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Abstract: We consider a scenario in which a UAV must locate an unknown number of targets
at unknown locations in a 2D environment. A random finite set formulation with a particle filter
is used to estimate the target locations from noisy measurements that may miss targets. A novel
planning algorithm selects a next UAV state that maximizes an objective function consisting
of two components: target refinement and an exploration. Found targets are saved and then
disregarded from measurements to focus on refining poorly seen targets. The desired next state
is used as a reference point for a nonlinear tracking controller for the robot. Simulation results
show that the method works better than lawnmower and mutual-information baselines.
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1. INTRODUCTION

Target search and tracking is a standard problem in
robotics, occurring in many applications such as mapping,
search and rescue, and surveillance. In these applications,
one or several robots explore an area of interest to find
an unknown number of targets and their precise locations.
Robots require an estimation algorithm to locate targets,
and a control law to explore the environment. There
are various methods such as particle filtering, marginal
distribution algorithms, multi-mode methods, etc. (Stoyan
et al., 1995; Hauschild and Pelikán, 2011) which are used
to find the unknown or known number of dynamic or static
targets from the measurements collected at each step by
imperfect sensors. These measurements are distorted by
noise and may miss targets or give false detections.

In this paper, we consider a single UAV exploring a
2D environment to find an unknown number of targets
at unknown locations. The UAV sensor may sometimes
miss targets and generally receives noisy measurements of
their location, but does not give false detections (clutter).
The approach has three essential components: multi-target
estimation, a planner to decide where the UAV goes at
each step, and a low-level control algorithm to implement
this decision. The whole framework can be seen in Fig. 1.

For multi-target search estimation with our specific sen-
sor model, we use the Random Finite Set (RFS) frame-
work (Mahler, 2010; Vo et al., 2015; Chen et al., 2003) and
a Sequential Monte Carlo-Probability Hypothesis Density
(SMC-PHD) filter. The key novelty of the paper is a
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Fig. 1. Block diagram of our framework, with the sections
where each component is explained

planning algorithm that is based not just on mutual infor-
mation a statistical measure of the relationship between
estimated targets and future measurements (Dames and
Kumar, 2015) to focus on already found targets, but also
an exploration component that drives the UAV towards
unseen regions. To further encourage exploration, targets
that are reliably detected are separately saved and then
removed from the measurements, as in (Vo et al., 2014;
Dames, 2020; Vo et al., 2006; Charrow et al., 2014), but
using a different technique than in those papers. Finally,
in contrast to the literature on target tracking with RFS,
we fully specify the algorithm by designing a low-level
dynamical nonlinear controller (Sun et al., 2014). In simu-
lations, this algorithm works well to detect a large number
of targets with a single robot. Using as metric the number
of targets found over time, we compare our planner with
a baseline lawnmower strategy and with a variant of the
algorithm that only includes mutual information, similar
to Dames and Kumar (2015).

We next go in more detail about the relationship of our
approach to the literature. Our estimation method is based
on the RFS formulation with SMC-PHD particle filtering,
similar to Vo et al. (2005). An RFS is a set containing
a random number of elements at random locations. The
PHD filter propagates only the first moment of the dis-



tribution, which intuitively represents an expected count
of targets in each area, rather than the full multi-target
posterior (Dames, 2020). In robotics, many approaches
were developed to solve target search and tracking prob-
lems with RFS representations. E.g. Dames et al. (2017)
define the planner based on mutual information between
the target and a binary sensor. Xu et al. (2013) present the
idea of mixed nonlinear programming for assigning robots
to targets. A Voronoi-based method known as Lloyd’s
algorithm is used to localize the targets by Dames (2020).
In the present paper, we develop a planner algorithm that
similar to the method of Dames and Kumar (2015) but
with the key addition of the exploration function. For
our specific problem, the trajectory tracking controller is
designed using a backstepping-based dynamical nonlinear
control algorithm for the UAV (Sun et al., 2014) as it is
simple and computationally efficient.

The remaining material is structured as follows, see again
also Fig. 1. Section 2 defines the problem, followed by the
SMC-PHD filtering framework in Section 3. In Section
4, we develop the planner algorithm based on mutual
information and exploration along with describing the con-
trollere. Section 5 presents the simulation results. Finally,
Section 6 concludes the paper.

