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Abstract—Non-quadratic Lyapunov functions have now been
more and more frequently used for the analysis and design of
Takagi-Sugeno fuzzy models. In this paper, we use a delayed non-
quadratic Lyapunov function to develop controller design condi-
tions for TS systems. The conditions can easily be formulated as
LMIs. We show that in certain cases the developed conditions are
more relaxed than current state-of-the-art methods. In order to
further reduce the conservativeness, we also extend the conditions
to α-sample variation.

I. INTRODUCTION

Takagi-Sugeno (TS) fuzzy systems [1] are convex combina-

tions of local linear models, and are able to exactly represent

a large class of nonlinear systems [2].

For the analysis and design of TS models the direct Lya-

punov approach has been used. Stability conditions have been

derived using quadratic Lyapunov functions [3]–[5], piecewise

continuous Lyapunov functions [6], [7], and nonquadratic Lya-

punov functions [8]–[10] and have been in general formulated

as linear matrix inequalities (LMIs). Since the development

of the first stability and design conditions, the research ef-

forts have been geared to reduce the conservativeness of the

approaches.

For discrete-time TS models, non-quadratic Lyapunov func-

tions have shown a real improvement of the design condi-

tions [8], [11]–[13]. It has been proven that the solutions

obtained by non-quadratic Lyapunov functions include and

extend the set of solutions obtained using the quadratic frame-

work.

Non-quadratic Lyapunov functions have been extended to

double-sum Lyapunov functions in [11] and later on to poly-

nomial Lyapunov functions in [14]–[16]. A different type

of improvement in the discrete case has been developed

in [9], conditions being obtained by replacing the classical

one sample variation of the Lyapunov function by its variation

over several samples (α-sample variation).

For controller and observer design of discrete-time TS

models, in [17] a non-quadratic double-sum delayed controller

and observer has been used. The method of [17] has been

generalized for observer design in [18], but not for controller

design. In fact, the controller design method leads to an

increased number of LMI problems, thereby increasing the

computational costs.

In this paper, we propose a delayed nonquadratic Lyapunov

function that leads to more relaxed controller design condi-

tions, with reduced computational costs. The conditions are

formulated as LMIs. We also extend the results to α-sample

variation [9].

The structure of the paper is as follows. Section II presents

the notations used in this paper and the general form of the

TS models. Section III motivates and introduces the proposed

controller. Section IV develops the proposed conditions for

controller design and extends them to α-sample variation.

Section V discusses the conditions and their applications and

concludes the paper.

II. PRELIMINARIES

The discrete-time TS model considered in this paper for

controller design is

x(k + 1) =

r
∑

i=1

hi(z(k))(Aix(k) + Biu(k)) (1)

where r denotes the number of rules, Ai and Bi, i =
1, 2, . . . , r are the local matrices, k is the time instant,

x ∈ R
nx is the state vector, u ∈ R

nu is the control input,

z ∈ R
nz is the scheduling vector, hi, i = 1, 2, . . . , r

denote the normalized membership functions, hi ≥ 0, i =
1, 2, . . . , r,

∑r

i=1
hi(z(k)) = 1. It is assumed that the

scheduling variables z(k) are available at the time instant k.

For the ease of notation, in what follows, we use

x(k + 1) = Azx(k) + Bzu(k) (2)

instead of (1), where Az and Bz denote the convex sums

Az =
∑r

i=1
hi(z(k))Ai, and Bz =

∑r

i=1
hi(z(k))Bi, respec-

tively. The subscript z denotes that the sum is evaluated at time

instant k. The subscript z− stands for the sum being evaluated

at time k − 1, e.g., Az− =
∑r

i=1
hi(z(k − 1))Ai, z+ means

evaluation at time k + 1, e.g., Az+ =
∑r

i=1
hi(z(k + 1))Ai,

z + n means evaluation at time k + n, e.g., Az+n =
∑r

i=1
hi(z(k +n))Ai, and multiple subscripts imply multiple

sums, e.g., Azz+ =
∑r

i=1
hi(z(k))

∑r

j=1
hj(z(k + 1))Aij .

For developing the design conditions, we will make use of

the following results:



Lemma 1. [19] Consider a vector x ∈ R
nx and two matrices

Q = QT ∈ R
nx×nx and R ∈ R

m×nx such that rank(R) < nx.

