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Abstract: In this paper we consider stabilization of switching nonlinear systems represented
by TS models. To develop the conditions we use two different switching Lyapunov functions.
For each Lyapunov function a set of conditions is developed. The conditions are formulated as
LMIs and relaxed using delays in the controller and the Lyapunov function. The application of
the conditions is illustrated on numerical examples.
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1. INTRODUCTION

Switching systems are a class of hybrid systems that
switch between a family of modes or subsystems. In
the last decades, stabilization of such systems has at-
tracted much attention, mostly in the continuous-time
case. For instance, linear switching systems where the
switching laws can be arbitrarily chosen have been con-
sidered by Altafini [2002]. Stabilization and tracking con-
ditions for continuous-time linear switching systems have
been developed in [Baglietto et al., 2013, Battistelli, 2013],
delay-dependent stabilization by Kim et al. [2008]. State-
feedback controller design for nonlinear switching systems
has been presented by Blanchini et al. [2007]. Switching
models can be found in various domains [Zwart et al., 2010,
Venkataramanan et al., 2002, Pasamontes et al., 2011,
Widyotriatmo and Hong, 2012, Moustris and Tzafestas,
2011, Zhao and Spong, 2001], such as automotive, net-
worked control, DC converters, mobile robots, etc.

Most of the results on switching systems concern linear
subsystems, such as [Jungers et al., 2011], where stabiliza-
tion in the presence of input saturation and uncertainties
is considered, or [Dehghan and Ong, 2013] which considers
the computation of the mode-dependent dwell-time. A
linear controller with integral action has been used for
the stabilization of switching systems in [Blanchini et al.,
2007]. Other recent approaches have been reported in
[Chen et al., 2012, Duan and Wu, 2012, Hetel et al., 2011].

We represent the switching nonlinear models by switching
Takagi-Sugeno (TS) fuzzy systems [Takagi and Sugeno,
1985], which are nonlinear, convex combinations of local
linear models. Stabilization conditions for TS models have
recently been developed using nonquadratic Lyapunov
functions [Guerra and Vermeiren, 2004, Kruszewski et al.,
2008, Mozelli et al., 2009]. The design conditions are
generally derived in the form of linear matrix inequalities
(LMIs).

In this paper we consider switching discrete-time TS fuzzy
models and develop conditions for their stabilization by
a switching law. We use a graph representation of the
switching system and to develop stabilization conditions
we employ a nonquadratic switching Lyapunov function.
Switching TS systems have been investigated in the last
decades mainly in the continuous case where the stability is
based on the use of a quadratic Lyapunov function [Tanaka
et al., 2001, Lam et al., 2002, 2004, Ohtake et al., 2006]
or a piecewise one [Feng, 2003, 2004]. Although results
are available for discrete-time linear switching systems
[Daafouz et al., 2002], for discrete-time TS models, few
results exist [Doo et al., 2003, Dong and Yang, 2009].

We derive relaxed LMI conditions for the stabilization
of switching TS systems. Two different switching non-
quadratic Lyapunov functions are used and therefore two
different sets of stabilizing conditions are developed. We
assume that the set of the admissible switches is known,
but the exact switching sequence is not known in advance.
This is a worst-case assumption. However, by taking into
account the admissible switches, it is possible to develop
conditions for the stabilization of some systems with un-
controllable local models.

The structure of the paper is as follows. Section 2 presents
the notations used in this paper. Conditions for the sta-
bilization of switching systems are developed in Section 3.
Section 4 illustrates their use on a numerical example.
Section 5 presents further extensions of the developed
stabilization conditions.

2. PRELIMINARIES

In this paper we consider stabilization of discrete-time
switching TS systems. We consider subsystems of the form



x(k + 1) =
ri∑

j=1

hi,j(z(k))(Ai,jx(k) + Bi,ju(k))

= Ai,zx(k) + Bi,zu(k)

(1)

where i is the number of the subsystem, i = 1, 2, . . . , ns,
ns being the number of the subsystems, x denotes the state
vector, u is the input, ri is the number of rules in the ith
subsystem, z is the scheduling vector, hi,j , j = 1, 2, . . . , ri

are normalized membership functions, and Ai,j , and Bi,j ,
j = 1, 2, . . . , ri, i = 1, 2, . . . , ns, are the local models.

