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Abstract: Cranes are used to move heavy cargo. While they are in general controlled by a
human operator, automated systems are able to obtain more precise control. In this paper, we
design a Takagi-Sugeno (TS) fuzzy controller for the crane. For this, first a TS fuzzy model
of the crane is developed, and a TS observer is used to estimate the unmeasurable states. The
observer is tested in simulation and on a laboratory–scale 3D crane, while the controller is tested
in simulation.
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1. INTRODUCTION

The 3D crane is a complex electromechanical system used
to move heavy cargo. In general, an operator moves the
crane in the desired position. The acceleration or decel-
eration of the crane may cause undesirable load swing.
The load swing can cause human accidents, can damage
the crane or the load. To control the swing, the opera-
tors need experience in crane maneuvering. Automated
systems can help the operator control the load swing
or can even replace the operator, (Inteco, 2008). They
can also achieve precise control and increased load speed
positioning (Chang and Chiang, 2009).

Various control methods have been used to reduce the
load swing. For example in (Chang and Chiang, 2008)
the swing control is realized using a fuzzy-logic projection
controller designed based on cart position and swing
angle. Sawodnya et al. (2002) consider the crane as a
robot and combine feedforward, feedback control, and
disturbance estimation to achieve the desired position
and swing control. Chang and Chiang (2009) used a PID
controller for rapid positioning and a fuzzy-logic control
with deadzone compensation when the crane is close to the
goal for precise positioning and moving the load smoothly.
Antić et al. (2012) designed a fuzzy-logic controller to
reduce the load swing during positioning of the crane.
Pauluk (2002) developed a robust control method for the
crane swing and an LQ controller is used for the reference
trajectory errors compensation. Pauluk et al. (2001) solve
the control problem using time-optimal control.

TS fuzzy models can be used to represent a large class
of nonlinear systems. This type of models consist of local
linear models which can represent the local input-output
relations of a nonlinear system. In this paper we use a
Takagi-Sugeno fuzzy representation (Takagi and Sugeno,
1985) of the crane model to design a discrete time observer
and a discrete time controller that stabilizes the 3D crane.
We have chosen the TS fuzzy model based approach be-
cause of its efficiency with complex nonlinear systems. To
obtain the TS model we use sector nonlinearity approach
(Ohtake et al., 2001). In the last decades, several methods

have been developed to analyze the stability or to design
observers or controllers for TS models (Tanaka and Wang,
2001). The analysis and design conditions are usually for-
mulated as linear matrix inequality (LMI) problems, which
can be solved using available methods.

This paper is organized as follows: Section II presents
the nonlinear mathematical model of the crane. Section
III presents the discrete time model and the equivalent
TS fuzzy model. In Section IV the TS fuzzy observer is
designed and simulation and experimental results for the
designed observer are presented. Section V presents the
TS fuzzy controller and the simulation results. Section VI
provides the conclusions.

2. 3D CRANE

The INTECO 3D Crane consists of a cart, moving on
the xy plane, and a payload attached to a rope, which
can be shifted up and down. The system is schematically
presented in Fig. 1 (Inteco, 2008). For this crane a 3D
mathematical model representing the movement of the
system on all three axes is considered. The system has

Fig. 1. 3DCrane system: coordinates and forces



five measured quantities: xw denotes the distance of the
rail of the cart from the center of the construction frame
[m], yw–distance of the cart from the center of the rail [m]
(xw and yw are not represented in Fig. 1), R–length of the
lift-line [m], α–angle between the y axis and the lift-line
[rad], β–angle between the negative direction on the z axis
and the projection of the lift-line onto the xz plane [rad].

We adopt the following notations and model (Inteco,
2008):

x1 = yw x6 = ẋ5 = α̇

x2 = ẋ1 = ẏw x7 = β

x3 = xw x8 = ẋ7 = β̇

x4 = ẋ3 = ẋw x9 = R

x5 = α x10 = ẋ9 = Ṙ

T1 =
Ty

mw

, T2 =
Tx

mw +mc

, T3 =
Tr

mc

u1 =
Fy

mw

, u2 =
Fx

mw +mc

, u3 =
FR

mc

N1 = u1 − T1, N2 = u2 − T2, N3 = u3 − T3

µ1 =
mc

mw

, µ2 =
mc

mw +ms

A simple nonlinear mathematical model of the crane with
3 control forces is:

ẋ1 = x2

ẋ2 = N1 − µ1x5N3

ẋ3 = x4

ẋ4 = N2 + µ2x7N3

ẋ5 = x6

ẋ6 = (N1 − µ1x5N3 − gx5 − 2x6x10)
1

x9

ẋ7 = x8

ẋ8 = −(N2 + µ2x7N3 + gx7 + 2x8x10)
1

x9

ẋ9 = x10

ẋ10 = −N3 + g

(1)

where x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 are the sys-
tem states. The system’s variables and parameters are
presented in Table I.

