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Abstract— This paper presents an observer-based controller
design approach. To handle the inherent nonlinearities Takagi-
Sugeno fuzzy modelling is used with nonlinear consequents. The
purpose of using local nonlinear models is to reduce the number
of fuzzy rules as well as to handle nonlinearities depending on
unmeasured states. The design conditions are defined in form
of Linear Matrix Inequalities, which can be efficiently solved.
The obtained conditions are tested in simulation on an inverted
pendulum model.

I. INTRODUCTION

In many real-life applications there is no direct access to
all the states, for instance because they cannot be explicitly
measured or the costs of the sensors are too high. A state
observer can be used to address this problem and estimate
the unmeasured states. Among many options, the most
commonly used are the Luenberger observer [10] and the
Kalman filter [7]. Using the estimated states a state feedback
controller can be designed to achieve the desired stability and
performance of the system.

Usually the dynamic model of a system is nonlinear.
Linear approximations are very common, however they pro-
vide only local conclusions [8]. In the last decades many
approaches have been developed for handling nonlinearities,
among which a very popular option is the Takagi Sugeno
(TS) fuzzy modelling. TS models are convex combinations
of local linear models blended by the so called membership
functions, which depend on the scheduling or premise vari-
ables. TS models have the property that they can exactly
represent a nonlinear model on a compact set.

TS fuzzy models can be used to design nonlinear observers
[3]. In the case when the premise variables are measured the
observer can easily be designed, but in many applications
the premise variables depend on unmeasured states. This
problem is usually solved by including a Lipschitz condition
on the membership functions. However this condition is very
conservative and preferably other design methods should
be used [3]. An alternative method for nonlinear observer
design is presented in [1], where all the nonlinearities are
compressed into a nonlinear vector function, so that the rest
of the dynamics are linear. In order to develop the results
in [1] the nonlinear vector functions must fulfill a non-
decreasing condition.
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We propose to use this approach in combination with
TS fuzzy models, where some of the scheduling variables
depend on unmeasured states. The main advantage of this
method is that we can exploit the observer design methods
available for the case when the scheduling variables are avail-
able and at the same time handle those that are not available.
We provide an approach of observer-based controller design
for nonlinear systems represented by TS fuzzy models.
The nonlinearities are separated into two parts, where one
is for nonlinearities with measured state variables and the
other one is for nonlinearities with unmeasured states. The
nonlinearities that depend on measured states are treated in
the classical way, and the unmeasured-state-nonlinearities
are handled using the approach in [4]. The separation of
nonlinearities also reduces the number of rules necessary for
the TS representation. Papers already exist in the literature
on similar topics on separating the nonlinearities, see e.g.
[5], [11], [12]. In [5] the problem of controller design is
associated with TS fuzzy models with nonlinear consequent
parts. In [11] a similar structure is used for a robust observer
design. Observer-based controller design for systems with
nonlinear consequent parts have been developed in [12]. In
[12], it is assumed that the nonlinear functions are sector
bounded, so the following condition is true

φi(x(t)) ∈ co{0, Eix(t)}, (1)

where φi(t) is the nonlinearity, co{x, y} is the convex hull
of x, y. We address a different type of nonlinearity, which
satisfies a non-decreasing condition. With this condition,
for instance it is possible to include affine terms in the
nonlinearities, which is not possible with (1). Another good
example can be a nonlinear function which is not zero at
x = 0, which cannot be defined with (1), but can fulfill the
non-decreasing property.

Notations. Let F = FT ∈ Rn×n be a real symmetric
matrix, F > 0 and F < 0 mean that F is positive definite and
negative definite, respectively. I denotes the identity matrix
and 0 the zero matrix of appropriate dimensions. The symbol
∗ in a matrix indicates a transposed quantity in the symmetric

position, for instance
(
P ∗
A P

)
=

(
P AT

A P

)
, and A+ ∗ =

A+AT . The notation diag(f1, ..., fn), where f1, ..., fn ∈ R,
stands for the diagonal matrix, whose diagonal components
are f1, ..., fn.