The two following expressions are equivalent:

1) x
T Qx < 0, x ∈ {x ∈ R

nx ,x 6= 0, Rx = 0}
2) ∃M ∈ R

m×nx such that Q + MR + RT MT < 0

Observer and controller design for TS models often lead to

double-sum negativity problems of the form

x
T

r
∑

i=1

r
∑

j=1

hi(z(k))hj(z(k))Γijx < 0 (3)

where Γij , i, j = 1, 2, . . . , r are matrices of appropriate

dimensions.

Lemma 2. [20] The double-sum (3) is negative, if

Γii < 0

Γij + Γji < 0, i, j = 1, 2, . . . , r, i < j

Lemma 3. [21] The double-sum (3) is negative, if

Γii < 0

2

r − 1
Γii + Γij + Γji < 0, i, j = 1, 2, . . . , r, i 6= j

Property 1. (Congruence) Given a matrix P = PT and a full

column rank matrix Q it holds that

P > 0 ⇒ QPQT > 0

Property 2. Let A and B be matrices of appropriate dimen-

sions and ranks, with B = BT > 0. Then

(A − B)T B−1(A − B) ≥ 0 ⇐⇒ AT B−1A ≥ A + AT − B

Property 3. [22] (Schur complement) Consider a matrix

M = MT =

(

M11 M12

MT
12 M22

)

, with M11 and M22 being square

matrices. Then

M < 0 ⇔

{

M11 < 0
M22 − MT

12M
−1

11 M12 < 0

⇔

{

M22 < 0
M11 − M12M

−1

22 MT
12 < 0

For convenience, 0 and I denote the zero and identity

matrices of appropriate dimensions, and a (∗) denotes the

term induced by symmetry. Consequently, AT P (∗) stands for

AT PA and

(

A (∗)
B C

)

denotes

(

A BT

B C

)

.

III. MOTIVATION

In [17], an observer design method based on the delayed

Lyapunov function1 V = e
T Pz−e has been proposed, that

improved existing conditions, without increasing the number

of LMIs to be solved. In what follows, we solve the dual

problem, i.e., derive controller design conditions based on

a delayed Lyapunov function that are able to improve the

existing conditions without increasing the number of LMIs.

1
e represents the estimation error in [17].

Consider the TS model (1) and the controller

u(k) = −Fzz−H−1
zz−x(k) (4)

Using the Lyapunov function V = x
T P−1

z− x, we have the

difference

∆V1 =V (k + 1) − V (k) =

=x(k + 1)T P−1
z x(k + 1) − x(k)T P−1

z− x(k)

=

(

x(k)
x(k + 1)

)T (

−P−1
z− 0

0 P−1
z

)(

x(k)
x(k + 1)

)

The closed-loop system dynamics are

(

Az − BzFzz−H−1
zz− −I

)

(

x(k)
x(k + 1)

)

= 0 (5)

Using Lemma 1 with (5), ∆V1 < 0, if there exist M ∈
R

2nx×nx so that
(

−P−1
z− 0

0 P−1
z

)

+

M
(

Az − BzFzz−H−1
zz− −I

)

+ (∗) < 0

Choosing M =

(

0
P−1

z

)

and congruence with

(

Hzz− 0
0 Pz

)

leads to
(

−HT
zz−P−1

z− Hzz− (∗)
AzHzz− − BzFzz− −Pz

)

< 0

Using Property 2, we obtain
(

−Hzz− − HT
zz− + Pz− (∗)

AzHzz− − BzFzz− −Pz

)

< 0 (6)

This result can be formulated as

Theorem 1. The control law (4) asymptotically stabilizes the

system (2) if there exist Pz = PT
z , Fzz−, and Hzz−, so that

(6) holds.

Relaxed LMI conditions can easily be formulated using

Lemmas 2 or 3, as follows.

Corollary 1. The closed-loop system (8) is asymptotically

stable, if there exist Pi = PT
i , Fij , and Hij , i, j = 1, 2, . . . , r

so that (using Lemma 2)

Γiik < 0

Γijk + Γjik < 0

for i, j, k = 1, 2, . . . , r, i > j, or (using Lemma 3)

Γiik < 0

2

r − 1
Γiik + Γijk + Γjik < 0

for i, j, k = 1, 2, . . . , r, where

Γijk =

(

−Hjk − HT
jk + Pk (∗)

AiHjk − BiFjk −Pi

)

< 0

The proof is straightforward.



