
 
 

 

 
 

Abstract—Many physical systems are naturally represented 
by descriptor models. This paper is concerned with stabilization 
of discrete-time descriptor systems represented by 
Takagi-Sugeno fuzzy models. Two different approaches are 
presented based on non-quadratic Lyapunov functions. The 
results are expressed in terms of linear matrix inequalities. 
Numerical examples validate the proposed methods. 

I. INTRODUCTION 
N the last thirty years, nonlinear models have been to be 
studied via the so-called Takagi-Sugeno (TS) models [1]. 
A TS model is a collection of local linear models blended 

together by membership functions (MFs) [2]. The sector 
nonlinearity approach [3] provides a systematic way to 
construct a TS model. The resulting TS model represents the 
considered nonlinear models in a compact set of the state 
space [4].  

The direct Lyapunov method has been used to derive 
conditions for the stability and stabilization of TS models. 
Several Lyapunov functions have been proposed: quadratic 
Lyapunov functions [4], piecewise Lyapunov functions [5], 
[6], line-integral Lyapunov functions [7], and more recently 
non-quadratic Lyapunov functions [8]–[13]. The conditions 
are formulated as linear matrix inequalities (LMIs), which 
can be solved via convex optimization techniques [14], [15]. 

A drawback of using the sector nonlinearity approach is 
that an increase in the number of nonlinear terms implies an 
exponential increase of the number of LMI conditions. 

The behavior of many physical systems is naturally 
described by nonlinear descriptor models [16]. The TS 
descriptor model was introduced in [17]; this representation 
reduces the number of LMI constraints because it conserves 
nonlinearities in the left-hand side and keeps the original 
structure of the nonlinear model [18]–[23].  

The works [18]–[23] develop conditions for TS descriptor 
models in continuous-time. However, for the discrete-time 
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case there are few results [24], [25]. Therefore, this paper 
presents approaches in discrete-time via two Lyapunov 
functions, thus filling a gap in the literature. Moreover, the 
use of the Finsler’s Lemma [26]–[29] is helpful for 
“decoupling” the control law from the Lyapunov function. 

The paper is organized as follows: Section 2 provides some 
useful notation and properties, it also introduces the TS 
descriptor model; Section 3 presents the main results for 
controller design for discrete-time TS descriptor models; 
Section 4 illustrates the effectiveness of the proposal 
approaches via examples.  

II. NOTATIONS AND PROBLEM STATEMENT 

Given a set of nonlinear functions ( ) 0ih ⋅ ≥ , { }1, ,i r∈ …  

having the convex sum property ( )1
1r

ii
h

=
⋅ =∑ , a shorthand 

notation will be used in the sequel to represent convex sums 
of matrix expressions:  ( )( )1 i

r
h ii

h z κ
=

ϒ = ϒ∑  and 

( )( )1

r
v k kk

v z κ
=

ϒ = ϒ∑  for single convex sums; 

( )( )1
1r

h l ll
h z κ+ =

ϒ = + ϒ∑  for a delayed convex sum;  

( )( )( ) 1
1

1

r
h i ii

h z κ
−

−
=

ϒ = ϒ∑  for the inverse of a convex sum, 

and ( )( ) ( )( )1 1

r r
jhh i iji j

h z h zκ κ
= =

ϒ = ϒ∑ ∑  for a double 

nested convex sum. An asterisk ( )∗  will be used in matrix 
expressions to denote the transpose of the symmetric element; 
for in-line expressions it will denote the transpose of the 
terms on its left side. Arguments will be omitted when their 
meaning is direct.  

Consider the following discrete-time TS model in the 
descriptor form. 

( ) ( ) ( )1v h hE x A x B uκ κ κ+ = + , (1) 

where nx ∈\  is the state vector, mu ∈\  is the control input 
vector, κ is the current sample. Matrices iA  and iB ,  

{ }1, ,i r∈ …  represent the i-th linear right-hand side model 

and kE , { }1, , ek r∈ …  represent the k-th linear left-hand side 
model of the TS descriptor model. In this work we assume 
that vE  is regular matrix. This is motivated by mechanical 
systems, where vE  contains the inertia matrix and therefore it 
is a regular matrix. In what follows, xκ +  and xκ  stand for 

( )1x κ +  and ( )x κ respectively.  
The membership functions (MFs) hold the convex sum 
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property in a compact set of the state: 

( )( ) { } ( )( )

( )( ) { } ( )( )
1

1

0, 1, , 2 , 1,

0, 1, , 2 , 1,
e

e

r

i i
i

r

k

p

p
k

k

h z i h z

v z k v z

κ κ

κ κ

=

=

≥ ∈ =

≥ ∈ =

∑

∑

…

…
  

where p  and ep  represent the number of nonlinear terms in 
the right-hand side and left-hand side, respectively, of (1). 
The MFs depend on the premise variables grouped in the 
vector ( )z κ  which is known and usually depends on the 
state vector. 