The rest of the paper is organized as follows, in Section
II we introduce the necessary concepts for TS fuzzy models
with nonlinear consequent parts. As well as we propose the
structure for the observer and controller. Section III presents



the main results together with the conditions developed for
observer and controller design. The observer-based controller
is illustrated on an example in Section IV and Section V
concludes the paper.

II. PRELIMINARIES AND PROBLEM STATEMENT

The classic TS fuzzy model is a convex combination of
linear models, having the form:

ẋ =

s∑
i=1

hi(z)(Aix+Biu)

y =

s∑
i=1

hi(z)Cix,

(2)

where x is the state vector, u is the control input, s is the
number of rules, z is the premise vector, and hi, i = 1, ..., s
are nonlinear functions with the property

hi ∈ [0, 1], i = 1, ..., s,

s∑
i=1

hi(z) = 1. (3)

These nonlinear functions are called the membership func-
tions. Matrices Ai, Bi, and Ci represent the i − th local
model. Throughout this paper, the following shorthand nota-
tion is used to represent convex sums of matrix expressions:

Fz =

s∑
i=1

hi(z)Fi. (4)

Based on this notation, (2) can be rewritten as

ẋ =Azx+Bzu

y =Czx.
(5)

In order to develop our results we will use the following
lemmas.

Lemma 1 (Congruence): Given matrix P = PT and a full
column rank matrix Q it holds that

P > 0 ⇒ QPQT > 0.
Estimation and control problems are often defined as a
double sum negativity problem having the form

s∑
i=1

hi(z)hj(z)Fij < 0, (6)

with symmetric matrices Fij , and nonlinear functions hi,
where i = 1, ..., s, satisfying the convex sum property (3).

Lemma 2 ([13]): Equation (6) is satisfied if the following
conditions hold

Fii <0

2

s− 1
Fii + Fij + Fji <0 ∀i, j = 1, ..., s

(7)

In the following we consider the model structure

ẋ =Azx+Bzu+BzGzψ(Hx)

y =Czx,
(8)

where x ∈ Rnx represents the state, u ∈ Rnu stands for
the control input, y ∈ Rny is the measured output; Az ,

Bz , Gz , and Cz are convex combination of matrices as in
(4). We assume that the scheduling vector z only depends
on measured variables. In fact, the form (8) allows us to
avoid - for a class of nonlinear systems - having scheduling
variables dependent on unmeasured states. The nonlinearities
that contain unmeasured states are collected in the vector
function ψ().

A somewhat restrictive assumption we make is on the form
of the unmeasured nonlinear part, i.e. BzGzψ. Note however
that such a form often appears e.g. for mecahnical systems
in classical state-space form obtained from Euler-Lagrange
equations. To see this, let us consider the model of a robot
arm

M(θ)θ̈ = −F (θ, θ̇)−G(θ) + τ, (9)

where τ represents the torque; θ, θ̇ and θ̈ are the angles,
angular velocities and angular accelerations. M(θ) is the
mass matrix, F (θ, θ̇) contains the Centrifugal and Coriolis
matrices and G(θ) is the gravity matrix. In order to obtain a
classical state-space representation, the whole equation must
be multiplied with the inverse of the mass matrix. In this
context Bz is M(θ)−1.

The ψ(Hx) ∈ Rr is an r-dimensional vector where H ∈
Rr×nx and each entry is a function of a linear combination
of the states, i.e.

ψi = ψi(

n∑
j=1

Hijxj), i = 1, ..., r.

To develop our results, the vector ψ must fulfill the following
assumption.