Note that the conditions above are not equivalent to those in

the literature, e.g., in [8], that involve the negative definiteness

of sums of the form
(

−Pz (∗)
AzHz − BzFz −Hz+ − HT

z+ + Pz+

)

< 0

To illustrate this, consider the following example.

Example 1. Consider the two-rule fuzzy system

x(k + 1) =

2
∑

i=1

hi(z(k))(Aix(k) + Biu(k))

with

A1 =

(

1.5 2.7
−1.1 1.8

)

A2 =

(

−0.4 −0.8
0.5 −0.8

)

B1 =

(

−0.55
0.9

)

B1 =

(

1
0

)

For this system, the conditions presented in [8], [14] (with 3

sums) are unfeasible, while using Corollary 1 we obtain:

P1 =

(

1.90 1.26
1.26 1.07

)

P2 =

(

1.07 0.40
0.40 0.36

)

H11 =

(

1.47 1.00
1.01 0.94

)

H12 =

(

1.86 0.87
1.20 0.99

)

H21 =

(

0.91 0.31
0.34 0.34

)

H22 =

(

1.00 0.24
0.49 0.49

)

F11 =
(

−0.42 −0.28
)

F12 =
(

−0.63 −0.32
)

F21 =
(

−0.20 −0.13
)

F22 =
(

−0.31 −0.06
)

In what follows, we generalize and extend the result pre-

sented above.

IV. CONTROLLER DESIGN

Consider now the problem of controller design for the

system (2).

In general, the controller considered is of the form

u(k) = −FfH−1

h x(k) (7)

with Ff and Hh being (possibly) multiple sums evaluated in

different time instants. At this point, let us generically denote

the time at which these sums are evaluated by the subscripts

f and h. The issue of how exactly these time indices should

be chosen will be discussed in Section V. Note however, that

these indices cannot concern future time instants, as the future

scheduling variables are not available.

Using the controller (7) for the TS system (2), the closed-

loop system can be expressed as

x(k + 1) = Azx(k) − BzFfH−1

h x(k) (8)

In general, the nonquadratic Lyapunov function used

for controller design is (see [8], [14], [23]) of the form

V = x(k)T H−T
z PzH

−1
z x(k), or, for multiple sums, V =

x(k)T H−T
zz...zPzz...zH

−1
zz...zx(k). In this paper, we use instead

the Lyapunov function

V = x(k)T P−1
p x(k) (9)

where again the subscript p stands for the time instants

the (multiple) sum P will be evaluated in. Similarly to the

indices in the controller gain, the problem of choosing p

will be discussed in Section V. In what follows, we first

derive controller design conditions and afterward consider the

conditions obtained with an α-sample variation [9] of the

Lyapunov function.

A. Design conditions

Using the Lyapunov function (9) the following sufficient

conditions can be formulated:

Theorem 2. The closed-loop system (8) is asymptotically

stable, if there exist Pp = PT
p , Ff , and Hh, so that

(

−Hh − HT
h + Pp (∗)

AzHh − BzFf −Pp+

)

< 0 (10)

The proof follows the same line as the one of Theorem 1

and is therefore not repeated here.

B. α-sample variation

Let us consider now an α-sample variation [9] of the

Lyapunov function. Then, the following conditions can be

formulated.

Theorem 3. The closed-loop system (8) is asymptotically

stable, if there exist Pp = PT
p , Ff , and Hh, so that



















Ω1,1 + Pp (∗) . . . 0 0
Ω2,1 Ω2,2 . . . 0 0
0 Ω3,2 . . . 0
...

... . . .
...

...

0 0 . . . Ωα−1,α−1 0
0 0 . . . Ωα,α−1 −Pp+α



















< 0 (11)

where Ωi,i−1 = Az+i−2Hh+i−2 − Bz+i−2Ff+i−2, Ωi,i =
−Hh+i−1 − HT

h+i−1
, i = 1, 2, . . . , α.

Proof. The α-sample variation of the Lyapunov functions is

∆Vα =V (k + α) − V (k) =

=x(k + α)T P−1
p+αx(k + α) − x(k)T P−1

p x(k)

=











x(k)
x(k + 1)

...

x(k + α)











T

·











−P−1
p 0 . . . 0

0 0 . . . 0
...

... . . .
...