2. PROBLEM FORMULATION

Fig. 2. 2D space with 6 targets and a UAV with a circular
field of view. The dark orange, yellow, and blue colors
show the probability of observation (higher to lower)
at the current position of the UAV.

The problem we consider is a single multi-rotor UAV
exploring a 2D target space (environment) Es in search
of static targets, as shown in Fig. 2. The UAV is assumed
to localize itself within the environment with sufficient
accuracy. The robot seeks to locate the set Xk of Nk

stationary targets at positions xik ∈ Es, where k denotes
the discrete time step. Both the cardinality (|Xk| = Nk)
and the locations of the targets are unknown to UAV. In
general, the number of targets varies with k, but here we
will take it constant; nevertheless, the estimated number
of targets still varies due to the motion of the UAV causing
targets to appear in the sensor field of view (FOV). The
pose of the UAV is denoted by qk+1 ∈ ℜnq and consists
of the UAV’s current position, orientation, and velocity.
Notation nq is the dimension of the UAV state. The
nonlinear UAV dynamics are:

qk+1 = ℘(qk, uk) (1)

where uk ∈ U ⊆ ℜnu is the control input. Notation U is
the input domain, nu is the dimension of the input space,
and the sampling period is ∆.

The objective is to find the position of all the targets in
a small number of steps. To define the framework more
explicitly, we discuss the RFS formulation in Section 2.1,
and present our specific sensor model in Section 2.2.

2.1 Random Finite Set Model

In multi-target search, the states and observations are two
collections of individual targets and measurements. Let
Xk = {x1k, x2k, ...., xNkk} ⊂ Es denote the realization
of the RFS (Vo et al., 2005) target state at time step
k. The UAV receives a set of Mk measurements at step
k as Zk = {z1k, z2k, ...., zMkk} ⊂ Eo. The multi-target
state and measurement are characterized by RFS Ξk, Σk

respectively:
Ξk =sk(Xk−1) ∪ Γk

Σk =Θk(Xk)
(2)

Overall, Ξk encapsulates the multi-target evolution, where
sk(Xk−1) denotes the surviving targets at time step k
depending on the previous set of targets Xk−1, and Γk

defines the target birth term. We consider target birth
since even though all targets are present from the start
in reality, they appear gradually in the sensor field of
view. Σk encloses the sensor characteristics consisting of
measurements Θk(Xk) generated by a set of targets Xk,
which are affected by noise and a probabilistic sensor field
of view that leads to missed detections, see Section 2.2.

2.2 Sensor Model

Here, we describe the sensor model specific for our problem
using the RFS framework. Consider a robot equipped
with a sensor that is capable to detect targets depending
on the FOV, as in Fig. 2. The probability of the robot
with pose q of detecting a target at position x is given
by πd(x, q) = Ge−∥ζ∥/2, where G ≤ 1 is a constant and

ζ = (
Xx−Xq

FX
,
Yx−Yq

FY
) is the normalized distance of the

target from the UAV. In ζ, (Xx,Yx) denotes the target
position, (Xq,Yq) defines the UAV position, and (FX ,FY)
defines the height and width of the sensor field of view.
Whether the target xik is detected or not is decided using
a Bernoulli distribution, bik ∼ ß(πd(xik, qk)). Then Zk is
defined as:

Zk =
⋃

i∈{1,...,Nk} s.t. bik=1

{[
dik
θik

]
+ ϱik

}
(3)

dik =
√
(Xxik

−Xqk)
2 + (Yxik

− Yqk)2

θik =arctan
Yxik

− Yqk
Xxik

−Xqk

where ϱik ∼ N (.,0, R) is Gaussian noise with mean 0 =
[0, 0]⊤ and covariance R, taken as a diagonal matrix where
every diagonal element is σ2; (Xxik

,Yxik
) is the position of

target i in the space Es; and dik, θik are the distance and
bearing of target i relative to the UAV position.

3. SMC BASED PHD FRAMEWORK

This section summarizes the Sequential Monte Carlo
(SMC) based Probability Hypothesis Density (PHD) fil-
tering framework. We start with discussing the intensity



function in Section 3.1, followed by the PHD prediction
and update operations on RFS in Section 3.2. The Se-
quential Monte Carlo-based approximation is defined in
Sections 3.3. Resizing and resampling the set of particles
are discussed in Section 3.4.