For the easier notation, we use a directed graph represen-
tation of the switching system (1). The graph associated
to (1) is G = {V, E}, where V denotes the set of vertices or
subsystems and E denotes the set of admissible switches.
As such, (vi, vj) ∈ E if a switch from subsystem i to subsys-
tem j is possible. Note that we assume that self-transitions
are also possible: these correspond to the subsystem being
active for more than one sample.

A path P(vi, vj) between two vertices vi and vj in
the graph G is a sequence of vertices P(vi, vj) =
[vp1 , vp2 , . . . , vpnp

] so that vi = vp1 , vj = vpnp
, and

(vpk
, vpk+1) ∈ E , pk = 1, 2, . . . , np − 1. A path in a

graph associated to a switching system corresponds to a
switching law. The length of a path is given by the number
of edges it contains.

Let us illustrate the notations above on an example.
Example 1. Consider a switching system composed of 4
subsystems of the form

x(k + 1) = Ai,zx(k) + Bi,zu(k)
for i = 1, 2, 3, 4, and with admissible switches (1, 2),
(1, 4), (2, 3), (3, 2), (3, 4), (4, 1). The 1st and 3rd subsys-
tems can be active for more than one sample. The corre-
sponding graph representation is illustrated in Figure 1.
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Fig. 1. Graph representation of the switching system in
Example 1.

The graph is G = {V, E}, with V = {1, 2, 3, 4} and
E = {(1, 1), (1, 2), (1, 4), (2, 3), (3, 2), (3, 3), (4, 1)}

A path is P(1, 3) = [1, 2, 3]. The length of the path
P(1, 3) = [1, 2, 3] is 2.

Our goal is to develop conditions under which the switch-
ing system is stabilized, with any admissible switching
law. We assume that the switching sequence cannot be
influenced, i.e., all possible switches must be taken into
account.

0 and I denote the zero and identity matrices of appro-
priate dimensions, and a (∗) denotes the term induced

by symmetry in matrix expressions and the symmetrical
of the left-hand side in inline expressions. The subscript
z + m (as in A1z+m) stands for the scheduling vector
being evaluated at the current sample plus mth instant,
i.e., z(k + m).

In what follows, we will make use of the following results:
Lemma 1. [Skelton et al., 1998] Consider a vector x ∈ Rnx

and two matrices Q = QT ∈ Rnx×nx and R ∈ Rm×nx

such that rank(R) < nx. The two following expressions
are equivalent:

(1) xT Qx < 0, x ∈ {x ∈ Rnx , x 6= 0, Rx = 0}
(2) ∃M ∈ Rnx×m such that Q + MR + RT MT < 0

Analysis and design for TS models often lead to double-
sum negativity problems of the form

xT
r∑

i=1

r∑

j=1

hi(z(k))hj(z(k))Γijx < 0 (2)

where Γij , i, j = 1, 2, . . . , r are matrices of appropriate
dimensions.
Lemma 2. [Wang et al., 1996] The double-sum (2) is
negative, if

Γii < 0
Γij + Γji < 0, i, j = 1, 2, . . . , r, i < j

Lemma 3. [Tuan et al., 2001] The double-sum (2) is neg-
ative, if

Γii < 0
2

r − 1
Γii + Γij + Γji < 0, i, j = 1, 2, . . . , r, i 6= j

Proposition 1. (Congruence) Given a matrix P = PT and
a full column rank matrix Q it holds that

P > 0 ⇒ QPQT > 0
Proposition 2. Let A and B be matrices of appropriate
dimensions and ranks, with B = BT > 0. Then
(A−B)T B−1(A−B) ≥ 0 ⇐⇒ AT B−1A ≥ A + AT −B

3. NONQUADRATIC STABILIZATION

Consider the switching system
x(k + 1) = Ai,zx(k) + Bi,zu(k) (3)

and the switching control law
u(k) = −Fi,zH

−1
i,z x(k) (4)

