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Abstract: In this paper, a novel adaptive Takagi-Sugeno (TS) fuzzy observer-based controller
is proposed. The closed-loop stability and the boundedness of all the signals are proven by
Lyapunov stability analysis. The proposed controller is applied to a flexible-transmission exper-
imental setup. The performance for constant payload in the presence of noisy measurements
is compared to a controller based on a classical extended Luenberger observer. Simulation and
real-time results show that the proposed observer-based feedback controller provides accurate
position tracking under constant and varying payloads.
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1. INTRODUCTION

Robust control is essential for current industrial automa-
tion systems and will become even more important in
applications like robotics, where future robots will be
adopted for tasks in unstructured environments. In such
settings, control algorithms will have to deal with a large
degree of uncertainty and unexpected disturbances, which
can lead to reduced performance and even to instability.
Variable payload causes uncertainty in the dynamics and
consequently the deterioration of performance. In this
paper, we address the design of an observer that esti-
mates the payload mass and so it enables the controller
to perform adequately even under large variations of the
payload.

Many methods have been proposed for the control of
robotic manipulators and similar mechatronic systems.
However, most of them assume constant payload and there
are only a few techniques addressing the case of varying
payload. They can be classified into three broad groups:
adaptive controllers (Jin, 1998; Chien and Huang, 2007;
Wai and Yang, 2008; Hashemi et al., 2012; Li et al., 2013),
robust control methods (Su and Leung, 1993; Rojko and
Jezernik, 2004; Liang et al., 2008; Pi and Wang, 2011; Cor-
radini et al., 2012) and observer-based controllers (Leahy
et al., 1991; Nho and Meckl, 2003; Savia and Koivo,
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2004). In adaptive control, the uncertainty in the system
is addressed through online adjustment of the control
parameters. A common drawback of all adaptive schemes
is that when fast variations in the system dynamics occur,
the convergence of the controlled variable to the reference
signal is slow. In robust control, the uncertainty caused
by the payload variation is compensated by a suitable
choice of fixed control parameters. This always involves a
tradeoff between robustness and performance. Observer-
based approaches employ payload estimators, typically
based on nonlinear models, such as fuzzy systems or neural
networks (Leahy et al., 1991; Nho and Meckl, 2003; Savia
and Koivo, 2004; Abiko and Yoshida, 2004), trained off-
line using measurement data. Once the payload mass is
accurately estimated, standard control methods can be
applied that make use of this estimate.

In this paper, we propose a novel nonlinear observer for the
simultaneous velocity and payload estimation. We prove
that under specific conditions, the estimates converge
exponentially to the true velocity and payload. Observer-
based output-feedback controller is employed. Compared
to results from the literature, the proposed observer-based
control scheme has the following advantages, which also
constitute the main contributions of our paper: (i) the use
of the mechanistic plant model for estimation, without the
need to train a model through experiments; (ii) velocity
measurements are not needed for payload estimation;
(iii) exponentially stable adaptive velocity and payload
estimation; (iv) estimation of the payload connected to
the drive via a flexible link. The effectiveness of the



control scheme is demonstrated using real-time control
experiments with a lab-scale flexible-transmission system.

The rest of the paper is organized as follows. Takagi-
Sugeno fuzzy modeling and observer design are explained
in Section 2.1. Feedback linearizing control for the esti-
mated system is described in Section 2.2 and experimental
results are provided in Section 3. Section 4 concludes the
paper.

2. METHODS

2.1 Takagi-Sugeno Fuzzy Observer Design

A large class of nonlinear systems can be exactly repre-
sented by Takagi-Sugeno (TS) fuzzy models (Takagi and
Sugeno, 1985) on a compact subset of the state-space.
Several types of observers have been developed for TS
fuzzy systems, among which fuzzy Thau-Luenberger ob-
servers (Tanaka et al., 1998; Tanaka and Wang, 1997),
reduced-order observers (Bergsten et al., 2001), (Berg-
sten et al., 2002), and sliding-mode observers (Palm and
Bergsten, 2000). Most design methods for TS observers
rely on solving a linear matrix inequality (LMI) feasibility
problem.

In order to design a TS fuzzy observer, the nonlinear
system model must first be transformed to a TS fuzzy
model by using the sector nonlinearity approach (Ohtake

et al., 2001). Scheduling variables zj ∈ [zjmin, z
j
max], j =

1, 2, . . . , p are chosen as the variables that appear in the
nonlinearities of the system model. Then, for each zj, two
membership (weighting) functions are constructed:

h1(zj) =
zjmax − z

z
j
max − z

j
min

, h2(zj) = 1− h1(zj), (1)

with h1, h2 ∈ [0, 1] and h1(zj)+ h2(zj) = 1. Note that the

following equation holds: zj = h1(zj)z
j
min + h2(zj)z

j
max.