3.1 Intensity Function

The Probability Hypothesis Density (PHD) is a function
defined over the target space with the property that its
integral over any region S is the expected number of
targets in that region. To define it formally, consider first
a given set of targets X. A subset S ⊆ Es contains a
number of targets NX(S) =

∑
x∈X 1S(x) = |X ∩ S|. The

RFS Ξ, of which one realization is X, is similarly defined
by the random counting measure NΞ(S) = |Ξ ∩ S|. The
intensity measure VΞ is defined as:

VΞ(S) ≡ E[NΞ(S)]

for each S ⊆ Es. VΞ thus gives the expected number of
elements of Ξ in S. The intensity function DΞ is defined
as:

DΞ =
dVΞ
dλ

(4)

where λ is the Lebesgue measure (Goodman et al., 1997).
The intensity function is similar to a probability density
function, with the key difference that its integral over the
entire domain is not 1, but the number of targets. An
example of the intensity measure is given in Fig. 3, where
the sets S are the squares and the shades of gray are the
values VΞ for each S.

3.2 PHD Filter

The overall PHD filter (Vo et al., 2005) is summarized as:

Dk|k−1 = Φk|k−1Dk−1|k−1

Dk|k = ΨkDk|k−1
(5)

Here Dk|k−1 is the prior and Dk|k denote the posterior.
The PHD filter includes a prediction step Φk|k−1 that
propagates the intensity function and an update step Ψk.
Let Dk−1|k−1 represent the intensity function correspond-
ing to the multi-target prior at time step k − 1, for k ≥ 1
The PHD prior Dk|k−1 is defined by:.

Dk|k−1 = (Φk|k−1Dk−1|k−1)(xk) =

Υk(xk) +

∫
Es

Ok|k−1(xk, ξ)Dk−1|k−1(ξ)dξ
(6)

where Ok|k−1(xk, ξ) is the translation function, defining
the new position of the target, and Υk(xk) denotes the
intensity function of the spontaneous birth chosen here as
a constant. In our specific problem, targets are station-
ary. The target translation function Ok|k−1 can then be
written:

Ok|k−1(xk, ξ) = ps(ξ)fk|k−1(xk|ξ)
where ps(ξ) is the probability that the target still exists
at time step k given that it had previous location ξ, and
fk|k−1(·|ξ) is the transition density of an individual target.
The transition density of static targets is:

fk|k−1(xk|ξ) = δξ(xk)

with δξ(xk) the Dirac delta centered in xk.

Fig. 3. Particle representation and illustration of the
corresponding intensity measure. The red circles show
the particles, and the shades of grid squares define the
expected number of targets present in each square,
equal to the sum of the weights of the particles in
that square.

Now, to compute the posterior intensity function Dk|k at
step k, we apply the PHD posterior operator Ψk(x) on the
intensity function Dk|k−1:

Dk|k = (ΨkDk|k−1)(xk) =[
π̄dk

(xk) +
∑

z ∈Zk

ψkz(xk)〈
ψkz, Dk|k−1

〉
(xk)

]
·Dk|k−1(xk)

(7)

where π̄dk
(xk) is the probability of non-detection, and

ψkz(x) denotes the probability density function of detect-
ing a target. We have:

π̄dk
(xk) =1− πd(xk, qk)

ψkz(xk) =πd(xk, qk)g(zk|xk)〈
ψkz, Dk|k−1

〉
=

∫
Es

ψkz(xk)Dk|k−1(xk)dxk

(8)

The target measurement density g(zk|xk) is defined as:

g(zk|xk) = N (zk, h(xk), R)

where g(zk|xk) is a Gaussian density function with covari-
ance R centered on h(xk) = [dik, θik]

T from (3).