0 0 . . . P−1
p+α





















x(k)
x(k + 1)

...

x(k + α)











The closed-loop system dynamics for α consecutive samples

are










Γ0 −I 0 . . . 0 0
0 Γ1 −I . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . Γα−1 −I





















x(k)
x(k + 1)

...

x(k + α)











= 0

(12)



where Γi = Az+i−Bz+iFf+i(Hh+i)
−1, i = 0, 1, . . . , α−1.

To obtain LMI conditions and to be able to recover classical

conditions, one can choose for instance

M =



















0 0 0 . . . 0

H−T
h+1

0 . . . 0 0

0 H−T
h+2

. . . 0 0
...

...
... . . .

...

0 0 . . . H−T
h+α−1

0

0 0 . . . 0 P−1
p+α



















Using Lemma 1, congruence with the matrix

diag(Hh+1,Hh+2, . . . ,Hh+α−1, Pp+α), and applying

Property 2 leads directly to (11). �

V. DISCUSSION

Note that up to this point we made no assumptions on how

the sums or the number of sums used in the controller gains

or in the Lyapunov function should be chosen. First, let us

illustrate the developed conditions if the indices f , h, and p

are given.

Consider the fuzzy system

x(k + 1) =
r

∑

i=1

hi(z(k))(Aix(k) + Biu(k))

= Azx(k) + Bzu(k)

and let h = zz−, f = zz−, p = z − z−, i.e.,

Pz−z− =

r
∑

i=1

r
∑

j=1

hi(z(k − 1))hj(z(k − 1))Pij

Hzz− =

r
∑

i=1

r
∑

j=1

hi(z(k))hj(z(k − 1))Hij

Fzz− =

r
∑

i=1

r
∑

j=1

hi(z(k))hj(z(k − 1))Fij

which is a case similar to the one presented in Section III.

Then, the conditions (10) of Theorem 2 correspond to there

exist Pij , Fij , Hij , i, j = 1, 2 so that
(

−Hzz− − HT
zz− + Pz−z− (∗)

AzHzz− − BzFzz− −Pzz

)

< 0

or
r

∑

i1=1

r
∑

i2=1

r
∑

i3=1

r
∑

i4=1

hi1(z(k))hi2(z(k))

· hi3(z(k − 1))hi4(z(k − 1))·

·

(

−Hi2i3 − HT
i2i3

+ Pi3i4 (∗)
Ai1Hi2i3 − Bi1Fi2i3 −Pi1i2

)

< 0

In general, the number of sums in (10) is at most 2|p| +
|f |+ |h|+1, where |.| denotes the cardinality. However, when

the number of sums is 2|p|+ |f |+ |h|+ 1, the corresponding

conditions are equivalent to using a common quadratic Lya-

punov function and a PDC controller, as the LMIs that are

obtained have to be solved for each possible index.

In order to reduce the number of LMIs and the conserva-

tiveness of the conditions, the indices in p, f , and h should be

chosen such that relaxations can be used. Due to the system

dynamics (2), in order to use relaxations at all, both h, and

f should contain z, the current time step. It can also be seen

that due to the terms AzHh and BzFf , one can chose f = h,

without increasing the computational costs.

To illustrate the choice of the delays, consider now the

simplest case, when only one sum is used in P . Then, with

the reasoning above that f and h should contain z, we have

the inequality
(

−Hz − HT
z + Pp (∗)

AzHz − BzFz −Pp+1

)

< 0

which contains at least two sums if P is chosen constant. By

choosing P a sum, such that the number of sums is minimum,

we have 3 sums, as follows. If p = z then we have
(

−Hz − HT
z + Pz (∗)

AzHz − BzFz −Pz+

)

< 0

while if p is chosen p = z−, we have
(

−Hz − HT
z + Pz− (∗)

AzHz − BzFz −Pz

)

< 0

It can be easily seen that in the second case, i.e., when p =
z−, we can also add2 another dimension to H and F , giving

more freedom, and without altering the number of sums in the

condition. This choice will lead to the conditions
(

−Hzz− − HT
zz− + Pz− (∗)

AzHzz− − BzFzz− −Pz

)

< 0

which is exactly the case presented in Section III.

For an arbitrary number of indices in p and h, this choice

generalizes to p = {−1, −1, . . . , −1} and f = h =
{0, 0, . . . , 0, −1, . . . , −1}. Moreover, if |f | = |h| = 2|p|,
this choice reduces the number of sums in (10) to 2|p| + 1.