The closed-loop system is expressed as
x(k + 1) = (Ai,z −Bi,zFi,zH

−1
i,z )x(k) (5)

In what follows, we use two switching Lyapunov functions:
V = x(k)T P−1

i,j,zx(k) (6)
and

V = x(k)T H−T
i,z Pi,j,zH

−1
i,z x(k) (7)

respectively, defined during the switches, i.e., on the edges
of the associated graph G = {V, E}, with (vi, vj) ∈ E .
The subscript indices i, j denote that the corresponding
Lyapunov function is active if we switch from subsystem i
to subsystem j.

Let us consider first (6). The difference in the Lyapunov
function is



∆V = x(k + 1)T P−1
j,l,z+1x(k + 1)− x(k)T P−1

i,j,zx(k)

=
(

x(k)
x(k + 1)

)T (−P−1
i,j,z 0
0 P−1

j,l,z+1

)(
x(k)

x(k + 1)

)

where [vi, vj , vl] is an admissible path.

Remark: If a subsystem i may be active for several
samples, the Lyapunov function above is in fact used to
prove its stability. However, if a subsystem is active for
only one sample, it is not necessary for it to be stable.

On the edge [vi, vj ], the dynamics of the system are
described by

(
Ai,z −Bi,zFi,zH

−1
i,z −I

)(
xk

xk+1

)
= 0

Using Lemma 1, the difference is the Lyapunov function
is negative, if there exists M such that

M
(
Ai,z −Bi,zFi,zH

−1
i,z −I

)
+ (∗)

+
(−P−1

i,j,z 0
0 P−1

j,l,z+1

)
< 0

By choosing

M =
(

0
P−1

j,l,z+1

)

we have( −P−1
i,j,z (∗)

P−1
j,l,z+1Ai,z − P−1

j,l,z+1Bi,zFi,zH
−1
i,z −P−1

j,l,z+1

)
< 0

Congruence with (
HT

i,z 0
0 Pj,l,z+1

)

leads to ( −HT
i,zP

−1
i,j,zHi,z (∗)

Ai,zHi,z −Bi,zFi,z −Pj,l,z+1

)
< 0

and applying Proposition 2 we have(
−Hi,z −HT

i,z + Pi,j,z (∗)
Ai,zHi,z −Bi,zFi,z −Pj,l,z+1

)
< 0

The condition developed above can be formulated as
follows.
Theorem 1. The switching TS system (3) is asymptoti-
cally stabilized by the switching control law (4) if there
exist matrices Hi,j and symmetric positive definite matri-
ces Pi,j,m = PT

i,j,m > 0, i, j = 1, 2, . . . , ns, (vi, vj) ∈ E ,
(vj , vl) ∈ E , m,n = 1, 2, . . . , ri, o = 1, 2, . . . , rj so that
Lemma 3 holds with

Γi,j,l
m,n,o =

(
−Hi,m −HT

i,m + Pi,j,m (∗)
Ai,nHi,m −Bi,nFi,m −Pj,l,o

)

Let us now consider (7). The difference in the Lyapunov
function is
∆V = x(k + 1)T H−T

j,z+1Pj,l,z+1H
−1
j,z+1x(k + 1)

− x(k)T H−T
i,z Pi,j,zH

−1
i,z x(k)

=
(

x(k)
x(k + 1)

)T

·
(−H−T

i,z Pi,j,zH
−1
i,z 0

0 H−T
j,z+1Pj,l,z+1H

−1
j,z+1

)(
x(k)

x(k + 1)

)

where [vi, vj , vl] is an admissible path.