Assumption 1: For any i ∈ {1, ..., r} there exist constants
0 < bi ≤ ∞, so that

0 ≤ ψi(v)− ψi(w)

v − w
≤ bi, ∀v, w ∈ R, v 6= w. (10)

As a remark, let us consider the case when the nonlinearities
do not satisfy (10), but the following is true:

Assumption 2: For any i ∈ {1, ..., r} there exist constants
0 ≤ ai < bi ≤ ∞, so that

ai ≤
ψi(v)− ψi(w)

v − w
≤ bi, ∀v, w ∈ R, v 6= w. (11)

If ai 6= 0 a new functions can be defined ψ̃i(v) := ψi(v)−
aiv, which satisfy (10), with ãi = 0, and b̃i = b − a, and
the new terms are added in the Az matrix. Assumption 2
intuitively bounds the rate of change of the nonlinearity, and
corresponds to a global Lipschitz property of ψ, when bi is
finite and ψi is continuosly differentiable. This assumption
is made in [1], [2], [4], [6].

As in [2], in view of (10), there exist δi(t) ∈ [0, bi], so
that for any v, w ∈ R

ψi(v)− ψi(w) = δi(t)(v − w). (12)

Let δ(t) = diag(δ1(t), ..., δr(t)). Note that this condition
althought similar, is not equivalent to (1). Different type of
nonlinearities can be treated with (10) than with (1). For
example let us consider the following nonlinear functions,

ψ1(x) =x2 − 2x+ 3, x ∈ [−1, 1]

ψ2(x) =ex, x ∈ [0, 2]
(13)



These nonlinear functions fulfill (10), but the convex hull
condition, defined in (1), cannot be fulfilled.

In order to develop our results the following observer,
similar to the one in [12], is considered

˙̂x =Azx̂+Bzu+BzGzψ(Hx̂+Lψ(y − Cx̂))+Lz(y − ŷ)

y =Czx̂,
(14)

where x̂ denotes the estimate of x. The observer gains
are stored in Lz; Lψ is an injection term to obtain a less
conservative design.

The control law to stabilize this system has the following
form,

u = −Kzx̂−Gzψ(Hx̂+ Lψ(y − Cx̂)), (15)

where Kz is the fuzzy controller gain. For the controller the
estimated states are used. The main objective is to obtain an
observer-based controller, i.e. we want to stabilize the system
at the origin using an observer-based state feedback control.
Let us consider the error dynamics, e = x− x̂, from where
we obtain

ė =(Az − LzCz)e
+BzGz

(
ψ(Hx)− ψ(Hx̂+Lψ(y − Cx̂))

) (16)

Based on Assumption 1 we can rewrite (16) in the form

ė =(Az − LzCz)e+BzGzδ(t)η

η =(H + LψC)e.
(17)

Finally, the closed loop dynamics are

ė =(Az − LzCz)e+BzGzδ(t)η

ẋ =(Az −BzKz)x+BzKze+BzGzδ(t)η

η =(H + LψC)e.

(18)

III. MAIN RESULTS

To develop the stabilization conditions, instead of consid-
ering ė and ẋ as in (18) we employ ˙̂x. In this way we obtain
an easier design approach. For x̂ we have the following
dynamics after applying the control law from (15),

˙̂x =Azx̂+Bzu+BzGzψ(Hx̂+ LψCze) + LzCze

=Azx̂+Bz(−Kzx̂−Gzψ(Hx̂+ LψCze))

+BzGzψ(Hx̂+ LψCze) + LzCze

=(Az −BzKz)x̂−BzGzψ(Hx̂+ Lψ(y − Cx̂))+

BzGzψ(Hx̂+ Lψ(y − Cx̂)) + LzCze

=(Az −BzKz)x̂+ LzCze.

(19)

If e and x̂ are converging to 0, then also x is converging
to 0. We denote the augmented system states with x̂a :=[
x̂ e

]T
, and the dynamics has the form,[

˙̂x
ė

]
=

[
Az −BzKz LzCz

0 Az − LzCz

] [
x̂
e

]
+

[
0

BzGz

]
δ(t)η

η =(H + LψC)e.
(20)

The augmented system can be considered as a cascaded
system which was well studied in [9]. It can be seen that an

observer can be design for (17), so that the error dynamics
will be globally asymptotically stable at the origin, without
the use of the controller. Based on [9], if the dynamics of
(19) without the LzCze term converging to 0 then also the
augmented system in (20) will be stable at the origin. The
following theorems summarize this idea.