3.3 SMC-PHD Filter

At time step k − 1, consider the intensity function
Dk−1|k−1, represented in terms of particles D̂k−1|k−1(xk−1)

=
∑Lk−1

i=1 ω
(i)
k−1δx(i)

k−1

(xk−1). This representation reduces

the computational complexity of the filter updates. Note

that E
[
|Ξk ∩ S|

∣∣Z1:k

]
≈

∑Lk

j=1 1s(x
(i)
k )ω

(j)
k : the expected

number of targets in a set S is equal to the sum of the
weights of the particles in that set, see again Fig. 3.
Substituting D̂k−1|k−1 in equation (6), one gets

(Φk|k−1D̂k−1|k−1)(xk) =
Lk−1∑
i=1

ω
(i)
k−1Ok|k−1(xk, x

(i)
k−1) + Υk(xk)

(9)

A particle approximation of Φk|k−1D̂k−1|k−1 can be de-
rived by applying importance sampling to each of its
terms. Define the importance (or proposal) densities
p̃k(·|Zk), and q̃k(·|xk−1, Zk). In our specific framework
for static target tracking and detection, we take the
proposal density for target birth to be p̃k(xk|Zk) ∼
N (xk, µ(Zk), R(Zk)) which is a Gaussian defined by the



empirical mean µ(Zk) = 1
|Zk|

∑
z ∈Zk

h−1(z) and co-

variance R(Zk) = 1
|Zk|

∑
z ∈Zk

[h−1(z) − µ(Zk)][h
−1(z) −

µ(Zk)]
⊤ of the set of observations Zk. To calculate the

empirical mean and covariance, as the targets are in
Cartesian space, we convert the measurement set Zk from
polar to Cartesian coordinates by applying h−1(Zk). The
transition proposal density in the static target scenario can
be written as:

q̃k(xk|x(i)k−1, Zk) = δ
x
(i)

k−1

(xk).

Equation (9) is then reformulated as:

(Φk|k−1D̂k−1|k−1)(xk) =

Lk−1∑
i=1

ω
(i)
k−1

Ok|k−1(xk, x
(i)
k−1)

q̃k(xk|x(i)k−1, Zk)
·

q̃k(xk|x(i)k−1, Zk) +
Υk(xk)

p̃k(xk|Zk)
p̃k(xk|Zk)

(10)
Thus, the Monte-Carlo approximation is obtained as:

(Φ̂k|k−1D̂k−1|k−1)(xk) ≡
Lk−1+Jk∑

i=1

ω
(i)
k|k−1δx(i)

k

(xk) (11)

where Lk−1 is the number of existing particles and Jk is the
number of new particles arising from the birth process. We
denote Lk ≡ Lk−1 + Jk. The required particles are drawn
according to (Vo et al., 2005):

x
(i)
k ∼

{
q̃k(·|x

(i)
k−1

, Zk) i = 1, . . . , Lk−1

p̃k(·|Zk) i = Lk−1 + 1, . . . , Lk

The weights of the particles are computed as (Vo et al.,
2005):

ω
(i)
k|k−1 =


Ok|k−1(x

(i)
k

, x
(i)
k−1

)ω
(i)
k−1

q̃k(x
(i)
k

|x(i)
k−1

, Zk)
i = 1, . . . , Lk−1

Υk(x
(i)
k

)

Jk · p̃k(x
(i)
k

|Zk)
i = Lk−1 + 1, . . . , Lk

Next we discuss the update step. The prior step yielded

a function Dk|k−1 represented by (ω
(i)
k|k−1, x

(i)
k )Lk

i=1. The

update operator Ψ̂k then maps this function into one with

particle representation (w
(i)
k , x

(i)
k )Lk

i=1:

D̂k|k(x) = (Ψ̂kD̂k|k−1)(x) =

Lk∑
i=1

ω
(i)
k δ

x
(i)

k

(x)

by modifying the weights of the particles as follows:

ω
(i)
k =

[
π̄dk

(x
(i)
k ) +

∑
z ∈Zk

ψkz(x
(i)
k )

Ck(z)

]
ω
(i)
k|k−1

Ck(z) =

Lk∑
j=1

ψkz(x
(j)
k )ω

(j)
k|k−1

(12)

Equation (12) is a particle-based representation of (7).