On the edge [vi, vj ], similarly to the previous case, the
dynamics of the system are described by

(
Ai,z −Bi,zFi,zH

−1
i,z −I

) (
xk

xk+1

)
= 0

Using Lemma 1, the difference is the Lyapunov function
is negative, if there exists M such that

M
(
Ai,z −Bi,zFi,zH

−1
i,z −I

)
+ (∗)

+
(−H−T

i,z Pi,j,zH
−1
i,z 0

0 H−T
j,z+1Pj,l,z+1H

−1
j,z+1

)
< 0

By choosing

M =
(

0
H−1

j,z+1

)

we have



−H−T
i,z Pi,j,zH

−1
i,z (∗)(

H−1
j,z+1Ai,z

−H−1
j,z+1Bi,zFi,zH

−1
i,z

) ( −H−T
j,z+1 + (∗)+

H−T
j,z+1Pj,l,z+1H

−1
j,z+1

)

 < 0

Congruence with
(

HT
i,z 0
0 HT

j,z+1

)

leads to( −Pi,j,z (∗)
Ai,zHi,z −Bi,zFi,z −Hj,z+1 −HT

j,z+1 + Pj,l,z+1

)
< 0

The condition developed above can be formulated as
follows.
Theorem 2. The switching TS system (3) is asymptoti-
cally stabilized by the switching control law (4) if there
exist matrices Hi,j and symmetric positive definite matri-
ces Pi,j,m = PT

i,j,m > 0, i, j = 1, 2, . . . , ns, (vi, vj) ∈ E ,
(vj , vl) ∈ E , m,n = 1, 2, . . . , ri, o = 1, 2, . . . , rj , so that
Lemma 3 holds with

Γi,j,l
m,n,o =

( −Pi,j,m (∗)
Ai,mHi,n −Bi,mFi,n −Hj,o −HT

j,o + Pj,l,o

)

4. EXAMPLE AND DISCUSSION

Let us discuss the developed conditions on an example.
Example 2. To illustrate the application of the conditions,
consider a switching TS system composed of three subsys-
tems, each having two local models. The switching graph
is defined as G = {V, E}, with V = {1, 2, 3} and

E = {(1, 1), (1, 2), (2, 3), (3, 1), (3, 2)}
The edge (1, 1) is introduced in order to take into account
that subsystem 1 can be active for several samples. The
graph is illustrated in Figure 2.

The Lyapunov functions are defined for all the possible
switches, i.e., we have P1,1,z, P1,2,z, P2,3,z, etc. Consider
the following local models of the switching TS system
above:



1 2

3

Fig. 2. Graph representation of the switching system in
Example 2.

A1,1 =
(

0.60 −1.02
0.94 −0.07

)
B1,1 =

(
1
0

)

A1,2 =
(

0.08 −1.78
−1.77 −0.66

)
B1,2 =

(
1
0

)

A2,1 =
(

1.35 0.16
2.13 −1.70

)
B2,1 =

(
0
1

)

A2,2 =
(

0.27 −0.09
0.39 0.17

)
B2,2 =

(
0
1

)

A3,1 =
(−1.83 0.81
−1.50 −0.23

)
B3,1 =

(
1
0

)

A3,2 =
(−1.63 −0.79
−0.31 0.69

)
B3,2 =

(
1
0

)

For this particular example, both Theorems 1 and 2 pro-
vide stabilizing control laws. For instance, using Theo-
rem 1 we obtain the gain matrices 1

H1,1 =
(

0.21 −0.01
0.00 0.32

)
F1,1 = (0.09 −0.40)

H1,2 =
(

0.11 −0.08
−0.03 0.34

)
F1,2 = (0.05 −0.56)

H2,1 =
(

0.05 0.04
0.04 0.33

)
F2,1 = (0.17 −0.15)

H2,2 =
(

0.07 0.07
0.04 0.34

)
F2,2 = (0.14 0.04)

H3,1 =
(

0.14 −0.11
−0.16 0.44

)
F3,1 = (−0.40 0.51)

H3,2 =
(

0.11 −0.21
−0.22 0.51

)
F3,2 = (−0.30 0.67)

A trajectory of the closed-loop system, with initial states
x(0) = (1 1)T is presented in Figure 3 while the cor-
responding control input is presented in Figure 4. The
switching sequence was 1 1 2 3 2 3 1 2 3 1 1 2 3 2 3. The mem-
bership functions used are the following ones:

h1,1(x) =
1
2
(1− sin(x1)) h1,2(x) = 1− h1,1(x)

h2,1(x) =
1
2
(1− cos(x1)) h2,2(x) = 1− h2,1(x)

h3,1(x) =
1
2
(1− e−x2

1) h3,2(x) = 1− h3,1(x)

Although for the example above the conditions of both
Theorem 1 and 2 are feasible, it has to be noted that in
general, the two sets of conditions are not equivalent.