Theorem 1: Consider system (17) and assume that the
system states in (8) do not have a finite escape time. If there
exist P1 = PT1 > 0, M = MT = diag(m1, ..,mr) > 0, Ni,
Wψ and constant ε so that

Θii <0

2

s− 1
Θii + Θij + Θji <0

(21)

then (17) is globally asymptotically stable at the origin. The
notation Θij is defined as

Θij =

[
A(P1, Ni, Cj , ε) B(P1,M,Wψ)

∗ ν(M)

]
. (22)

with A(P1, Ni, ε) = P1Ai − NiCj + ∗ + εI ,
B(P1,M, Tψ) = P1BiGi + HTM + CTi W

T
ψ and

ν(M) = −2Mdiag( 1
b1
, ..., 1

br
), where bi, for all i = 1, ..., r

are defined in (10).
Proof: Let us consider the Lyapunov function candidate

V (e) = eTP1e. The proof for the error dynamics follows
the lines of the proof of Theorem 2 from [4], which we
extend for TS fuzzy systems. The derivative of the Lyapunov
function candidate along the trajectories of e will be

〈∇V (e), (Az − LzCz)e+BzGzδ(t)η)〉 =

eT (P1(Az − LzCz) + ∗)e+ 2eTP1BzGzδ(t)η
(23)

In view of Lemma 2 and (22) we obtain

〈∇V (e), (Az − LzCz)e+BzGzδ(t)η)〉 ≤
− eT εIe−2eT (HTM+CTz V

T
ψ )δ(t)η−ηT δ(t)T ν(M)δ(t)η

(24)
Let us denote Wψ := MLψ to avoid Bilinear Matrix
Inequalities. By using η = (H + LψCz)e from (17) the
following is obtained:

〈∇V (e), (Az − LzCz)e+BzGzδ(t)η)〉 ≤
− ε‖e‖2 − 2ηT

(
Mδ(t)− δ(t)TMdiag( 1

b1
, ..., 1

br
)δ(t)

)
η.

(25)
Let us consider only this part of the equation:

fM = Mδ(t)− δ(t)TMdiag(
1

b1
, ...,

1

br
)δ(t). (26)

Since all the elements are in a diagonal form we
can examine them element by element, which leads to:
δi(t)mi

(
1− δi(t) 1

bi

)
. From (10) we know that δi ∈ [0, bi]

and mi > 0, so we can conclude that fM ≥ 0. Finally we
obtain,

〈∇V (e), (Az − LzCz)e+BzGzδ(t)η)〉 ≤ −ε‖e‖2, (27)

so the error dynamics is globally asymptotically stable at the
origin.
For the controller design the following result is obtained.



Theorem 2: Consider system (20), and assume that there
already exists an observer with parameters Li and Lψ . If
there exist X = XT > 0, Ri, so that

Φii <0

2

s− 1
Φii + Φij + Φji <0,

(28)

then (20) is globally asymptotically stable at the origin,
where Φij is defined as

Φij = AiX −BiRj + ∗. (29)
Proof: Let us consider the Lyapunov function candidate

Vx(x̂) = x̂TX−1x̂. We differentiate along the trajectories of
x̂

〈∇Vx(x̂), (Az −BzKz)x̂)〉 =

x̂T (X−1Az +X−1BzKz + ∗)x̂
(30)

From here by using Lemma 1 the following is obtained

AzX +BzKzX + ∗ < 0. (31)

By denoting Rz = KzX we obtain Φij . It was assumed
that there exists an observer which fulfills Theorem 1, so at
this point it was proved that the two individual systems are
stable on their own, without any interconnection between
them. Based on [9], since (17) is globally asymptotically
stable (GAS) and (19) without the LzCze term is globally
asymptotically stable, then the augmented system in (20) is
also GAS.