Consequently, the TS fuzzy system consists of M = 2p

rules. The degree of fulfillment of each rule is computed as
the product of the membership functions in the antecedent
of that rule, i.e., hi(z) =

∏p

j=1 hi(zj), where hi(zj) is

either h1(zj) or h2(zj), depending on which weighting
function is used in the rule. This approach yields an exact
representation of the nonlinear model in the following
form:

ẋ =

M
∑

i=1

hi(z)(Aix+Biu+ ai)

y = Cx

(2)

where x is the state, y the output, and u the control input.
The constant matrices and vectors Ai, Bi, C, and ai are
constructed by substituting the elements corresponding to
the weighting function used in rule i into the nonlinear
system matrix and vector functions. In the sequel, we
assume that z is measured.

For the above TS model, the Thau-Luenberger fuzzy ob-
server (Palm and Driankov, 1999) can be derived (Oudghiri
et al., 2007; Herrera et al., 2007; Lendek et al., 2010) in
the following form:

˙̂x =

M
∑

i=1

hi(z)
(

Aix̂+Biu+ ai + Li(y− ŷ)
)

,

ŷ = Cx̂.

(3)

where Li are the observer gains. The pairs (Ai,C) are
assumed to be observable. The purpose of the observer is
to estimate the real states of (2), which is achieved if the

error dynamics ˙̂e = ẋ − x̂ are asymptotically stable. The
error dynamics can be written as

˙̂e =

M
∑

i=1

hi(z)(Ai − LiC)ê (4)

Stability conditions for (4) are derived by using the

quadratic Lyapunov function V = ê
T
Pê.

Theorem 1: (Tanaka et al., 1998) The error dynamics
(4) are asymptotically stable, if there exists a common

P = PT > 0 such that

P(Ai − LiC) + (P(Ai − LiC))T < 0

i = 1, . . . ,M
(5)

Remark: With the change of variables Mi = PLi, i =
1, . . . ,M , (5) is transformed into

(PAi −MiC) + (PAi −MiC)
T < 0

i = 1, . . . ,M
(6)

which is a linear matrix inequality that can be solved by
convex optimization methods (e.g., using Matlab’s Robust
control toolbox).

The error dynamics of the TS observer (4) can be designed
with a desired convergence rate α by using Theorem 2.

Theorem 2: (Tanaka et al., 1998) The convergence rate
of the error dynamics (4) is at least α > 0, if there exists

a common P = PT > 0 such that

P(Ai − LiC) + (P(Ai − LiC))T + 2αP < 0

i = 1, ...,M
(7)

Similarly to Theorem 1, LMIs can be obtained using the
change of variables Mi = PLi, i = 1, . . . ,M .

2.2 Observer-based feedback-linearizing control

Consider an nth order SISO nonlinear dynamic system of
the form

x(n) = f(χ) + g(χ)u,

y = x,
(8)

where χ =

[

x
Θ

]

is an augmented state vector consisting of

the states x = [x, ẋ, . . . , x(n−1)]T ∈ R
n×1 and parameter

vector Θ, f and g are nonlinear bounded functions, u, y ∈
R are the control input and system output, respectively.

The aim of the controller is to generate an appropriate
control signal such that the system follows a given bounded
reference yr. The tracking error is defined as e = yr −
y, and together with its n − 1 derivatives it forms the
vector e = [e, ė, . . . , e(n−1)]. The feedback linearizing
controller (Slotine and Li, 1991) is defined so that it cancels
the nonlinearity of the system (8):

u =
1

g(χ)
[−f(χ) + y(n)r + λ

Te]. (9)



Function g(χ) in (8) is assumed to be g(χ) 6= 0 for
∀χ ∈ Uc, where Uc denotes the controllability region. By
substituting (9) into (8) we obtain the closed-loop system
governed by

e(n) + λ1e
(n−1) + . . .+ λne = 0 (10)

with the constants λi, i = 1, 2, ..., n appropriately chosen
such that the roots of the polynomial sn+λ1s

(n−1)+ . . .+
λn = 0 are in the open left-half of the complex plane.
This implies that limt→∞ e(t) = 0, which means that the
output converges asymptotically to the desired reference.