3.4 Adapting Particle Numbers and Resampling Particles

At any time step k ≥ 1 let D̂k|k =
{
ω
(i)
k , x

(i)
k

}Lk

i=1
denote a particle approximation of Dk|k, where Lk is the
particle count at k. The algorithm is designed such that
the concentration of particles in a given region of the
target space, say S, represents the approximated number
of targets in S. At times there may be too few or too

many particles for a set of targets, depending on the sensor
measurements. It would be more efficient to adapt the
allocation, say l particles per target at each time step k
where l is a tunable parameter. Since the expected number
of targets Nk|k is

N̂k|k =

Lk∑
j=1

ω
(j)
k (13)

it is natural to have the new number of particles L+
k =

lN̂k|k. Note that in this section, we use notations with
superscript ‘+’ for the particle count and weights after
resampling; to keep notation manageable, in all other sec-

tions we simply use Lk, ω
(i)
k , leaving resampling implicit.

In most scenarios, the variance of the weights increases
with time. The basic solution of this problem is to resample
the particles, eliminating particles having low weights and
multiplying particles with high weights to focus attention
on the important zones. This can be accomplished by

importance resampling L+
k particles from

{
ω
(i)
k , x

(i)
k

}Lk

i=1

and redistributing the total mass N̂k|k among the L+
k

resampled particles. We resample the new particles by
randomly drawing them from the old set of particles

with probabilities ai =
ω

(i)

k∑Lk

j=1
ω

(j)

k

. Then, the new weights{
ω
+(i)
k

}L+
k

i=1
are not normalized to 1 (as in standard particle

filtering) but must sum up to N̂k|k =
∑Lk

i=1 ω
(i)
k . Each new

weight is thus ω
+(i)
k =

N̂k|k

L+
k

.

The PHD filter will be used by the planner in the following
section to estimate target locations from measurements.

4. PLANNER

We now propose the planner algorithm to explore the
environment so as to find and refine target positions. The
planner integrates the filtering component from above. It
works by making a greedy decision for the next UAV state
q∗k+1 with the following procedure:

q∗k+1 = argmaxqk+1∈Qk
{I[xk+1; Λ] + α · ιk(xk+1)} (14)

Note that xk+1 denotes the position component of the next
state qk+1. The set of candidate next states, Qk, should
be reasonably small to limit computational complexity. In
our case, the set has eight different position choices: right,
left, top, bottom, forward, and the diagonals. In addition
to the positions, we must define the desired angles, and
those are always 0. The distance from the actual states k
to the future states k + 1 is set to 9 meters.

The objective function have two components: target refine-
ment Tk(qk+1) and exploration E(qk+1), with α a tunable
parameter that controls the tradeoff between the two com-
ponents. The first, refinement component aims to better
find the locations of the targets, and consists of the mutual
information I[xk+1; Λ] between the next position and a bi-
nary measurement event (Dames and Kumar, 2015). This
event describes whether an empty measurement set Zk will
be received, based on the probability of detection: Λ = 0
is the event that the robot receives no measurements, and



Λ = 1 is the complement of this. The probabilities of these
events are different for each position of the robot in Q. The
procedure to compute the mutual information is shown
in Dames and Kumar (2015).

The second component of the objective, ιk(xk+1), is novel.
It is an exploration function that drives the robot to
cover the environment. The exploration component is
initially set identically equal to 1, and at each step k
should decrease at each x with an amount equal to the
probability of detection πd(x, qk). Thus, regions that were
seen well have a low exploration bonus, while more poorly
seen regions have ι values closer to 1. In practice, ι is
implemented by interpolation on a grid xij . Each grid
point is initialized to 1 and then decreased with the rule:

ιk(xij) = ιk−1(xij) · (1− πd(xij , qk)) (15)

Note that when all the targets seen so far have been
marked as found, the motion is driven entirely by the
exploration component (15), so the UAV performs a space-
filling trajectory until new targets are seen

Dames and Kumar (2015) only used the mutual infor-
mation component, which would make the robot focus
too much on already seen targets and would not explore
enough. Moreover, to allow the robot to focus on refining
poorly seen targets, we will remove targets about whose
positions we are sure, similar to Vo et al. (2005); Beard
et al. (2015); Vo et al. (2014); Charrow et al. (2014), but
using a different technique. Specifically, we extract poten-
tial targets as clusters of particles generated with K-means
(Vo et al., 2005). The width Wi of each cluster of particles
should be below threshold TW , and the sum of the weights
ωj of the particles in the cluster should be above threshold
Tm. If both conditions are satisfied, i.e. the cluster is very
narrow and contains a high concentration of particles, we
declare that cluster to be a found target. Each such target
is added to a set X̂, and then measurements which are
likely to be generated by these targets are removed from
the observation set. Specifically, if a measurement {zk} is
closer than a threshold Tz to any previously found target
x̂, i.e. |h−1(zk) − x̂| ≤ Tz, then it is removed from Zk

(note the transformation of z to Cartesian coordinates).
Algorithm 1 summarizes the entire procedure.

