ∗ −εI

 ,
(21)

and ν(M) = −2Mdiag( 1
b1
, ..., 1

br
), then the closed loop

system (18) is asymptotically stable

Proof. Consider the following candidate
Lyapunov-Krasovskii functional:

V (t, x) =xT (t)P̃ x(t) +

∫ t

t−τ
xT (s)Q̃x(s)ds, (22)

where P̃ = P̃T > 0 and Q̃ = Q̃T > 0. The derivative of V
along the trajectories of x is

V̇ (t, x) =2ẋ(t)T P̃ x(t) + xT (t)Q̃x(t)

− (1− τ̇(t))xT (t− τ)Q̃x(t− τ)
(23)

Using τ̇(t) ≤ d, and denoting

χ :=

[
x(t)

x(t− τ)
δ(t)η

]
(24)

we obtain

V̇ (t, x) ≤ χT
A P̃ (Dzzτ −BzzτKzτ ) P̃BzzτG

∗ −(1− d)Q̃ 0
∗ ∗ 0

χ (25)

where A = ATzzτ P̃ + P̃Azzτ + Q̃.

Next we consider the following inequality:A+ε̃I P̃ (Dzzτ−BzzτK) P̃BzzτG+HT M̃

∗ −(1− d)Q̃ −HT M̃

∗ ∗ ν(M̃)

 ≤ 0, (26)

where M̃ = diag(m̃1, ..., m̃r) > 0. Using (26) in combina-
tion with (25) to obtain

V̇ (t, x) + χT

ε̃I 0 HT M̃

∗ 0 −HT M̃

∗ ∗ ν(M̃)

χ ≤ 0, (27)

leads to

V̇ (t, x) ≤− ε̃x(t)Tx(t)− 2(x(t)− x(t− τ))THT M̃δ(t)η

− (δ(t)η)T ν(M̃)δ(t)η.
(28)

Since ηT = (x(t)− x(t− τ))THT , we have

V̇ (t, x) ≤
−ε̃x(t)Tx(t)− 2ηT M̃δ(t)η − (δ(t)η)T ν(M̃)δ(t)η

= −ε̃‖x(t)‖2

−2ηT
(
M̃δ(t)− δ(t)T M̃diag(

1

b1
, ...,

1

br
)δ(t)

)
η.

(29)

Both M̃ and δ(t) are diagonal matrices, so we can examine
the terms:

m̃iδi(t)− m̃i
1

bi
δi(t)

2 = m̃iδi(t)

(
1− δi(t)

1

bi

)
. (30)



The term δi(t) ∈ [0, bi], so

(
1− δi(t)

1

bi

)
≥ 0, and since

m̃i > 0, the following holds,

2ηT
(
M̃δ(t)− δ(t)T M̃diag(

1

b1
, ...,

1

br
)δ(t)

)
η ≥ 0. (31)

Finally, we obtain

V̇ (t, x) ≤ −ε̃‖x(t)‖2. (32)

Now we consider (26). Lemma 2 can be used to define

sufficient conditions, but due to the terms P̃BijKk the
inequalities are bilinear. To remove this restriction, we pre
and post multiply with (Congruence, Lemma 1):P̃−1 0 0

0 P̃−1 0

0 0 M̃−1

 ,
and (26) becomesB (Dzzτ−BzzτK)P̃−1 BzzτGM̃

−1+P̃−1HT

∗ −(1− d)P̃−1Q̃P̃−1 −P̃−1HT

∗ ∗ ν(M̃−1)

 ≤ 0,

(33)

where B = P̃−1Azzτ + ATzzτ P̃
−1 + ε̃P̃−2 + P̃−1Q̃P̃−1.

Next, using the Schur complement on ε̃P̃−2, and denoting
P = P̃−1, Q = P̃−1Q̃P̃−1, M = M̃−1, N = KP̃−1 and
ε = 1

ε̃ we obtain the following inequality:PA
T
zzτ+∗+Q DzzτP−BzzτNzτ BzzτGM+PHT P
∗ −(1− d)Q −PHT 0
∗ ∗ ν(M) 0
∗ ∗ ∗ −εI


≤ 0.

(34)
The LMI conditions in (20) are obtained by applying
Lemma 2 on (34).

4. EXAMPLES

In the following, first we illustrate the use of the conditions
of Theorem 1, then we compare our results with the results
obtained using the conditions presented by Moodi and
Kazemy (2019).