In order to have the equilibrium point in zero and to
further simplify the mathematical model (1) we use the
following change of variables:

x9 ← x9 − 0.1

u∗

1 ← N1

u∗

2 ← N2

u∗

3 ← g −N3

(2)

We obtain:

Table 1. System variables and parameters

Symbol Meaning Value

u1 Control in y direction -

u2 Control in x direction -

u3 Control along the lift-line -

mc Mass of the payload [kg] 1

mw Mass of the cart [kg] 2.49

ms Mass of the moving rail [kg] 4.09

Fx Force driving the rail with cart [N ] -

Fy Force driving the cart along the rail [N ] -

FR Force controlling the length of the lift-line
[N ]

-

Tx Friction force [N ] 100

Ty Friction force [N ] 100

TR Friction force [N ] 75

N1 Resultant control in x direction -

N2 Resultant control in y direction -

N3 Resultant control in z direction -

g Gravitational constant [m/s2] 9.81

x1 Position on y axis [m] -

x2 Velocity on y axis [m/s] -

x3 Position on x axis [m] -

x4 Velocity on x axis [m/s] -

x5 Angle on x axis [rad] -

x6 Angular velocity on x axis [rad/s] -

x7 Angle on y axis [rad] -

x8 Angular velocity on y axis [rad/s] -

x9 Position on z axis [m] -

x10 Velocity on z axis [m/s] -

ẋ1 = x2

ẋ2 = u∗

1
+ µ1x5u

∗

3
− µ1gx5

ẋ3 = x4

ẋ4 = u∗

2
− µ2x7u

∗

3
+ µ2gx7

ẋ5 = x6

ẋ6 = (u∗

1
+ µ1x5u

∗

3
− µ1gx5 − gx5 − 2x6x10)

1

x9 + 0.1

ẋ7 = x8

ẋ8 = −(u∗

2
− µ2x7u

∗

3
+ µ2gx7 + gx7 + 2x8x10)

1

x9 + 0.1

ẋ9 = x10

ẋ10 = u∗

3

(3)

In Section III model (3) will be discretised and the equiv-
alent TS fuzzy model is obtained.

3. THE DISCRETE TIME FUZZY MODEL OF THE
CRANE

The 3D Crane system uses discrete time to measure the
variables and consequently the continuous mathematical
model (3) needs to be discretised. In this section we
present the discrete time TS fuzzy system for the crane.
We consider the parameter values presented in Table I.

3.1 Model discretization

We consider the notation: q = 1
x9+0.1 .

System (3) can be written as

ẋ = A(x)x +B(x)u

y = Cx



The system has five measured quantities, yw, xw, α, β
and R which are denoted in the mathematical model by
x1, x3, x5, x7, and x9. Therefore the output matrix is:

C =











1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0











(4)

To obtain the discrete time system we use the Euler
discretization:

Ad = TeA+ I

Bd = TeB (5)

where A and B are the continuous system matrices, I
is the identity matrix having the same dimensions as A,
Te represents the sampling time and Ad and Bd are the
calculated discrete time matrices.

We chose the sampling time Te = 0.01 s, the same as
the system data acquisition rate. Using (5) we obtain the
discrete time system:

x(k + 1) = Ad(x(k))x(k) +Bd(x(k))u(k)

y(k) = Cx(k) (6)

In the next section the equivalent TS fuzzy model of
(6) is constructed using the sector non-linearity approach
(Ohtake et al., 2001).

3.2 Fuzzy model for the discrete time system (6)

To obtain the TS model, we use the sector non-linearity
approach (Ohtake et al., 2001). With this approach, a TS
model equivalent to the original nonlinear model is built.

In (6), we have four nonlinear terms: x5(k), x7(k), q(k) =
1

x9(k)+0.1 and x10(k) therefore the scheduling vector z(k) =

(x5(k), x7(k),
1

x9(k)+0.1 , x10(k))
T . The system states are

bounded, the bounds, based on the physical system are:
x5(k) ∈ [−π

2 ,
π
2 ], x10(k) ∈ [−1, 1], x7(k) ∈ [−π

2 ,
π
2 ] and

x9(k) ∈ [0, 0.9]. The weighting functions for zi, i = 1, ..., 4
are constructed as follows:

