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Abstract

Many complex physical systems are the interconnection of lower-dimensional subsystems. For such systems, distributed stability
analysis and observer design presents several advantages with respect to centralized approaches, such as modularity, easier analysis
and design, and reduced computational complexity. Applications include distributed process control, traffic and communication
networks, and economic systems. In this paper, we propose sequential stability analysis and observer design for distributed systems
where the subsystems are represented by Takagi–Sugeno (TS) fuzzy models. The analysis and design are done sequentially for the
subsystems, allowing for the online addition of new subsystems. The conditions are formulated as LMIs and are therefore easy to
solve. The approach is illustrated on simulation examples.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Many physical systems, such as power systems, communication networks, economic systems, traffic networks,
productions systems, and water logistics are composed of interconnections of lower-dimensional subsystems. Recently,
decentralized analysis and control design for such systems has received much attention [1–6]. Although in many cases
the performance of the centralized design is superior [7] to that of decentralized design, there are many reasons to
use a decentralized approach. For control purposes, the decentralized design presents several advantages: flexibility,
fault tolerance, and simplified design and tuning. In addition, in many cases, the structure of the overall system is not
fixed, i.e., subsystems may be added or removed online, and therefore a centralized analysis and/or design becomes
computationally intractable.

A large class of nonlinear systems can be represented by Takagi–Sugeno (TS) fuzzy models [8], which in theory
can approximate a general nonlinear system to an arbitrary degree of accuracy [9]. The TS fuzzy model consists of a
fuzzy rule base. The rule antecedents partition a given subspace of the model variables into fuzzy regions, while the
consequence of each rule is usually a linear or affine model, valid locally in the corresponding region.
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For a centralized fuzzy model, well-established methods and algorithms exist to analyze the stability or to design
fuzzy observers. Several types of observers have been developed for continuous-time TS fuzzy systems, among which:
fuzzy Thau–Luenberger observers [10,11], reduced-order observers [12,13], and sliding-mode observers [14]. Most of
the stability and design conditions rely on the feasibility of an associated system of linear matrix inequalities (LMIs).

Decentralized control and estimation has received much attention [3–5,15–25] in the context of large-scale processes
and distributed systems. Recently, stability analysis and decentralized control design for distributed TS systems have also
been studied [5,18,26–33]. However, results for state estimation in distributed TS fuzzy systems are scarce. Although
approaches for distributed stabilization and control [26,27,32] employ observers in order to estimate the states that are
not directly available, these approaches [5,26,32] assume that the measurements of each subsystem refer only to the
states of the considered subsystem. Moreover, if only the monitoring of a process that is not asymptotically stable is
required, an observer is necessary, without a control law. The observer design in itself represents several challenges:
the scheduling vector may depend on the states to be estimated; for distributed systems that are not stabilized, the
interconnection terms may never converge to zero and estimated states have to be communicated; and by introducing
a new subsystem into the system, the measurement matrices may change.

In this paper we consider the distributed stability analysis and observer design for a system composed of intercon-
nected subsystems. Each subsystem is represented by a TS fuzzy model. The coupling between the subsystems is
realized through their states, i.e., the states of a subsystem may influence the dynamics of another subsystem.

While in centralized stability analysis of TS fuzzy systems several types of Lyapunov functions have been employed,
stability analysis of distributed TS systems mainly relies on the existence of a common quadratic Lyapunov function
for each subsystem. Most results make use of the assumption that the number of subsystems and some bounds on the
interconnection terms are known a priori, and the analysis of the subsystems is performed in parallel. For instance, an
early result that relies on the existence of an M-matrix 1 or positive definite matrices has been formulated in [16,34].
In these approaches, LMI conditions are solved in parallel to establish the stability of the individual subsystems, and
afterward the stability of the whole system is verified. For hybrid linear-fuzzy systems, a method to establish the stability
of the distributed system has been proposed in [31].

An approach for distributed TS systems with affine consequents, based on piecewise Lyapunov functions has been
developed in [5]. This approach is an extension of the result in [35] to distributed TS systems, but only linear inter-
connection terms among the subsystems are considered. Moreover, the analysis itself, although it concerns distributed
systems, is not distributed, as it has to be performed at the same time in parallel for all the subsystems.