For the feedback linearizing control based on the estimated
states, the control law is written as

u =
1

g(χ̂)
[−f(χ̂) + y(n)r + λ

T e]. (11)

By substituting (11) into (8), we obtain the error dynamics

ė = Λe+Bδ + Λ̄ε̂ (12)

with δ defined as δ = f(χ̂)−f(χ)+(g(χ̂)−g(χ))u, ε̂ = χ−χ̂
the state estimation error, and Λ ∈ R

n×n, B ∈ R
n×1,

Λ̄ ∈ R
n×n defined as

Λ =











0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 1

−λn −λn−1 . . . . . . . . . . . . −λ1











Λ̄ =







λ1 0 . . . 0
0 λ2 . . . 0
. . . . . . . . . . . .
0 0 . . . λn






B =









0
0
...
1









.

(13)

Since the input signal is bounded, f(χ) and g(χ) are
defined on a compact set and are smooth, δ can be
bounded as follows

δ = f(χ̂)− f(χ)) + (g(χ̂)− g(χ))u = ∆̄T
ε̂

with ‖∆̄‖ ≤ ρ
(14)

for some ρ > 0. The error dynamics can then be written
as

ė = Λe+ B̄ε̂ (15)

where B̄ = B∆̄ + Λ̄ and ‖B̄‖ ≤ ν for some ν > 0.

Theorem 3: The nonlinear system (8) is asymptotically
stabilized by the control law (11) under Assumption 1, if

there exist P1 = PT
1 > 0, P2 = PT

2 > 0, Q1 = QT
1 > 0

and Li, i = 1, . . . ,M , such that

P2(Ai − LiC) + (P2(Ai − LiC))T

+2αP2 + ν2In < 0
(

Q1 P1

P1 2In

)

> 0

ΛTP1 +P1Λ < −Q1.

(16)

α > 0, ν > 0, and In is the n× n identity matrix.

Proof: The Lyapunov function is chosen as

V =
1

2
eTP1e+

1

2
ε̂
T
P2ε̂ (17)

where e and ε̂ are the tracking and estimation error vectors
and P1,Q1 ∈ R

n×n and Λ in (13) satisfy

ΛTP1 +P1Λ < −Q1. (18)

Using (12)-(18) and the completion of squares XTY +
Y TX ≤ XTX + Y TY , the derivative of the Lyapunov
function is obtained as

V̇ =
1

2
ėTP1e+

1

2
eTP1ė+

1

2
˙̂εTP2ê+

1

2
ê
T
P2

˙̂ε

≤ −eTQ1e+
1

2
(eTP1B̄ε̂+ ε̂

T B̄
T
P1e)+

M
∑

i=1

1

2
ωi(z)(ε̂

T [P2(Ai − LiC)]ε̂+

ε̂
T [(Ai − LiC)TP2]ε̂)

≤ −eTQ1e+
1

2
eTPT

1 P1e+
1

2
ε̂
T B̄

T
B̄ε̂+

M
∑

i=1

ωi(z)ε̂
T [P2(Ai − LiC)]ε̂

≤ −eT (Q1 −
1

2
PT

1 P1)e+

M
∑

i=1

ωi(z)ε̂
T [P2(Ai − LiC) +

1

2
ν2In]ε̂

(19)

Given that (16) holds, the terms in the final inequality
are always negative definite, meaning that the closed-loop
control system is asymptotically stable.

3. REAL-TIME CONTROL OF A
FLEXIBLE-TRANSMISSION SYSTEM

The flexible transmission system, shown in Figure 1, is
controlled to illustrate the real-time performance of the
observer-based controller under varying payload.

Fig. 1. Flexible-link system. On the left is the driving
motor and on the right the payload.

A DC motor drives a disk, which is connected by an elastic
belt to another disk with a payload. Due to the low stiffness
of the belt, the tracking of the payload is very difficult
compared to a rigid manipulator. The belt stretches when
moving the payload, which makes the system difficult
to control. The complete model of the system, shown in
Figure 1, is

α̈ =
−K2 − bR

RJ
α̇−

k

J
(α − β) +

K

RJ
u,

β̈ =
k

J
(α− β) +m

gL

J
sin(β),

ṁ = 0.

(20)

with α the angle of the motor, α̇ the angular velocity of the
motor, β the angle of the payload, β̇ the angular velocity of
the payload, and m the unknown payload. The definitions
of the constants in (20) and their approximate values are
given in Table 1. The TS observer is constructed by using α



and β as measurements, while β̇ andm are to be estimated.
The flexible system can be made feedback linearizable via
a simple nonlinear coordinate transformation (Spong and
Vidyasagar, 1989) as follows.