(1) For z1(k) = x5(k) the bounds are z1,min = −π
2

and z1,max = π
2 . The weighting functions are w11 =

z1,max−z1
z1,max−z1,min

and w12 = 1−w11. The term z1(k) can

be written as z1(k) = z1,minw11 + z1,maxw12.
(2) The term z2(k) = x7(k) has the bounds z2,min = −π

2
and z2,max = π

2 . The weighting functions are w21 =
z2,max−z2

z2,max−z2,min
and w22 = 1−w21. z2(k) can be written

as z2(k) = z2,minw21 + z2,maxw22.
(3) z3 = q(k) has the following bounds z3,min = 1 and

z3,max = 10. The weighting functions are w31 =
z3,max−x7

z3,max−z3,min
and w32 = 1−w31. z3(k) = z3,minw31+

z3,maxw32.
(4) For z4(k) = x10(k) the bounds are z4,min = −1

and z4,max = 1. The weighting functions are w41 =
z4,max−z4

z4,max−z4,min
and w42 = 1−w41. z4(k) = z4,minw41+

z4,maxw42.

As we can see above, each scheduling variable zi, i =
1, ..., 4 has 2 weighting functions, that means we have a

fuzzy model with 24 = 16 rules. The membership functions
are computed as (Ohtake et al., 2001):

hi(z) =

p
∏

j=1

w
j
ij
(zj) (7)

with i = 1, 2, ..., 2p, ij ∈ {0, 1}, p is the number of
nonlinearities, r = 2p is the number of rules. The local
linear models are obtained by replacing the correspondent
values of the nonlinearities in matrices Ad and Bd. For
instance, one of the rules is:
Model rule 1: If z1(k) is w11 and z2(k) is w21 and z3(k) is
w31 and z4(k) is w41 Then x(k + 1) = Ad1

x(k) +Bd1
u(k)

Ad1
=





























1 0.01 0 0 0
0 0.6988 0 0 −0.0392
0 0 1 0.01 0
0 0 0 0.8860 0
0 0 0 0 1
0 −0.3012 0 0 −0.1373
0 0 0 0 0
0 0 0 0.1140 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0.0149 0 0 0

0.01 0 0 0 0
1.02 0 0 0 0
0 10.01 0 0
0 −0.1130 1.02 0 0
0 0 0 1 0.01
0 0 0 0 1





























,

Bd1
=





























0 0 0
0.01 0 0.0063
0 0 0
0 0.01 −0.0024
0 0 0

0.01 0 0.0063
0 0 0
0 −0.01 0.0024
0 0 0
0 0 −0.01





























x(k + 1) can be derived as:

x(k + 1) =

16
∑

j=1

hj(z(k))(Adj
x(k) +Bdj

u(k)) (8)

z = [zi]
T , i = 1, . . . , 4.

The obtained TS system is the same as the original (6) in
the considered limits.

4. THE DISCRETE TIME FUZZY OBSERVER

Applying a control law requires knowing the values of
states. In practice it is not possible to measure all the
system states. The solution for this problem are state
observers. A state observer estimates the process states
relying on the process mathematical model, using the
input and the output of the process.



In general, a Takagi-Sugeno fuzzy system has the form
(Takagi and Sugeno, 1985):

x(k + 1) =

r
∑

i=1

hi(z)(Aix(k) +Biu(k))

y(k) = Cx(k)

where hi are the membership functions, Ai–state matrix
of rule i, Bi are the input matrices, C is the output
matrix, i = 1...r, r–number of rules, x = [x1, x2, ..., xn]

T –
vector of systems states, u(k) = [u1, u2, ..., um]T –input,
y = [y1, y2, ..., yl]

T –output of the system. Assuming that
the scheduling variables are known, the general form of a
fuzzy estimator is (Takagi and Sugeno, 1985):

x̂(k + 1) =

r
∑

i=1

hi(z(k))(Aix̂(k) +Biu(k)+

+ Li(y(k)− ŷ(k)))

ŷ(k) = Cx̂(k)

where Li, i = 1, ..., r, are the observer gains. To design
a stable estimator, we need to calculate positive definite
matrices P , H and Mi, i = 1...r, solving the LMIs adapted
from (Guerra and Vermeiren, 2004):

(

−P (HAi −MiC)T

HAi −MiC −H −HT + P

)

< 0 (9)

i = 1...r, j = 1...r. The observer gains are calculated using
the following relation:

Li = H−1Mi, i = 1, . . . , r (10)

Solving (9) for system (6), we obtain 16 observer gains.
For instance, the first gain is

L1 =





























1 0 −0.001 0 0
0.08 0 −0.08 0 0
0 1 0 0.001 0
0 0.02 0 0.1 0

−0.02 0 1.2641 0 0
−0.12 0 26.79 0 0

0 0.002 0 1.26 0
0 0.15 0 26.41 0
0 0 0 0 1.06
0 0 0 0 0.58





























This observer by design guarantees that the estimation
error converges asymptotically to zero. It has to be noted
that for this application one of the scheduling variables
is x10, which is not measured, and therefore its estimated
value has to be used in the observer. While the design
of the observer does not take this situation into account,
the designed observer is stable (i.e, the estimation error
converges to zero) as long as the difference between the
estimated and true initial states is small enough (Bergsten,
2001). This is confirmed both by simulation and experi-
mental results.