One particular type of TS systems that have been extensively investigated both in stability analysis and in (robust)
control are uncertain TS fuzzy systems. For stability analysis of uncertain distributed TS systems, a result has been
formulated in [2]. However, using this approach, in order to establish the stability of a distributed system, the conditions
have to be verified for all the subsystems at the same time, in parallel.

In all the references above it is assumed that the structure of the system is fixed, i.e., subsystems can no longer be
added to it. In these results, the stability of the whole system is established by verifying the subsystems in parallel.
In this paper, we propose a method for the sequential stability analysis of distributed TS systems, that can handle the
analysis of distributed TS models to which subsystems are added online.

We also consider the observer design for such TS systems. The results in the literature concerning stability analysis
of distributed TS systems can be directly extended for observer design under the assumptions that (1) the scheduling
vector depends only on measured variables and (2) the estimated states are communicated between the subsystems that
influence each other. For observer design, the general approach is that first one constructs a set of observers for the
independent subsystems. Afterward, one either incorporates an appropriate compensation to account for the influence
of other subsystems or determines conditions under which the collection of the individual observers is a valid observer
for the distributed system. In general, it is assumed that the measured or estimated variables are communicated between
the subsystems that directly influence each other. However, the extension of the results regarding stability analysis of
distributed TS systems to observer design has not been reported in the literature.

Parallel observer-based control design [33,36–40] has been considered in several settings, such as tracking control
[33], adaptive control [37,39,40], robust control [36,37,41], control in the presence of time delay [38,41,42], and their

1 A square matrix M is an M-matrix if the off-diagonal elements are all negative and all the eigenvalues of M have non-negative real part.
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combinations. However, in all these results, the observer and the controller have to be designed simultaneously. Without
a stabilizing state-feedback controller, the convergence to zero of the estimation error cannot be guaranteed.

The contribution of this paper is twofold: first, we consider stability analysis and second, observer design for
distributed nonlinear systems represented by TS fuzzy models. For stability analysis, our basic assumption is that a
stable subsystem exists. To this system, new subsystems are added online, one-by-one, so that the distributed system
grows in time. Each subsystem is represented by a TS fuzzy model and each individual subsystem (i.e., without
the interconnection terms) is stable. This assumption is commonly adopted in the literature. The coupling between
the subsystems is realized through their states. These assumptions are valid for several distributed systems, e.g.,
traffic networks, electrical networks, water networks. For such systems, a centralized re-analysis or imposing certain
constraints from the very first moment on the number of subsystems to be added is impracticable. The new subsystem
and the actual influence of the interconnection terms due to the addition of a new subsystem only becomes known
when the subsystem is actually added. Therefore, in our approach, the stability analysis is performed sequentially,
as the subsystems are added, and we derive conditions that should be satisfied by the newly added subsystem or the
interconnection terms in order for the whole system to be stable.

Second, the approach is then extended to observer design. We assume that a fuzzy observer is already designed for
an existing subsystem or collection of subsystems. When a new subsystem is added, together with the interconnection
terms, which may affect the states and/or measurements, a new observer is designed for this subsystem only, such that
this new observer, combined with the existing ones, guarantees the convergence of the estimation error for the whole
system to zero.

The structure of the paper is as follows. Section 2 reviews some results for cascaded fuzzy systems, that are used as
starting point for the results presented in this paper. Section 3 proposes the sequential stability conditions for distributed
TS fuzzy systems. The proposed observer design for is presented in Section 4. Examples are given in Section 5. Finally,
Section 6 concludes the paper.

2. Preliminaries

We consider a distributed system, composed of a number of subsystems, and each subsystem being represented by a
TS fuzzy model. The subsystems are coupled through their states and/or measurements, i.e., the states of one subsystem
may influence the dynamics and/or measurements of other subsystems.

For the ease of the notation and without loss of generality, only two subsystems are considered here. Note, however,
that the procedure can be applied sequentially, if more subsystems are added.