In order to obtain LMI conditions, the following relaxation 
scheme will be employed due to its good compromise 
between effectiveness and computational complexity. 

Relaxation Lemma [30]: Let k
ijϒ  be matrices of 

appropriate dimensions. Then  

( )( ) ( )( ) ( )( )
1 1 1

0
e

k
k ij

rr r

i j
i j k

h z h z v zκ κ κ
= = =

ϒ <∑∑∑ , holds if 

0,
2 ,

1
,0

k
ii

k k k
ii ij ji i j

r

ϒ <

ϒ + ϒ ϒ < ≠+
−

 (2) 

for { }1, , ,i j r∈ … , { }1, , ek r∈ … . 

Finsler’s Lemma [26]: Let ,nx ∈\  T n nQ Q ×= ∈\ , and 
m nR ×∈\  such that ( )rank R n< ; the following expressions 

are equivalent: 
a) 0Tx Qx < , { }: 0, 0nx x x Rx∀ ∈ ∈ ≠ =\ . 

b) : 0n m T TM Q MR R M×∃ ∈ + + <\ . 
Property 1. Let 0TX X= >  and Y  matrices of 

appropriate size. The following expression holds: 
( ) ( )1 10T T TY X X Y X Y X Y Y Y X− −− − ≥ ⇔ ≥ + − . 

Property 2 [14] (Schur complement). Consider a matrix 
11 12

21 22

Q Q
Q

Q Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, with 11Q  and 22Q  being square matrices. 

Then: 
11 22

1
22 12 11 12

1
22 211 112

0
0 0

0 0

.T T

Q Q
Q

Q Q Q QQ Q Q Q−−

⎧ ⎧⎪ ⎪< ⇔ ⇔⎨ ⎨
< − <⎪

<

⎩

<

− ⎪⎩
 

The following example exhibits the motivation for the TS 
descriptor form vs. a TS form: ( ) ( )x A x x B x uκ κ κ+ = + .  

 Example 1. Consider the following system in nonlinear 

descriptor form  with ( ) 1

1

1
1
x

E x
x

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

,  

( ) ( )
2

2

1
0.5 cos 2

x
A x

x
− −⎡ ⎤

= ⎢ ⎥+⎣ ⎦
, and  ( )

0
1

B x ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 . The 

representation in the form (1) gives 2er =  and 4r =  due to 
the number of nonlinearities on the left-hand side and 
right-hand side. To rewrite the original nonlinear descriptor 
system into the classical TS one it is necessary to compute 

( )( ) 1
E x

−
, resulting in ( )( ) ( ) ( )( )1

E x A x x B xx uκ κ κ+

−
+= . 

This means that four different nonlinearities have to be 
considered, which results in 16r =  since all the nonlinear 
terms are on the right-hand side. Considering the relaxation 
lemma above and the quadratic framework, the number of 
LMI conditions to be verified for a ‘classical’ TS 
representation is 2 1 257r + =  whereas for the TS descriptor 
model, it is 2 1 33er r + = . ◊  

III. MAIN RESULTS 
For the controller design purpose, the following non-PDC 

control law is used  

( )
1

hv Hu F xκ κ
−= i , (3) 

where ( )( ) ( )( )
1 1

err

j k j
k

hv k
j

F h z v z Fκ κ
= =

= ∑∑  and matrix  ( )H i  

will be defined afterward. 
The TS descriptor model (1) together with the control law 

(3) yields: 

( )
1

v h h hvx A x B F H xE κ κ κ
−

+ = + i . (4) 

Expression (4) can be rewritten as an equality constraint: 

( )
1 0h h hv vE

x
A B F H

x
κ

κ

−

+

⎡ ⎤⎡ ⎤− =⎢ ⎥⎣ ⎦ ⎣ ⎦
+ i . (5) 

Thereinafter two different Lyapunov functions will be 
considered: 

Case 1: ( ) 1T
hV x x P xκ κ κ
−= , with 0hh

TP P= > , 1
h hP X− = . 