Theorem 2 above generalizes several results from the liter-

ature. For instance, the results of [8] are recovered by using

p = h = f = z while Theorem 3 of [11] is obtained by

choosing p = zz, and h = f = z.

In general, depending on the exact sums used, p, f , and h,

the conditions (10) can easily be transformed into LMIs and

relaxations such as [3], [14], [20], [21] can be used.

Note that the conditions of Theorems 2, although they

generalize several conditions from the literature, do not nec-

essarily include those that use a different Lyapunov funcion,

e.g., those of [14]. The choice of which Lyapunov function

and consequently of which design conditions should be used

is still undecided.

The next example compares the conditions proposed in this

paper to that of [11] and [13]. To consider the simplest case,

the relaxation of [20] is used on all the possible sums, but

slack variables are not used. For solving the LMIs, the SeDuMi

solver within the Yalmip [24] toolbox has been used.

2Note that Hzz+ cannot be used, as the premise variables are not known
in advance.



Example 2. Consider the two-rule TS model [8], [11] having

the local matrices

A1 =

(

1 −b

−1 −0.5

)

B1 =

(

5 + b

2b

)

A2 =

(

1 b

−1 −0.5

)

B2 =

(

5 − b

−2b

)

The conditions of Theorem 3 in [11] are in fact a special case

of Theorem 2 in Section IV-A, with p = zz and f = h = z

(Method #1). The number of sums is 4, and the maximum

value of b for which the LMIs are feasible is b = 1.547. For

comparison purposes, the conditions presented in [8], with

p = f = h = z (Method #2) are feasible up to b = 1.539,

although they only involve 3 sums. Applying Theorem 2 of [13]

with p = z − zz+ and h = f = zz− (Method #3) using the

relaxation of [20] and without slack variables, b = 1.565 is

obtained, but the conditions involve 5 sums. For the choice

p = zz+ and f = h = z, (Method #4) which involves 4

sums, the maximum b is b = 1.54.

Consider now the conditions proposed in this paper, in the

light of the discussion above. For Theorem 2, according to the

discussion above, we should choose p = z − z− and f =
h = zz − z− (Method #5). Indeed, with this we can obtain

b = 1.589. Moreover, by choosing p = z− and f = h = zz−,

(Method #6) which will lead to only 3 sums, we get b = 1.553,

a better result than that obtained by the conditions of [11].

A graphical comparison of the maximum feasible value of

b obtained with the different methods is presented in Figure 1.

1.54 1.55 1.56 1.57 1.58 1.59
0

1

2

3

4

5

6

7
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M
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o
d
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Fig. 1. Comparison of feasibility.

Let us now discuss Theorem 3. Similarly to the previous

reasoning, in order to be able to use relaxations, both h and f

have to contain z, i.e., the current time index. For the simplest

case, when P contains only one sum, we can choose either

p = z or p = z− in order to keep the number of sums in

the condition (11) to a minimum. Again, it is better to use

z−, and add it also to h and f , since this does not increase

the number of sums, but provides an extra degree of freedom.

This means, that the condition (11) becomes

Corollary 2. The closed-loop system (8) is asymptotically

stable, if there exist Pi = PT
i , Fij , and Hij , i, j = 1, 2 . . . , r,

so that


















Ω1,1 + Pz− (∗) . . . 0 0
Ω2,1 Ω2,2 . . . 0 0
0 Ω3,2 . . . 0
...

... . . .
...

...

0 0 . . . Ωα−1,α−1 0
0 0 . . . Ωα,α−1 −Pz+α−1



















< 0

(13)

where Ωi,i−1 = Az+i−2Hz+i−2z+i−3−Bz+i−2Fz+i−2,z+i−3,

Ωi,i = −Hz+i−1,z+i−2 − HT
z+i−1z+i−2, i = 1, 2, . . . , α.

Similarly to Corollary 1, LMI conditions can be stated and

relaxations can be used.
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et à la Technologie, the Ministére de L’Enseignement supérieur et de
la Recherche the Region Nord Pas de Calais and the Centre Nationale
de la Recherche Scientifique: the authors gratefully acknowledge the
support of these institutions.

REFERENCES

[1] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modeling and control,” IEEE Transactions on Systems,

Man, and Cybernetics, vol. 15, no. 1, pp. 116–132, 1985.

[2] Zs. Lendek, T. M. Guerra, R. Babuška, and B. De Schutter, Stability
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