In many real-life applications disturbances can appear on
the system and their effects need to be attenuated. In order
to do this an H∞ approach can be used. Let us consider the
following system

ẋ = Azx+Bzu+BzGzψ(Hx) + Szd, (32)

where d ∈ Rnd is the disturbance, and Sz is a fuzzy
matrix. In the next Corollary we give conditions to find
the H∞ index for a given system with the controller and
observer calculated using Theorem 1 and 2. The problem of
maximizing the H∞ index will be addressed in future works.

Corollary 1: Consider system (32), with observer (14),
and thus the closed loop system with controller (15) is
globally asymptotically stable in the absence of the perturba-
tion. With the observer and controller gains computed using
Theorem 1 and 2, the attenuation of the disturbance is at
least γ, if there exist P1 = PT1 > 0, P2 = PT2 > 0,
M = diag(m1, ...,mr) and ε so that

∆ii <0

2

s− 1
∆ii + ∆ij + ∆ji <0.

(33)

The notation

∆ij =


D11 D12 0 0
∗ D22 D23 P1Si
∗ ∗ ν(M) 0
∗ ∗ ∗ −γ2I

 (34)

where
D11 =P2(Ai −BiKj) + ∗+DTD

D12 =P2LiCj +DTD

D22 =P1(Ai − LiCj) + ∗+ εI +DTD

D23 =P1BiGj +HTM + CTi L
T
ψM

T .

(35)

IV. NUMERICAL EXAMPLE

We illustrate the application of Theorem 1 and 2 on an
example. Let us consider the following nonlinear model of
an inverted pendulum on a cart adapted from [12]

ẋ1 =x2

ẋ2 =
−dx2 − a(mlx2)2 sin(x1) cos(x1) +mgl sin(x1)

α(x1)

+
−aml cos(x1)

α(x1)
ũ

y =x1
(36)

where α(x1) = (J + ml2) − a(ml cos(x1))2. This can be
transformed into

ẋ1 =x2

ẋ2 =ρ̃1(x1)x2 + ρ2(x1)ρ3(x1)ψ̃(Hx)

+ ρ2(x1)β(x1) + ρ2(x1)ũ

(37)

where

ρ̃1(x1) =− d

α(x1)
, ρ2(x1) =

−aml cos(x1)

α(x1)

ρ3(x1) =ml sin(x1), β(x1) = − g sin(x1)

a cos(x1)

ψ̃(Hx) =x22, H =
[
0 1

]
(38)

Since β(x1) depends only on x1 which is measured, we can
eliminate this term by replacing

ũ = u− β(x1) (39)

So the new system will be

ẋ1 =x2

ẋ2 =ρ̃1(x1)x2 + ρ2(x1)ρ3(x1)ψ̃(Hx) + ρ2(x1)u

y =x1

(40)

Let x2 ∈ [−σ, σ], which leads to:

−2σ ≤ ψ̃(v)− ψ̃(w)

v − w
≤ 2σ. (41)

Since the nonlinearity does not fulfill Assumption 1, we
apply the following modifications:

ψ(Hx) =ψ̃(Hx) + 2σx2 = x22 + 2σx2

ρ1(x1) =ρ̃1(x1)− 2σρ2(x1)ρ3(x1)

=
−d+ 2σaml cos(x1) sin(x1)

α(x1)

(42)

With these modifications the nonlinearity, ψ(Hx), fulfills
Assumption 1 with b = 4σ. The final form of the equation
is:
ẋ1 =x2

ẋ2 =ρ1(x1)x2 + ρ2(x1)ρ3(x1)ψ(Hx) + ρ2(x1)u.
(43)



Equation (43) has a form similar to (8). The model param-
eters were obtained from [12], and can be found in Table
I. In order to obtain the exact fuzzy model for (43), we