In this paper, we address in Section 3 the stability analysis of autonomous fuzzy system expressed as

ẋ =
m∑

i = 1

wi (z)Ai x (1)

where Ai , i = 1, 2, . . . , m represent the local linear models, wi (z) is the corresponding normalized membership function,
and z a vector of scheduling variables, that may depend on the inputs, outputs, states of the system, or other (measured)
exogenous variables. We also consider in Section 4 the design of observers of the form

˙̂x =
m∑

i = 1

wi (̂z)(Ai x̂ + Bi u + Li (y − ŷ))

ŷ =
m∑

i = 1

wi (̂z)Ci x̂ (2)

for fuzzy systems

ẋ =
m∑

i = 1

wi (z)(Ai x + Bi u)

y =
m∑

i = 1

wi (z)Ci x (3)
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Stability and design conditions for TS fuzzy systems generally depend on the feasibility of an associated LMI problem
[11,12,14,43]. These conditions are usually conservative, but the conservativeness may be reduced for cascaded systems.
Our results start from existing stability conditions for cascaded TS systems, and therefore some of the relevant conditions
for this class of systems are reviewed below. Throughout the paper it is assumed that the membership functions are
normalized, I denotes the identity matrix of the appropriate dimension, H(A) denotes the Hermitian of the matrix A,
i.e.,H(A) = A + AT , ‖·‖ denotes the Euclidean norm for vectors and the induced norm for matrices.

Cascaded TS systems represent a special case of distributed TS systems. For cascaded systems, conditions ensuring
their stability and results for observer design have been reported in [44]. These results represent a starting point for the
research presented in this paper and they are therefore summarized in the remainder of this section.

2.1. Stability of cascaded TS systems

System (1) is cascaded, if the system matrices of the model (1) for each rule i = 1, 2, . . . , m can be written as

Ai =
(

A1i 0

A21i A2i

)
(4)

For such systems, the following stability condition [45] has been formulated:

Theorem 1. System (1), with the system matrices of the form (4) is globally exponentially stable if there exist
P1 = PT

1 > 0, P2 = PT
2 > 0, Q1 = QT

1 > 0, Q2 = QT
2 > 0 so that for all i = 1, 2, . . . , m, the following LMIs

hold:

H(P1 A1i ) < −2Q1

H(P2 A2i ) < −2Q2 (5)

Another condition that is used in this paper is one referring to systems subjected to vanishing disturbances. Consider
the following perturbed fuzzy system:

ẋ =
m∑

i = 1

wi (z)Ai x + f(t, x) (6)

and the common assumption that f is Lipschitz in x, i.e., there exists � > 0 so that ‖f(t, x)‖ ≤ �‖x‖, for all t and x.
With these assumptions, a sufficient stability condition can be formalized by the following theorem [46].

Theorem 2. System (6) is exponentially stable if there exist matrices P = PT > 0, Q = QT > 0, so that the following
LMIs hold:(

Q − �2 P

P I

)
> 0

H(P Ai ) < −Q, i = 1, 2, . . . , m (7)

2.2. Observer design for cascaded fuzzy systems

If the system (3) is cascaded, i.e., the system matrices Ai and Ci , i = 1, 2, . . . , m are in cascaded form, observers can be

designed individually for each subsystem and each rule, with the overall observer gain having the form Li =
(

L1i
0

0
L2i

)
,

where i denotes the rule number. Then, the dynamics of the error e = x = x̂ can be formulated as

ė =
m∑

i = 1

m∑
j = 1

wi (̂z)w j (̂z)(Ai − Li C j )e + � (8)
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with �= ∑m
i = 1(wi (z) − wi (̂z))(Ai x + Bi u) and Ai − Li C j also having a cascaded form. If the scheduling vector z

does not depend on the states to be estimated, then �= 0 and Theorem 1 can be applied directly. Otherwise, using
Theorem 2, the following result has been formulated [44]:

Theorem 3. The cascaded error system (8) is asymptotically stable, if there exist P1 = PT
1 > 0, P2 = PT