Case 2: ( ) 1T T
h h hV x x H P H xκ κ κ
− −= , with 0hh

TP P= > . 

A. Case 1. 
The variation of the Lyapunov function in Case 1 is 

( ) 0T T
h hV x x X x x X xκ κ κ κ κ+ + + −=Δ < . (6) 

The expression ( )V xκΔ  can be written as 

( )
0

0
0

T
h

h

Xx x
V x

Xx x
κ κ

κ
κ κ++ +

−⎡ ⎤⎡ ⎤ ⎡ ⎤
Δ = <⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
. (7) 

Via Finsler’s Lemma, equality (5) and inequality (7) results 
in 

( ) ( )1 0
0

0
h

h h hv v
h

X
A

M
E

X N
B F H −

+

−⎡ ⎤
+⎢

⎡ ⎤ ⎡ ⎤+ − + ∗ <⎢ ⎥ ⎣ ⎦⎣
⎥
⎦ ⎦⎣

i ,  (8) 

where matrices n nM ×∈\  and n nN ×∈\  are free matrices 
fixed later on.  

Let us select ( ) hvH H=i . At this point two results can be 
stated depending on different congruence transformations of 
(8). The first one is stated in the following Lemma. 

Lemma 1. The closed-loop TS descriptor model (4) is 
asymptotically stable if there exist matrices 0T

j jP P= > , 

jkH , and jkF , for { }, , 1, ,i j l r∈ … , { }1, , ek r∈ …  such that 
conditions (2) are satisfied with 

( )
0jk

T
jk jk

ij
i jk i jk k

l T
ll lk

H
A B F

H P
H E P P PE

− −⎡ ⎤+ ∗
<⎢ ⎥− − +⎢ ⎥⎣ ⎦

ϒ =
+

. (9) 



 
 

 

 Proof: By using the congruence property with the 

full-rank matrix 
0

0

T
hv

h

H
P +

⎡ ⎤
⎢ ⎥
⎣ ⎦

, (8) yields 

[ ] ( ) 0

0

.

0

T
hv h hv

h h h

T
hv

h hv h hv v h
h

H
P

M
H E P

N

H X
P X

H
A B F

P

+ + +

+
+

⎡ ⎤−
⎢ ⎥
⎣

⎡ ⎤
+ − + ∗ <⎢ ⎥

⎣

⎦

+
⎦

 (10) 

In order to obtain an LMI problem, a good choice is 
0M =  and  hN X += . Then (10)  yields if 

( ) 0
T
hv h hv

T
h hv h hv v h h v h

H
H E P P E P
H X

A B F + + +

⎡ ⎤∗
<⎢ ⎥− − +⎣ ⎦

−
+

 (11) 

Finally, applying Property 1 and the relaxation lemma to 
(11) ends the proof.,  

A more general result can be reached: by multiplying by  
0

0

T
hv

T
hhh

H
G +

⎡ ⎤
⎢ ⎥
⎣ ⎦

 on the left-hand side and by its transpose on 

the right-hand side of (8), gives 

[ ] ( )

0

0.

0

T
hv h hv

T
hhh h hhh

T
hv

h hv h hv v hhhT
hhh

H
G

M
H E G

H X
G X

H
A B F

G N

+ + +

+
+

⎡ ⎤−
⎢ ⎥
⎣ ⎦

+
⎡ ⎤

+ − + ∗ <⎢ ⎥
⎣ ⎦

 (12) 

Note that a new matrix hhhG +  is introduced, thus adding 
extra degrees of freedom to the inequality. Therefore, the 
following theorem can be stated: 

Theorem 1: The closed-loop TS descriptor model (4) is 
asymptotically stable if there exist matrices 0T

j jP P= > , 

jkH , ijlG , and jkF , for { }, , 1, ,i j l r∈ … , { }1, , ek r∈ …  such 
that conditions (2) are satisfied with 

( ) ( )
( )

0

jk j

i jk i jk k

T
jk

k T T
ijl ijl

l

kijl

ijl

H P
H E G

H
A B F E

G P
G

+ ∗ ∗
− −

⎡ ⎤− −
⎢ ⎥ϒ = +⎢ ⎥
⎢ ⎥−⎣ ⎦

∗ . (13) 

Proof: Recall (12). Choosing the matrices 0M =  and  
T

hhhN G−
+=  yields: 

( ) 0
T
hv h hv

T T T
h hv h hv v hhh hhh v hhh h hhh

H
H E G G
H X

A B E G X GF + + + + +

⎡ ⎤∗
<⎢ ⎥− − +⎣ ⎦

−
+

.  