Algorithm 1: Procedure to apply at each step k

generate set Qk of candidate next states
update exploration component ιk using (15)
for each qk+1 ∈ Qk do

compute I[xk+1; Λ] and exploration ιk(xk+1)

find best next state q∗k+1 using (14)
execute K-means clustering
for each cluster C do

if Wi ≤ TW and
∑

j ∈C ωj ≥ Tm then

X̂ ← X̂ ∪ x̂i /* target found */

for zk ∈ Zk do

for x̂ ∈ X̂ do
if |h−1(zk)− x̂| ≤ Tz then

Zk = Zk \ {zk} /* remove meas. */

run filter from Section 3 with measurements Zk

execute path to qk+1 using low-level control

To bring the UAV to the desired next state qk+1, we design
a tracking control for the UAV using its dynamical model.
The control law is developed using backstepping. For the
equation of the dynamical model, controller, and their
parameters, the reader should refer to Sun et al. (2014). In
our algorithm, in between discrete time steps k and k + 1
we use the continuous-time law to reach reference q∗k+1
from the planner algorithm. An overall piecewise constant
reference signal is obtained. The time required for the UAV
to reach the desired future states q∗k+1 from its current
state qk is around 2.6s.

5. RESULTS

To validate the efficiency of the proposed target localiza-
tion algorithm, we ran two different simulated experiments
using MATLAB. In the first experiment, we compared our
proposed method with the standard lawnmower. Then,
in a set of realistic environments obtained from a geo-
graphical database, we evaluate the performance of the
designed algorithm versus the lawnmower, and versus a
method without exploration in (14), which therefore only
uses mutual information, similarly to Dames and Kumar
(2015). In this second experiment, targets represent litter
and they are clustered at either high or low elevations (e.g.
to model water carrying litter downhill). Note however
that the target space and UAV motion remain in 2D,
elevations are just used to decide where the targets are
placed.

In all experiments, the parameters required for the control
law and UAV dynamic model law are those of Sun et al.
(2014). The initial position of the UAV is set to [10, 10],
on the 2D environment Es = [−30, 270] × [−30, 270].
The threshold values in Algorithm 1 are set as TW =
0.5, Tm = 1, and Tz = 4. The parameters of the probability
of detection πd(x, q) are: G = 0.98, FX = 15,FY = 15. The
trajectory length k is chosen for each experiment so that
all algorithms have a chance to detect all the targets.

In the first experiment, we consider 18 targets distributed
manually as 3 clusters of 6 targets shown in Fig. 4 (top).
The trajectory length is 240 steps. The results in Fig. 4
(top) show the lawnmower and our planner. It is seen in
Fig. 4 (bottom) that the decision rule (14) leads the robot
towards the targets quickly and therefore, the robot finds
more targets earlier than the lawnmower.

Finally, in the second experiment, we consider 14 targets in
2 clusters in a realistic environment taken from a geograph-
ical dataset (https://portal.opentopography.org). The di-
mension of the entire map is [0, 12000] × [0, 12000]. We
extract 6 smaller 2D areas Es = [−30, 250] × [−30, 250]
from the map to validate the performance of our method.
The targets are generated manually in the lower and
higher elevation between the mountains. This experiment
runs for a trajectory length of 100 steps. Fig. 5 (top)
shows the smaller extracted chunks of the map and target
clusters. We run the experiment for each chunk shown in
Fig. 5 (top) with the lawnmower, the mutual-information
method of Dames and Kumar (2015) and our method,
and we report in Fig. 5 (bottom) the number of targets
detected over time, averaged across all the map chunks. It
is clear that the performance of our proposed method is
overall better than other algorithms.
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Fig. 4. Top: Trajectories of the UAV exploring the envi-
ronment. The dashed line is the proposed algorithm
and the solid line is for lawnmower. Bottom: Number
of targets found over time
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Fig. 5. Top: Geographical maps with litter at lower and
upper elevations. Bottom: Comparison of detected
number of targets over time between the proposed
algorithm, lawnmower, and the mutual information
method of Dames and Kumar (2015)