2 > 0,
Q = QT > 0, � > 0 and two continuous functions �1, �2 : R+ → R+ such that

H(P1(A1i − L1i C1 j )) < −Q ∀i, j : ∃z : wi (̂z)w j (̂z) � 0

‖(wi (z) − wi (̂z))(A1i x1 + B1i u)‖ ≤ �‖e1‖ ∀z, ẑ(
Q − �2 P

P I

)
> 0

H(P2(A2i − L2i C1 j )) < 0 ∀i, j : ∃z : wi (̂z)w j (̂z) � 0

‖(wi (z) − wi (̂z))(A21i x1 + A2i x2 + B2i u)‖ ≤ �1(‖e1‖) + �2(‖e1‖)‖e2‖

Although the above conditions are not LMIs, they can easily be formulated as LMIs, using the change of variables
Mi = P−1Li , i = 1, 2, . . . , m.

Note that Theorems 1 and 3 are valid only for cascaded systems. In what follows, we use these theorems as a starting
point for distributed systems, i.e., systems in which the influence between the subsystems is in both directions.

3. Sequential stability analysis of coupled fuzzy systems

In this section, we propose conditions to establish the stability of a TS system as subsystems are added sequentially
to it. We also formulate these conditions as an LMI problem, which is easy to solve.

Consider a distributed system, with each subsystem being represented by a TS fuzzy model, where the influence of
the subsystems is in both directions, i.e., a subsystem influences other subsystems and vice-versa, it is influenced by
other subsystems. The subsystems are coupled through their states. The structure of the system is not fixed, i.e., new
subsystems can be added online. In such a case, a centralized re-analysis of the stability of the whole system each time a
new subsystem is added or removed, in general involves large computational costs and may easily become intractable.
Therefore, we consider sequential analysis, based on the (already established) stability of the existing system, on the
newly added subsystem, and on the interconnection terms introduced by the new subsystem. For the ease of notation
and without loss of generality, only two subsystems are considered in this paper. However, the procedure can be applied
sequentially for more subsystems.

In order to illustrate the main idea of our approach, consider the following example.

Example 1. Consider a TS system consisting of two subsystems

ẋ =
2∑

i = 1

wi (z)Ai x

with the local matrices given as Ai =
(

A1i
A21i

A12i
A2i

)
, for rule i . With no assumption on the membership functions (except

that they are normalized), one can use a common Lyapunov matrix
(

P1
0

0
P2

)
, leading to the well-known conditions for

stability(
P1 A1i + AT

1i P1 P1 A12i + AT
21i P2

P2 A21i + AT
12i P1 P2 A2i + AT

2i P2

)
< 0 (9)

In short, let us denote the above inequality by
(

R1i

MT
1i

M1i
R2i

)
< 0. If at least bounds on the interconnection terms A12i ,

A21i are known, and we know that no further subsystems will be added to this system, then the approaches from the
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Refs. [28,29,33] are suitable. Note that the common consequence of these approaches is that each subsystem is robustly
stable so that the “perturbation” of the other subsystems does not influence its stability.

Assume now that the subsystems are added online, but it is not known how many subsystems will be added or how
strong the introduced interconnection terms will be. Suppose that at a certain moment only the subsystem with matrices
A2i exists, and we know that it is stable, i.e., there exists P2 such that R2i < R2 < 0, with R2 a symmetric matrix.
The subsystem with matrices A1i and interconnection terms A12i and A21i is added online, with no prior knowledge
on these terms.

The basis of our approach is to use the Schur complement, and rewrite (9) as

R2 < 0

R1i − MT
1i R−1

2 M1i < 0

and solve it in two steps, thereby establishing sequentially the stability of the system. �

Consider now a more general TS system. Assume that there exists a subsystem described as

ẋ2 =
m′

2∑
i = 1

w′
2i (z

′
2)(A′

2i x2) (10)

At a certain moment in time, another subsystem is connected to this system, with the dynamics given by

ẋ1 =
m1∑

i = 1

w1i (z1)(A1i x1 + A12i x2) (11)

Due to the connection from this new subsystem to the existing one, the dynamics of the model of the existing subsystem
change to

ẋ2 =
m2∑

i = 1

w2i (z2)(A2i x2 + A21i x1) (12)

i.e., in general both the membership functions and the local matrices change. In this paper, we only consider the case
when the membership functions change, assuming that the local matrices remain the same, i.e., {A′

2i |i = 1, 2, . . . , m′
2} ≡

{A2i |i = 1, 2, . . . , m2}. Such an assumption holds for distributed systems in which the addition of a new subsystem does
not influence the individual dynamics of the existing subsystems, but instead can be considered as a new input acting
on the system. Distributed systems for which this assumption holds are, e.g., material flow systems, traffic networks,
water logistics, production systems, etc.