Employing Property 1 and the Schur complement, it gives 
( ) ( )

( ) 0
0

T
hv hv h

T T
h hv h hv v hhh hhh v

hhh h

H P
H E G

H
G

G
A B F E

P
+ +

+ +

+ ∗ ∗
− −

⎡ ⎤− −
⎢ ⎥+⎢ ⎥
⎢ ⎥−⎣ ⎦

∗ < , (14) 

or 

( )( ) ( )( ) ( )( ) ( )( )

( ) ( )
( )

1 1 1 1

0

1

0.

e

j l

jk j

i jk i jk k ijl

i

rr r r
v
hhh i k

i j l k

T
jk

T T
ijl k

jl l

z z z v zh h h

H
A B F

H P
H E G E

P
G

G

κ κ κ κ+
= = = =

+ ⋅

+ ∗ ∗

ϒ =

⎡ ⎤− −
⎢ ⎥⋅ +⎢ ⎥
⎢ ⎥−

− ∗ <

⎣ ⎦

−

∑∑∑∑

    Applying the relaxation lemma the proof is ended. ,  
Remark 1: The best choice for matrix hhhG +  allows 

obtaining extra degrees of freedom without increasing the 
number of LMIs to be satisfied. The number of extra matrices 
is 3r . 

Remark 2: Consider the quadratic case for the classical TS 
models [4] h hx A x uBκ κ κ+ = +  with the classical stabilization 
condition: 

( ) 0
h h h

P
A P B F P

− ∗⎡ ⎤
<⎢ ⎥+ −⎣ ⎦

. (15) 

Results in Theorem 1 always include those from (15). To 
see that, consider inequality (14) with hhh hv hG H P P+ = = = . 
Employing the Schur complement, we have 

( ) 0T
h h hv v v

P
P E PA B F PE P

∗⎡ ⎤
<⎢ ⎥− − +⎣ ⎦

−
+

. (16) 

Note that the classical TS model is a special case of the TS 
descriptor one when vE I= , therefore inequality (16) yields 
expression (15).  

B. Case 2. 
Consider ( ) hH H=i  in (3). Then the variation of the 

Lyapunov function in Case 2 is 
( ) 1 1 0T T T T

h hhh hhV x x H P x x H PH H xκ κ κ κ κ
− −− −

+ +++ +=Δ − < . (17) 

The expression ( )V xκΔ  can be written as 
1

1

0
0

0

T T
h h

T
hh h

hHx xH P
xH Hx P

κ κ

κ κ

−

−
+

−

+ ++
−
+

⎡ ⎤−⎡ ⎤ ⎡ ⎤
<⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
. (18) 

Through Finsler’s Lemma, expressions (5) and (18) result 
in 

( )

1

1

1

0
0

0.

T
h h

T
h

h

h

h

h

h h hv v

H P
H P

A B

H

F
N

H

H

M
E

−

−
+

−

−
+ +

−⎡ ⎤ ⎡ ⎤+

⎡ ⎤

− + ∗ <⎢ ⎥ ⎣

−
⎢ ⎥
⎣ ⎦

+ ⎦⎣ ⎦

  (19) 

Using the property of congruence with 
0

0

T
h

T
h

H
H +

⎡ ⎤
⎢ ⎥
⎣ ⎦

, (19) 

yields 

[ ] ( ) 0.

0
0

h

h

T
h

h h h hv v hT
h

M
E H

P
P

H
A H B F

H N

+

+
+

⎡ ⎤
+ − + ∗ <⎢ ⎥

⎣

−⎡ ⎤
⎢ ⎥
⎣ ⎦

+
⎦

 (20) 

The following result can be stated. 
Theorem 2: The closed-loop TS descriptor systems (4) is 

asymptotically stable if there exist matrices 0T
j jP P= > , 

jH , and jkF , for { }, 1, ,i j r∈ … , { }1, , ek r∈ …  such that the 
LMI conditions (2) are satisfied with 

( )k
ijl T T

j

i j i jk k l ll v

P
A B FH E H PEH

∗
−

−⎡ ⎤
ϒ = ⎢ ⎥+⎣ − ⎦+

. (21) 

 



 
 

 