4.1 Numerical example

For simplicity we omit the time dependency of the states
when there are no delays. Consider the following nonlinear
system:[

ẋ1
ẋ2

]
=

[
−2 0
0 −6 + sin(x1)

] [
x1
x2

]
+

[
2 1

0.9 + 0.1 sin(x1) 4 + sin(x1(t− τ))

] [
x1(t− τ)
x2(t− τ)

]
+

[
0

0.75 + 0.25 sin(x1)

]
(u(t− τ) + α1(x1) + α2(x2)) ,

(35)
where α1(x1) and α2(x2) are two nonlinear functions which
satisfy Assumption 1. For the simulations we consider

α1(v) = α2(v) = cos(v) + v, (36)

and the constants that satisfy Assumption 1 are b1 =
b2 = 2, but the obtained results are valid for any other

Fig. 1. Unstable open-loop system

nonlinear functions which satisfy Assumption 1 with b1
and b2. The time-delay function, τ , is slowly varying with
τ̇(t) ≤ d = 0.01, and has the form: τ(t) = 1+0.5 cos(0.01t).
For the rest of the nonlinearities we consider the sector
nonlinearity approach by (Ohtake et al., 2001) to obtain
the local matrices:

A11 = A12 =

[
−2 0
0 −5

]
, A21 = A22 =

[
−2 0
0 −7

]
D11 =

[
2 1

0.8 3

]
, D12 =

[
2 1

0.8 5

]
, G = [1 1] ,

D21 =

[
2 1
1 3

]
, D22 =

[
2 1
1 5

]
, H =

[
1 0
0 1

]
B11 = B12 =

[
0

0.5

]
, B21 = B22 =

[
0
1

]
,

h1(z) =
1− sin(z)

2
, h2(z) = 1− h1(z), z = x1.

(37)

The initial conditions for the state vector is x0 = [1 2]
T

.
The open-loop system without the control is unstable. This
can be seen on Fig 1. Applying Theorem 1 the obtained
control gains are the following:

K1 = [5.62 6.99] , K2 = [2.38 5.06] . (38)

The obtained results can be seen on Fig. 2, i.e, this control
stabilizes the system.

4.2 Comparison with (Moodi and Kazemy, 2019)

In this section we compare our approach to that of Moodi
and Kazemy (2019). First of all, our approach considers
slowly varying delays, which satisfy τ̇ ≤ d, while in (Moodi
and Kazemy, 2019) only fixed delays can be handled. On
the other hand, our conditions are valid for any magnitude
of the delay, while the conditions of Moodi and Kazemy
(2019) are delay-dependent. To further see the differences
we consider the following simple example:

ẋ(t) = Ax(t) +Dx(t− τ) +Bu(t) +BGψ(Hx(t)) (39)

where

A =

[
−2 0
0 −5

]
, D =

[
2 a1
3 4

]
, B =

[
0
1

]
,

G = a2, H = [0 1] ,

(40)

ψ(v) is a nonlinear function which satisfies Assumption 1
with b = 2, and a1 and a2 are two parameters. Because of



Fig. 2. Convergence of closed loop states

Fig. 3. Feasible solutions, ’o’-Theorem 1, ’x’-Corollary 1
from (Moodi and Kazemy, 2019)

condition (11) we can handle nonlinearities that are slope-
bounded but not sector-bounded. For the sake of example
we assume that ψ(v) is also sector-bounded with the same
constant, to be able to apply the conditions of Corollary 1
in (Moodi and Kazemy, 2019). Note that in the feasibility
analysis we do not need the exact form of the nonlinearity.

The maximum τ for (39), for which Corollary 1 in (Moodi
and Kazemy, 2019) gives feasible solution is τ = 0.6.

Fig. 3 shows a map of feasible solutions. Although we ob-
tain a feasible solution for a larger number of (a1, a2) pairs,
it can be seen that the two results are complementary, and
they do not include in each other.

5. CONCLUSIONS AND FUTURE WORK

This paper considered stabilization of time-delay Takagi-
Sugeno fuzzy systems with nonlinear consequents. A gen-
eral model in which the membership functions may depend
on both current and delayed states has been chosen, and
the local nonlinearities were assumed to be slope-bounded.
Sufficient conditions for stabilization of the TS system
have been formulated in terms of linear matrix inequalities.
The design of the proposed controller has been illustrated

on a numerical example. In our future work we will con-
sider more complex Lyapunov-Krasovskii functionals and
transport delay, together with uncertainties in the model.
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