The assumption can be formulated as follows:

Assumption 1. The local state matrices of the existing subsystem do not change by the addition of the new subsystem.

Note that the interconnection terms are not known before the new subsystem is added, nor are the local matrices of
the new subsystem. The restrictiveness of this assumption largely depends on how the fuzzy model is obtained from
a nonlinear model. For instance, consider the original system (10). If, after adding the new subsystem, its dynamics
change to

ẋ2 =
m′∑

i = 1

w′
i (z

′)(A2i x2) + A(x1, x2)x1

with A a smooth nonlinear matrix function that may depend on both x1 and x2, then using the sector nonlinearity
approach, the local models of the original subsystem will remain the same (in fact they are repeated in several rules),
although the membership functions will change. The interconnection term being A(x1, x2)x1, using the sector non-
linearity approach, it can be exactly represented as A(x1, x2)x1 = ∑r

i = 1 hi (zn)(A21i x1), with zn depending on x1 and
x2, and hi being normalized membership functions. Exploiting the fact that the membership functions w′

i are also
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x1

x2

x2

x1
S1

S2

u

Fig. 1. Two subsystems coupled through their states.

normalized, one has

ẋ2 =
m′∑

i = 1

w′
i (z

′)(A2i x2) + A(x1, x2)x1

=
m′∑

i = 1

w′
i (z

′)(A2i x2) +
r∑

i = 1

hi (zn)(A21i x1)

=
m′∑

i = 1

w′
i (z

′)
r∑

j = 1

h j (zn)(A2i x2 + A21 j x1)

=
m′∑

i = 1

r∑
j = 1

w′
i (z

′)h j (zn)(A2i x2 + A21 j x1)

=
m∑

i = 1

wi (z)(A2i x2 + A21i x1)

When the new subsystem is added, and Assumption 1 is satisfied, the whole system, i.e., the subsystem added (with
states x1), the existing subsystem (with states x2) and the interconnection terms are expressed together as

ẋ1 =
m∑

i = 1

wi (z)(A1i x1 + A12i x2)

ẋ2 =
m∑

i = 1

wi (z)(A2i x2 + A21i x1) (13)

The structure of system (13) is presented in Fig. 1.
For such a system, we have formulated the following stability conditions [47]:

Theorem 4. The system (13) is asymptotically stable, if there exist P1 = PT
1 > 0, P2 = PT

2 > 0, Q1 = QT
1 > 0,

Q2 = QT
2 > 0, so that

H(P1 A1i ) < −2Q1, i = 1, 2, . . . , m

H(P2 A2i ) < −2Q2, i = 1, 2, . . . , m

�min(Q1) ≥ max
i

‖P1 A12i‖

�min(H(P1 A1i + Q1)

maxi ‖P1 A12i‖ >
maxi ‖AT

21i P2‖2

�min(Q2)�min(H(P2 A2i + Q2)

where �min(·) is the eigenvalue with the smallest absolute magnitude.
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For the completeness of the paper and since results in the following sections make use of steps of the proof of this
theorem, we also repeat here the proof.