First, we test the designed observer on simulated data. The
initial conditions were x0 = [0.8381, 0.0196, 0.6813, 0.3795,
0.8318, 0.7095, 0.4289, 0.3046, 0.1897]T and x̂0 = 0. Fig. 2
presents the evolution of the system states for the inputs
presented in Fig. 3. The evolution of error is presented in
Fig. 4.

To test the observer on the physical system, the ini-
tial conditions were, for x0 = 0, the Home Point
of the mechanical system, while the estimated initial

states were x̂0 = [0.1365, 0.0118, 0.8939, 0.1991, 0.2987,
0.6614, 0.2844, 0.4692, 0.0648, 0.9883]T , a random point.

The measured data is presented in Fig. 6. To test the
fuzzy observer on the crane we used a PID controller
command as input. The estimates were calculated using
the designed fuzzy estimator. The estimation error for the
physical system is presented in Fig. 5.
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Fig. 2. Evolution of states (simulation)
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Fig. 3. System inputs (simulation)

Since the velocities are not measured, they are computed
by differentiating the measured positions and filtering the
result. In Fig. 7 we compare the filtered speed on x
direction using two filters, a zero-phase filter which can
be used as a benchmark and a low-pass filter, and the
estimated velocities. In this case we have a delay of 0.43
seconds between the low-pass filtered velocity and the
estimated one. Between the zero-phase filtering on the
x velocity and the estimated velocity the differences are
small. However, this filter can only be used offline.

The observer presented above has been designed without
taking into account model uncertainties and measurement
errors. Still the estimation errors are small enough for the
observer to be suitable for this application.

In what follows, we design a TS controller for the 3D crane.
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5. CONTROLLER DESIGN

The discrete time fuzzy controller we use has the form:

u(k) = −

r
∑

i=1

hi(z)Fix(k)

where Fi represent the local feedback gains, i = 1...r.
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Let

Gij =

(

−H −HT + P (AiH −BiSj)
T

AiH −BiSj −P

)

i = 1...r, j = 1...r. The closed loop system is stable if
(Guerra et al., 2012):

Gii < 0

(
Gij +Gji

2
)T + (

Gij +Gji

2
) < 0

(11)

i = 1...r, j = 1...r, i < j.

The controller gains are calculated as:

Fi = SiH
−1, i = 1, ..., r (12)

Solving the LMIs (11) for our system, we obtained 16
controller gains. For instance, the first gain is

F1 =

(

−2.72 24.44 0.08 −0.04 −18.92
−0.17 −0.69 −2.49 5.92 −3.05
−0.27 −0.95 0.31 0.49 −5.15

−7.52 2.21 0.43 0.1 0.14
−0.18 20.48 7.47 0.02 −0.01
−0.53 −2.34 −0.21 2.31 4.51

)

This controller guarantees that the closed-loop system
with all states known is asymptotically stabilized. If all sys-
tem states can be measured then the developed controller
can be connected to the process output and no observer is
needed. To validate the controller we have tested this in
simulation, and the evolution of the closed loop system is
presented in Fig. 8. As can be seen, the system is stabilized.

Using the sensors on the electromechanical system we can
only measure five quantities. Therefore we use the observer
to estimate the unmeasured quantities, i.e. the veloci-
ties on the axes (x2, x4, x10) and the angular velocities
(x6, x8). The evolution of the closed loop system with the
observer and controller is presented in Fig. 9.

In both situations the initial states were x0 = [0.2, 0.2,
0.04, 0.1, 0.1, 0.18, 0.14, 0.11, 0.12, 0.02]T . The estimated
initial states were x̂0 = 0.

The time required to compute the estimated states and
control input is 0.007 sec, which means that the observer
based controller can be used online.
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Fig. 8. Evolution of the closed loop control system (simu-
lation)
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observer (simulation)

6. CONCLUSION

In this paper we designed a discrete time fuzzy observer
and controller for a 3D crane. The designed observer gives
a good estimation of the system states and the estimation
error is of a magnitude 10−3 on the physical system. In
simulations, the controller stabilizes the system. In the
future we will test the designed TS fuzzy controller on
the physical system.
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