1 Values are truncated to two decimal places.
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Fig. 3. Closed-loop trajectory for Example 2.
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Fig. 4. Control input for Example 2.

By considering the switching possibilities in the Lyapunov
matrix Pi,j,z, the developed conditions extend the case
of using switching nonquadratic Lyapunov functions, i.e.,
simply Lyapunov matrices of the form Pi,z, for the switch-
ing system. This can be easily seen by inspecting the
LMI conditions. Indeed, if there exists a solution using
a switching Lyapunov function, then the conditions of
Theorem 1 or 2 are satisfied. However, the reverse is not
true. For instance, for Example 2, the LMI conditions
corresponding to the use of a simple switching Lyapunov
function in Theorem 2, i.e., the conditions

2
r − 1

Γi,i
m,n,o + Γi,j

m,n,o + Γj,i
m,n,o < 0

i, j = 1, 2, . . . , ns, (vi, vj) ∈ E , m,n = 1, 2, . . . , ri,
o = 1, 2, . . . , rj with

Γi,j
m,n,o =

( −Pi,m (∗)
Ai,mHi,n −Bi,mFi,n −Hj,o −HT

j,o + Pj,o

)

are not feasible.

Recall that we assume that the switching sequence is not
known in advance and it is not assumed to be directly
influenced. Naturally, this is the worst-case, i.e., all possi-
ble combinations on switches between the subsystems are
taken into account. If the switching sequence can be cho-
sen, or the goal is to find a stabilizing switching sequence,
the conditions can be relaxed. The LMI conditions can also



be relaxed by double sums in the Lyapunov function, e.g.,
using Pi,j,z,z instead of Pi,j,z, or even several sums. Such
relaxations are presented in the following section.

5. EXTENSIONS

In what follows, we extend the results presented in Sec-
tion 3. By looking at the Lyapunov matrices, a straightfor-
ward extension of the results above is by using the control
law

u(k) = −Fi,j,zH
−1
i,j,zx(k) (8)

i.e., instead of choosing a control law to be applied for each
subsystem, the control is applied based on the switching
that takes place. Using the Lyapunov function (6) and (7),
respectively, the following results can be formulated. For
the Lyapunov function (6) we have
Corollary 3. The switching TS system (3) is asymptoti-
cally stabilized by the switching control law (8) if there
exist matrices Hi,j,m and symmetric positive definite ma-
trices Pi,j,m = PT

i,j,m > 0, i, j = 1, 2, . . . , ns, (vi, vj) ∈ E ,
(vj , vl) ∈ E , m,n = 1, 2, . . . , ri, so that(

−Hi,j,z −HT
i,j,z + Pi,j,z (∗)

Ai,zHi,j,z −Bi,zFi,j,z −Pj,l,z+1

)
< 0

while when using the Lyapunov function (7) we obtain
Corollary 4. The switching TS system (3) is asymptoti-
cally stabilized by the switching control law (8) if there
exist matrices Hi,j,m and symmetric positive definite ma-
trices Pi,j,m = PT

i,j,m > 0, i, j = 1, 2, . . . , ns, (vi, vj) ∈ E ,
(vj , vl) ∈ E , m,n = 1, 2, . . . , ri, so that( −Pi,j,z (∗)

Ai,zHi,j,z −Bi,zFi,j,z −Hj,l,z+1 + (∗) + Pj,l,z+1

)
< 0

The proofs of the above corollaries follow the same lines
as Theorems 1 and 2 in Section 3 and are therefore not
repeated here. Similarly to the previous results, LMI con-
ditions can be formulated using Lemmas 2 or 3. Unfor-
tunately, the main drawback of this extension is that the
switching sequence must be known in advance or directly
dependent on the input.