Proof. Consider first the following part of the system (13):

ẋ1 =
m∑

i = 1

wi (z)(A1i x1)

ẋ2 =
m∑

i = 1

wi (z)(A2i x2 + A21i x1) (14)

This is a cascaded system. According to Theorem 1, this system is exponentially stable, if there exist P1 = PT
1 > 0,

P2 = PT
2 > 0, Q1 = QT

1 > 0, Q2 = QT
2 > 0 so that

H(P1 A1i ) < −2Q1, i = 1, 2, . . . , m

H(P2 A2i ) < −2Q2, i = 1, 2, . . . , m (15)

In order to make the step from the stable cascaded system to the analysis of the distributed system, a Lyapunov
function is needed. One way of constructing the Lyapunov function using P1 and P2 is by considering the function
Vc = xT diag(�P1, P2)x. The advantage of this choice is that it allows one to determine � ∈ R+ so that V̇c < −2xT Qx,
with Q = diag(�Q1, Q2):

V̇c =
m∑

i = 1

wi (z)xT

(
�H(P1 A1i ) AT

21i P2

P2 A21i H(P2 A2i )

)
x

Then, V̇c < −2xT Qx, if(
�H(P1 A1i ) A21

T
i P2

P2 A21i H(P2 A2i )

)
< −2

(
�Q1 0

0 Q2

)
or (

�H(P1 A1i + Q1) A21
T
i P2

P2 A21i H(P2 A2i + Q2)

)
< 0

Using the Schur complement, we have

�H(P1 A1i + Q1) − (AT
21i P2)(H(P2 A2i + Q2))−1 P2 A21i < 0

which is true if � is chosen such that

� >
1

�min(H(P1 A1i + Q1))
· maxi ‖AT

21i P2‖2

�min(H(P2 A2i + Q2))
(16)

where �min(·) denotes the eigenvalue with the smallest absolute magnitude. Now, consider the full system (13).
By using the above constructed Vc as a candidate Lyapunov function for (13), we obtain

V̇c =
m∑

i = 1

wi (z)xT

[(
�H(P1 A1i ) AT

21i P2

P2 A21i H(P2 A2i )

)
+
(

0 �P1 A12i

�AT
12i P1 0

)]
x

< −2xT

(
�Q1 0

0 Q2

)
x + 2xT � max

i
‖P1 A12i‖I x

< −2xT

(
� (Q1 − maxi ‖P1 A12i‖I ) 0

0 Q2 − � maxi ‖P1 A12i‖I

)
x
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which leads to the conditions

�min(Q1) > max
i

‖P1 A12i‖ (17)

�min(Q2) > � max
i

‖P1 A12i‖ (18)

Combining (16) and (18), we find a � exists, and Vc is a Lyapunov function for the whole system if

�min(Q2)

maxi ‖P1 A12i‖ >
maxi ‖AT

21i P2‖2

�min(H(P1 A1i + Q1))�min(H(P2 A2i + Q2))

or

�min(H(P1 A1i + Q1))

maxi ‖P1 A12i‖ >
maxi‖AT

21i P2‖2

�min(Q2)�min(H(P2 A2i + Q2))
�

Remark. If A12i = 0, for all i = 1, 2, . . . , m or A21i = 0, for all i = 1, 2, . . . , m, then based on Theorem 1, the system
(13) is stable if the individual subsystems are stable, and the last two conditions are not required.

Note that the conditions of Theorem 4 are not LMIs. In order to solve them we consider a two-step procedure
presented in the following algorithm, which allows the conditions to be formulated as LMIs:

Algorithm 1.

1. The existing system

ẋ2 =
m∑

i = 1

wi (z)A2i x

is already proven to be stable using a quadratic Lyapunov function and therefore P2 and Q2 such that H(P2 A2i ) <

−2Q2 have been computed. Thanks to this, when adding the new subsystem, with the interconnection terms,
the value of

�= maxi ‖AT
21i P2‖2

�min(Q2)�min(H(P2 A2i + Q2))

can be computed.
2. Now, for the added subsystem and the corresponding interconnection terms we have the conditions:

H(P1 A1i ) < −2Q1, i = 1, 2, . . . , m

�min(Q1) ≥ max
i

‖P1 A12i‖

�min(H(P1 A1i + Q1)) > �max
i

‖P1 A12i‖

which are satisfied if the LMIs

H(P1 A1i + Q1) < −2t1 I, i = 1, 2, . . . , m

Q1 > t2 I(
t2 I maxi‖A12i‖P1

maxi‖A12i‖P1 t2 I

)
> 0 (19)