6. CONCLUSION

In this paper, we addressed the problem of finding an
unknown number of static targets using a UAV in a
2D environment. The proposed method is composed of
a multi-target SMC-PHD estimator, a backstepping non-
linear control algorithm, and planner based on mutual
information and exploration. The algorithm works well
both for uniformly distributed targets and sparse target
clusters. In the future, we will extend this approach to
explore a 3D environment. Another possibility is to add
more, possibly heterogeneous agents.

REFERENCES

Beard, W., Vo, B.T., and Vo, B.N. (2015). Bayesian
multi-target tracking with merged measurements using
labelled random finite sets. IEEE Transactions on
Signal Processing, 63(6), 1433–1447.

Charrow, B., Michael, N., and Kumar, V.R. (2014). Active
control strategies for discovering and localizing devices
with range-only sensors. Algorithmic Foundations of
Robotics, 107, 51–71.

Chen, J., Xie, Z., and Dames, P. (2003). The semantic
PHD filter for multi-class target tracking: From theory
to practice. Robotics and Autonomous Systems, 149, 1–
14.

Dames, P. and Kumar, V. (2015). Autonomous localiza-
tion of an unknown number of targets without data
association using teams of mobile sensors. IEEE Trans-
action on Automation Science and Engineering, 12(2),
850–864.

Dames, P., Tokekar, P., and Kumar, V. (2017). Detecting,
localizing, and tracking an unknown number of moving
targets using a team of mobile robots. The International
Journal of Robotics Research, 36, 1540–1553.

Dames, P. (2020). Distributed multi-target search and
tracking using the PHD Bayse filter. Autonomous
Robots, 44, 673–689.

Goodman, I., Mahler, R., and Nguyen, H.T. (1997). Math-
ematics of Data Fusion. Mathematical and Statistical
Methods. Kluwer Academic Publishers, Boston.

Hauschild, M. and Pelikán, M. (2011). An introduction
and survey of estimation of distribution algorithms.
Swarm and Evolutionary Computation, 1(3), 111–128.

Mahler, R. (2010). Multitarget Bayes filtering via first-
order multitarget moments. IEEE Transactions on
Aerospace and Electronic Systems, 39(4), 1152–1178.

Stoyan, D., Mecke, J., and Kendall, W. (1995). Stochastic
Geometry and its Application. Probability and Statis-
tics. Wiley, NewYork.

Sun, L., Beard, R.W., and Pack, D. (2014). Trajectory-
tracking control law design for unmanned aerial vehicles
with an autopilot in the loop. In Proceedings Amer-
ican Control Conference,(ACC-14), 1390–1395. Port-
land,USA.

Vo, B.N., Beard, W., and Mahler, R. (2006). The Gaussian
mixture probability hypothesis density filter. IEEE
Transactions on Signal Processing, 54(11), 4091–4104.

Vo, B.N., Mallick, M., Bar-shalom, Y., Coraluppi, S., III,
R.O., Mahler, R., and Vo, B.T. (2015). Multitarget
tracking. In Wiley Encyclopedia of Electrical and Elec-
tronics Engineering.

Vo, B.N., S.Singh, and Doucet, A. (2005). Sequential
Monte Carlo methods for multitarget filtering with
random finite sets. IEEE Transactions on Aerospace
and Electronic Systems, 41(4), 1224–1245.

Vo, B.N., Vo, B.T., and Phung, D. (2014). Labeled random
finite sets and the Bayes multi-target tracking filter.
IEEE Transactions on Signal Processing, 6(24), 6554–
6567.

Xu, Z., Fitch, R., Underwood, J., and Sukkarieh, S.
(2013). Decentralized coordinated tracking with mixed
discrete–continuous decisions. Journal of Field Robotics,
30, 717–740.