A different possibility to extend the results presented in
Section 3 is the use of delayed controller and delayed Lya-
punov function [Lendek et al., 2012], as follows. Consider
instead of the control law (4) the following

u(k) = −Fi,z−1,zH
−1
i,z−1,zx(k) (9)

which depends not only on the current, but also on the past
states through the evaluation of the scheduling variable
at time k − 1. To develop and relax the conditions, also
instead of the Lyapunov functions (6) and (7), the delayed
Lyapunov functions

V = x(k)T P−1
i,j,z−1x(k) (10)

and
V = x(k)T H−T

i,z,z−1Pi,j,z,z−1H
−1
i,z,z−1x(k) (11)

respectively, can be used, again defined during the
switches. Then, based on the same steps as described in
Section 3, the following results can be stated. Using the
Lyapunov function (10), we have

Corollary 5. The switching TS system (3) is asymptoti-
cally stabilized by the switching control law (9) if there
exist matrices Hi,j,m,n and symmetric positive definite
matrices Pi,j,m,n = PT

i,j,m,n > 0, i, j = 1, 2, . . . , ns,
(vi, vj) ∈ E , (vj , vl) ∈ E , m,n = 1, 2, . . . , ri, so that(

−Hi,j,z,z−1 −HT
i,j,z,z−1 + Pi,j,z−1 (∗)

Ai,zHi,j,z,z−1 −Bi,zFi,j,z,z−1 −Pj,l,z

)
< 0

while when using the Lyapunov function (11) we obtain
Corollary 6. The switching TS system (3) is asymptoti-
cally stabilized by the switching control law (8) if there
exist matrices Hi,j,m,n and symmetric positive definite
matrices Pi,j,m,n = PT

i,j,m,n > 0, i, j = 1, 2, . . . , ns,
(vi, vj) ∈ E , (vj , vl) ∈ E , m,n = 1, 2, . . . , ri, so that


−Pi,j,z,z−1 (∗)
Ai,zHi,j,z,z−1 −Bi,zFi,j,z,z−1

(−Hj,l,z,z+1 + (∗)
+Pj,l,z,z+1

)

 < 0

Note that similarly to the results in Section 3 and Corol-
laries 3 and 4, the two results above are not equivalent. In
order to further reduce the conservativeness of the results,
the two extensions above can also be combined, i.e., one
may use the control law defined on switches with delayed
Lyapunov functions.

6. CONCLUSIONS

In this paper we have considered stabilization of switching
TS systems. To develop the conditions, two switching
Lyapunov functions have been used, leading to two sets
of conditions. Their application has been illustrated on
numerical examples. The conditions have been extended
using delays in the Lyapunov functions and the controller
gains, in order to reduce their conservativeness.
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la Technologie, the Ministére de L’Enseignement supérieur
et de la Recherche the Region Nord Pas de Calais and the
Centre Nationale de la Recherche Scientifique: the authors
gratefully acknowledge the support of these institutions.

REFERENCES

Claudio Altafini. The reachable set of a linear endogenous
switching system. Systems & Control Letters, 47:343–
353, 2002.

M. Baglietto, G. Battistelli, and P. Tesi. Stabilization and
tracking for switching linear systems under unknown
switching sequences. Systems & Control Letters, 62:11–
21, 2013.

Giorgio Battistelli. On stabilization of switching linear
systems. Automatica, 49:1162–1173, 2013.

Franco Blanchini, Stefano Miani, and Carlo Savorgnan.
Stability results for linear parameter varying and switch-
ing systems. Automatica, 43:1817–1823, 2007.



Y.-J. Chen, H. Ohtake, K.Tanaka, W.-J. Wang, and
H.O. Wang. Relaxed stabilisation criterion for discrete
T-S fuzzy systems by minimum-type piecewise non-
quadratic Lyapunov function. IET Control Theory and
Applications, 6(12):1918–1925, 2012.

J. Daafouz, P. Riedinger, and C. Iung. Stability analysis
and control synthesis for switched systems: a switched
Lyapunov function approach. IEEE Transactions on
Automatic Control, 47(11):1883–1887, 2002.