(
t1 I � maxi‖A12i‖P1

� maxi‖A12i‖P1 t1 I

)
> 0

are feasible.
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Moreover, if one takes into consideration that new subsystems will be added to the whole system (13), the analysis
of the new subsystems can be facilitated by minimizing the expression:

‖P1‖2

�min(Q1)�min(H(P1 A1i + Q1))

which will in turn minimize the bound � computed for the system (13).
This can be achieved by solving the LMI-based convex problem: find P1 = PT

1 > 0, Q1 = QT
1 > 0, and maximize

t1, t2, t3 subject to (19) and

P1 < t3 I

A shortcoming of the approach at this point is that although the stability analysis of the second subsystem has been

performed, and Vc =
(

�P1
0

0
P2

)
is used as a Lyapunov function, all that is known is that V̇c < 0. With a similar reasoning,

when the next subsystem is added, it is required that V̇c ≤ −2xT Qx, for some Q = QT > 0. To obtain such a Q,
consider the derivative of V̇c. We have

V̇c < −2xT

(
� (Q1 − maxi ‖P1 A12i‖I ) 0

0 Q2 − � maxi ‖P1 A12i‖I

)
x

By imposing that(
� (Q1 − maxi ‖P1 A12i‖I ) 0

0 Q2 − � maxi ‖P1 A12i‖I

)
> �

(
�Q1 0

0 Q2

)

for some arbitrary � ∈ (0, 1), the following conditions are obtained:

Q1 − max
i

‖P1 A12i‖I > �Q1

Q2 − � max
i

‖P1 A12i‖I > �Q2

i.e.,

(1 − �)Q1 > max
i

‖P1 A12i‖I

(1 − �)Q2 > � max
i

‖P1 A12i‖I (20)

Combining (20) and the conditions of Theorem 4, we obtain that

Corollary 1. V = xT
(

�P1
0

0
P2

)
x is a Lyapunov function for (13) and V̇ < −2xT �

(
�Q1

0
0

Q2

)
x for an arbitrary � ∈

(0, 1) if

H(P1 A1i ) < −2Q1, i = 1, 2, . . . , m

H(P2 A2i ) < −2Q2, i = 1, 2, . . . , m

(1 − �)�min(Q1) ≥ max
i

‖P1 A12i‖ (21)

�min(H(P1 A1i + Q1)

maxi ‖P1 A12i‖ >
maxi ‖AT

21i P2‖2

(1 − �)�min(Q2)�min(H(P2 A2i + Q2)
�
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Recall, that we assumed that the interconnection terms or bounds on them are not known before adding a new
subsystem. However, if ck = maxi j ‖Aki j‖, i.e., a bound on the interconnection terms is known beforehand, the analysis
of the subsystems can be decoupled and the following result can be stated:

Theorem 5. Given c1 = maxi‖A12i‖ and c2 = maxi‖A21i‖, the distributed system (13) is exponentially stable, if there
exist P1 = PT

1 > 0, P2 = PT
2 > 0, Q1 = QT

1 > 0, Q2 = QT
2 > 0, so that

H(P1 A1i ) < −2Q1, i = 1, 2, . . . , m

H(P2 A2i ) < −2Q2, i = 1, 2, . . . , m

�min(H(P1 A1i + Q1)) > �min(Q1)

�min(H(P2 A2i + Q2)) > �min(Q2)

�min(Q1) ≥ c1‖P1‖
�min(Q2) ≥ c2‖P2‖

where �min(·) is the eigenvalue with the smallest absolute magnitude.

Proof. Consider the last condition of Theorem 4:

�min(H(P1 A1i + Q1))

maxi ‖P1 A12i‖ >
maxi ‖AT

21i P2‖2

�min(Q2)�min(H(P2 A2i + Q2))
, i.e.,

�min(H(P1 A1i + Q1))�min(Q2)�min(H(P2 A2i + Q2)) > maxi ‖P1 A12i‖maxi ‖AT
21i P2‖2

The third condition of Theorem 4 already states that

�min(Q1) ≥ max
i

‖P1 A12i‖ (22)