Proof: Recall  (20). Assigning 0M =  and T
hN H −

+=  
yields 

( ) 0h
T T
hh h hvh hv v hH E H H P

P
A B F E++ +

∗
− −

−⎡ ⎤
⎢
⎣ +

<⎥+ ⎦
, (22) 

or 

( )( ) ( )( ) ( )( ) ( )( )

( )
1 1 1 1

1

0.

err r r
v
hhh i k

i j l k

T T
l

j l

j

i j i jk k l k l

z z zh h h

P

v z

H E H H PA B F E

κ κ κ κ+
= = = =

ϒ =

−⎡ ⎤
⋅ ⎢ ⎥+

+ ⋅

∗
<

− −⎣ + ⎦

∑∑∑∑
 

Through the relaxation lemma the proof is concluded. ,  
Remark 3: The approaches presented in Theorem 1 and 

Theorem 2 are not equivalent [29]. Also note that matrix ( )H i  
has a different structure in each case. This fact allows keeping 
the same number of LMI conditions, which is 3

er r . 

IV. EXAMPLES 
The proposed results are illustrated via the following two 

numerical examples.  
Example 2. Consider a TS descriptor model (1), with 

2er r= = , 1

2.34 1.93
0.35 0.46

A
− −⎡

=
⎤

⎢ ⎥
⎣ ⎦

, 2

1.47 1.26
0.17 0.93

A
−⎡

=
⎤

⎢ ⎥− −⎣ ⎦
, 

1

0.5
0.1

B
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 2

0.5
0.34

B
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 1

1.1 0
0 0.87

E
⎡ ⎤
⎢ ⎥
⎣ ⎦

= , and 

2

0.95 0
0 0.23

E ⎡
=

⎤
⎢ ⎥
⎣ ⎦

. The MFs are defined as follows: 

2
1

2
4

x
v κ

κ
+

= , 12 1 vv κ κ= − , 1
1

2

4
x

h κ
κ = , and 12 1 hh κ κ= − . The 

MFs hold the convex-sum property on the compact set 
{ }1 2: 2, 2x x xκ κ κΔ = ≤ ≤ .  

For this model, only the conditions of Theorem 1 are 
feasible, i.e., conditions in Theorem 2 are unfeasible. The 
following values were obtained: 

[ ] [ ]

1

11 12

11 1

2

21 2

2

2

2

1

2.73 0.08 2.16 0.42
, ,

0.08 0.31 0.42 0.20

2.04 0.05 2.19 0.14
, ,

0.48 0.44 0.47 0.23

2.02 0.33 2.05 0.35
, ,

0.95 0.59 1.39 0.67

6.12 1.76 , 5.97 1.46 ,

3.70

P P

H H

H H

F F

F

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣

= −

=
⎦

=

−[ ] [ ]221.50 , 4.71 1.85 .F = − −

 

Simulation results with initial conditions 
( ) [ ]0 0.3 0.3 Tx = −  are presented in Figure 1. 
 

0 2 4 6 8 10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sample

S
ta

te
s

 

 

x1
x2

 
Fig. 1 States evolution in Example 2. 

 
Example 3. Consider a TS descriptor model as in (1) with 

2er r= = , 1

1.18 1.31
0.33 0.23

A
−⎡

=
⎤

⎢ ⎥−⎣ ⎦
, 2

0.69 1.41
1.17 1.43

A
⎡ ⎤
⎢ ⎥−⎣ ⎦

= , 

1

1
1.05

B ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

, 2

1
0

B ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 1

1.1 0
0 0.36

E ⎡ ⎤
⎢ ⎥
⎣ ⎦

= , and 

2

0.95 0
0 1

E ⎡ ⎤
⎢ ⎥
⎣ ⎦

= . The MFs are defined the same as in 

Example 2. 
Conditions in Theorem 1 are unfeasible, while Theorem 2 

gives the following matrices:  

[ ] [ ]
[ ] [ ]

2

12

22

1

1 2

11

21

250.44 42.03 4.33 1.73
, ,

42.03 12.52 1.73 3.17

284.89 109.83 114.77 44.59
, ,

71.48 60.83 88.09 42.52

114.34 28.19 , 136.15 31.59 ,

228.58 64.85 , 217.15 76.16 .

P P

H H

F F

F F

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
= =

=

− − −

− − − −=

  

Simulation results with initial conditions 
( ) [ ]0 0.3 0.3 Tx = −  are presented in Figure 2. 
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Fig. 2. States evolution in Example 3. 
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