Masood Dehghan and Chong-Jin Ong. Computations of
mode-dependent dwell times for discrete-time switching
system. Automatica, 49:1804–1808, 2013.

J. Dong and G.H. Yang. H∞ controller synthesis via
switched PDC scheme for discrete-time T-S fuzzy sys-
tems. IEEE Transactions on Fuzzy Systems, 17(3):544–
555, 2009.

J. C. Doo, S. L. Seung, and P. PooGyeon. Output-
feedback control of discrete-time switching fuzzy system.
In Proceedings of the IEEE International Conference on
Fuzzy Systems, pages 441–446, St. Luis, MO, USA, May
2003.

Chang Duan and Fen Wu. Switching control synthesis
for discrete-time switched linear systems via modified
Lyapunov-Metzler inequalities. In Proceedings of the
American Control Conference, pages 3186–3191, Mon-
treal, Canada, June 2012.

Gang Feng. Controller synthesis of fuzzy dynamic systems
based on piecewise Lyapunov functions. IEEE Transac-
tions on Fuzzy Systems, 11(5):605–612, 2003.

Gang Feng. H∞ controller design of fuzzy dynamic
systems based on piecewise Lyapunov functions. IEEE
Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, 34(1):283–292, 2004.

Thierry Marie Guerra and Laurent Vermeiren. LMI-based
relaxed nonquadratic stabilization conditions for nonlin-
ear systems in the Takagi-Sugeno’s form. Automatica,
40(5):823–829, 2004.

L. Hetel, A. Kruszewski, W. Perruquetti, and J.P. Richard.
Discrete-time switched systems, set-theoretic analysis
and quasi-quadratic Lyapunov functions. In Proceedings
of the Mediterranean Conference on Control and Au-
tomation, pages 1325–1330, Corfu, Greece, June 2011.

Marc Jungers, Eugênio B. Castelan, Sophie Tarbouriech,
and Jamal Daafouz. Finite L2-induced gain and λ-
contractivity of discrete-time switching systems includ-
ing modal nonlinearities and actuator saturations. Non-
linear Analysis: Hybrid Systems, 5:289–300, 2011.

Sehjeong Kim, Sue Ann Campbell, and Xinzhi Liu. Delay
independent stability of linear switching systems with
time delay. Journal of Mathematical Analysis and
Applications, 339:785–801, 2008.

A. Kruszewski, R. Wang, and T. M. Guerra. Nonquadratic
stabilization conditions for a class of uncertain nonlin-
ear discrete time TS fuzzy models: A new approach.
IEEE Transactions on Automatic Control, 53(2):606–
611, 2008.

H. K. Lam, F. H. F. Leung, and P. K. S. Tam. A
switching controller for uncertain nonlinear systems.
IEEE Control Systems Magazine, 22(1):1–14, 2002.

H. K. Lam, F. H. F. Leung, and Y. S. Lee. Design of a
switching controller for nonlinear systems with unknown
parameters based on a fuzzy logic approach. IEEE
Transactions on Systems, Man and Cybernetics, Part

B, 34(2):1068–1074, 2004.
Zs. Lendek, T. M. Guerra, and J. Lauber. Construction

of extended Lyapunov functions and control laws for
discrete-time TS systems. In Proceedings of the 2012
IEEE World Congress on Computational Intelligence,
IEEE International Conference on Fuzzy Systems, pages
286–291, Brisbane, Australia, June 2012.

George P. Moustris and Spyros G. Tzafestas. Switching
fuzzy tracking control for mobile robots under curvature
constraints. Control Engineering Practice, 19(1):45–53,
2011.

L. A. Mozelli, R .M. Palhares, F. O. Souza, and
E. M. A. M. Mendes. Reducing conservativeness in
recent stability conditions of TS fuzzy systems. Au-
tomatica, 45(6):1580–1583, 2009.

H. Ohtake, K. Tanaka, and H. O. Wang. Switching fuzzy
controller design based on switching Lyapunov function
for a class of nonlinear systems. IEEE Transactions
on Systems, Man and Cybernetics, Part B, 36(1):13–23,
2006.
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