χ̇1 = χ2,

χ̇2 = χ3,

χ̇3 = χ4,

χ̇4 = ψ(χ) + φu,

(21)

with

ψ(χ) = −
mgL

J
sin(χ1)

[

χ2
2 +

k

J
+
mgL

J
cos(χ1)

]

+

k

J
(χ3 − χ1)

[mgL

J
cos(χ1)−

2k

J

]

+
−K2 − bR

RJ
χ2 +

k2

J2R
u,

(22)

and

φ =
k2

J2R
. (23)

The new state variables correspond to the payload angle,
velocity, acceleration and jerk, respectively. The control
law is chosen as

u =
1

φ
(−ψ(χ) + ξ) (24)

where ξ = χ̇⋆
4 +λ1(χ

⋆
1 −χ1)+λ2(χ

⋆
2 −χ2)+λ3(χ

⋆
3 −χ3)+

λ4(χ
⋆
4−χ4). Using the control input and the tracking error

vector e = χ⋆ − χ, the error dynamics can be derived as
in (12).

Table 1. Parameters of the flexible link

Parameter Value

K Back EMF constant 0.0536 N m/A
b Mechanical damping 3× 10−6 kg/s
R Electric resistance 9.5
J Rotor moment of inertia 1.91× 10−4 kg m2

k Belt stiffness 5× 10−3 N/m2

g Gravitational acceleration 9.81 m/s2

L Payload distance to center of disk 0.042 m

Constant Payload Case. The angle of the constant un-
known payload is controlled to desired reference angles.
We have designed conventional augmented-Luenberger
observer-based controller (ELFC) and the proposed TS
fuzzy observer-based controller (TSFC). Using equations
(16) and (21), and the parameters in Table 1, the feedback
linearizing control parameters are determined as λ1 = 50,
λ2 = 15, λ3 = 300, and λ4 = 40, respectively.

Table 2. Obtained performances.

Control Method IAE IAU

TSFC 1.587 42.452
ELFC 2.281 54.792

Figure 2(a) shows the real-time tracking results of a 30
gram payload. Using TSFC, the payload can be positioned
in two seconds with steady-state tracking error less than
0.01 radians. The ELFC provides faster transient response,
but with larger steady-state errors. Note that in both
approaches, the control accuracy depends on the velocity
and payload estimation. The estimated velocities for TSFC
and ELFC are shown in Figure 2(b). When the reference
changes, the velocity estimated by the ELFC is much
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Fig. 2. Constant-payload case real-time control.
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Fig. 3. Varying-payload case real-time control.

larger. The control voltage for the two cases is shown in
Figure 2(c). Finally, Figure 2(d) presents the estimated
payload. When the reference changes, the estimate of the
payload has errors which influence the tracking. Table 2
presents two comparison results for this experiment. The
first criterion is the integral of absolute tracking error

(IAE =
∫ T

0 |e|dt) and second one is the integral of the

required absolute control effort (IAU =
∫ T

0 |u|dt). For
both criteria, TSFC provides better experimental results.

Varying Payload Case. The transmission system is phys-
ically not suitable to pick and place different payloads.
Therefore, to be able to show the estimation of different
payloads, a constant payload is tracked to the reference
π
2 , then different payloads are hung up on the opposite
side to change the payload value. We use 10, 30 and
68 grams payloads for testing the system. The 68 gram
payload is tracked to the constant reference by the con-
troller while other payloads are used to reduce 68 gram
payload randomly in time. Due not being able to provide
fair comparisons for this experiment, no comparisons are
made on the controllers.

The varying payload is presented in Figure 3(d). Although
the payload was changed by hand randomly, the proposed
TSFC controls the angle of the payload to be held in π

2 by
producing the required control effort given in Figure 3(c).
In less than two seconds after the change of the payload
the tracking error is reduced to small values. In Figure 3(a)
and Figure 3(b), respectively, the reference tracking of
varying payloads and estimated velocities are shown.

4. CONCLUSION

In this paper, a novel TS fuzzy observer-based feedback
linearizing controller was introduced for nonlinear SISO
systems. The proposed controller was applied to a flexible
mechanical transmission system. In the observer-based
control, payload and velocity estimates were used and
accurate position tracking results have been obtained.
The proposed observer-based controller was compared
to an output feedback controller based on an extended
Luenberger observer and better estimation and control
results have been obtained illustrated by the experiments,
the proposed observer-based controller is also robust with
respect to varying payload and noisy measurements. The
proposed observer can also be applied to the general fault
estimation of industrial processes.
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