TABLE I
PARAMETER TABLE

Notation Value Description
g [ms/s] 9.8 gravitational acceleration

m [kg] 0.3 mass of pendulum
M [kg] 15 mass of cart

d [N/rad/s] 0.0007 friction coefficient
l [m] 0.3 length of pendulum

J [kgm2] 0.3 moment of inertia
σ [rad/s] 4 max angular velocity

use the sector nonlinearity approach which leads to 8 rules.
To determine these fuzzy rules we define a bound on the
angle, x1 ∈ [−π3 ,

π
3 ]; the same bound was used also in [12].

Due to its complicated form the membership functions, hi,
i = 1, ..., r, are not presented here, but some of the local
models are:

A1 =

[
0 1
0 −0.96

]
, B1 =

[
0

−0.18

]
, G1 = −0.07

A8 =

[
0 1
0 0.52

]
, B8 =

[
0

−0.09

]
, G8 = 0.07

(44)

By applying Theorem 1 for this model, we obtain the
following observer gains:

Lψ =4.32 10−5, L1 =

[
27.48
182.13

]
, L2 =

[
28.13
186.41

]
L3 =

[
27.52
182.38

]
, L4 =

[
28.1

186.22

]
, L5 =

[
22.15
146.65

]
L6 =

[
22.79
150.9

]
, L7 =

[
22.19
146.92

]
, L8 =

[
22.76
150.72

]
,

(45)

and controller gains,

K1 =
[
−3.81 −11

]
, K2 =

[
−3.81 −11

]
K3 =

[
−6.52 −21.48

]
, K4 =

[
−6.52 −21.47

]
K5 =

[
−3.74 −20.16

]
, K6 =

[
−3.74 −20.16

]
K7 =

[
−6.73 −32.71

]
, K8 =

[
−6.73 −32.71

]
.

(46)

We simulate our model for initial condition x0 =
[π4 , −0.1]T , and the observer starts at initial condition x̂0 =
[0, 0]T . The evolution of the error dynamics and the observer
states can be seen on Fig. 1(a) and Fig. 1(b). As it can
be seen on Fig 1(a) the error dynamics stabilizes relatively
fast, compared to the estimated states, but after 10s also
the x̂ is relatively close to the desired position. We also
considered the perturbed dynamics described in (32) with
S = diag(0.05, 0.05) and the important state is the output
so D = [1, 0]. The H∞ index calculated for the obtained
observer and controller using 1, and the smallest value
obtained is γ = 0.7, so the attenuation of the pertubation
is at least γ. To exemplify this effect we used the same
perturbation on both states. The perturbation was a repeating
stair sequence, which can be seen on Fig 2(a) and the
resulting state dynamics can be seen on Fig. 2(b).

(a) Evolution of the estimation error

(b) Evolution of the estimated state vector

Fig. 1. Simulation results without disturbances

V. CONCLUSIONS AND FUTURE WORK

In this paper a nonlinear observer-based controller design
approach was presented using TS fuzzy models with nonlin-
ear consequent parts. First we showed the main differences of
our approach compared to the existing results, highlighting
the novelty of this paper. We then presented an observer
design method to estimate the unknown states of the non-
linear system, and afterwards the controller was designed
based on the estimated states. In our future work we will
consider disturbances acting on the system. We have already
given a method to calculate the H∞ index. To illustrate the
usage of the conditions, an inverted pendulum model was
considered, and the simulations provided good results, also
in the presence of the perturbations.

In future work we want to extend the type of nonlinearities
which can be treated with this method, allowing for instance
nonlinearities that are coming from multiplying two states.
Another possible future work is to calculate the observer and
controller gains so that the H∞ attenuation is maximized.
Finally, we would like to implement this approach on a real
application.



(a) Disturbances applied to inverted pendulum

(b) Evolution of the state vector

Fig. 2. Simulation results with disturbances
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