If Q2 is similarly restricted, i.e., the condition

�min(Q2) ≥ max
i

‖P2 A21i‖ (23)

is imposed, then the last condition of Theorem 4 becomes

�min(H(P1 A1i + Q1))�min(Q2)�min(H(P2 A2i + Q2)) > �min(Q1)�2
min(Q2)

�min(H(P1 A1i + Q1))�min(H(P2 A2i + Q2)) > �min(Q1)�min(Q2)

which is satisfied if

�min(H(P1 A1i + Q1)) > �min(Q1)

�min(H(P2 A2i + Q2)) > �min(Q2)

However, since only the bounds on the interconnection terms c1 and c2 are known, instead of (22) and (23) we have
to use

�min(Q1) ≥ c1‖P1‖
�min(Q2) ≥ c2‖P2‖ (24)

Together with the restrictions on Q1 and Q2, and (24), we obtain the conditions expressed in Theorem 5. �

Note that the conditions of Theorem 5 are similar to those reported in [28,29]. The decoupled analysis has the
advantages that (1) the analysis of the subsystems can be performed in parallel and (2) each subsystem has to dominate
one interconnection term, whose approach is less conservative when the strength of the interconnection terms is
approximately the same and both are weak. However, this result can only be obtained if bounds on the interconnection
terms that are introduced to the system by the addition of a new subsystem are known beforehand. This condition is
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not needed for Theorem 4, as, thanks to the sequential analysis, the interconnection terms only need to be known when
the subsystem that introduces them is analyzed.

Theorem 5, similar to current results for stability analysis and stabilization of fuzzy large scale systems [26,28,29,
43,33] is comparable to perturbation methods with weak coupling (see [15] and the references therein). In fact, the
assumption that the coupling is “weak enough”, compared to the dynamics of the individual subsystems is necessary
for the controller (or the analysis) to be decoupled.

In contrast, Theorem 4 and the resulting Algorithm 1 are comparable to methods developed for strong coupling, i.e.,
only one of the subsystems has to converge quickly enough so that stability is preserved. This approach can also be
thought of as an asymmetrical weak coupling, i.e., only one of the influences has to be weak enough for stability to be
preserved.

4. Sequential observer design

This section extends the sequential approach to observer design for TS fuzzy systems.

4.1. Preliminaries

Again, consider a distributed system where each subsystem is represented by a TS fuzzy model. New subsystems
will be added online, one-by-one, and our goal is to design an asymptotically stable observer for the whole system.
Since the subsystems are added one-by-one, we consider sequential design, where an observer is designed whenever a
new subsystem is added, in such a way that the overall observer is stable, but without modifying the already existing
observers.

In this paper we assume that the estimated states of the subsystems are available to all other subsystems that are
interconnected with it. However, we do not assume that the subsystems are stabilized.

For the ease of notation and without loss of generality, only two subsystems are considered. The observer structure
is depicted in Fig. 2.

The fuzzy system considered consists of two subsystems:

ẋ1 =
m∑

i = 1

wi (z)(A1i x1 + B1i u + A12i x2)

y1 =
m∑

i = 1

wi (z)(C11i x1 + C12i x2)

ẋ2 =
m∑

i = 1

wi (z)(A2i x2 + B2i u + A21i x1)

y2 =
m∑

i = 1

wi (z)(C22i x2 + C21i x1) (25)

y1

y2

u

x1
^

x2
^

O1

O2

Fig. 2. Distributed observer for two subsystems.
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x1

x2

u

x1 y1

y2x2

S1

S2
C2

C1

Fig. 3. Two subsystems coupled through their states and measurements.

and the observer is of the form:

˙̂x1 =
m∑

i = 1

wi (̂z)(A1i x̂1 + B1i u + A12i x̂2 + L1i (y1 − ŷ1))

ŷ1 =
m∑

i = 1

wi (̂z)(C11i x̂1 + C12i x̂2)

˙̂x2 =
m∑

i = 1

wi (̂z)(A2i x̂2 + B2i u + A21i x̂1 + L2i (y2 − ŷ2))

ŷ2 =
m∑

i = 1

wi (̂z)(C22i x̂2 + C21i x̂1) (26)

The goal is to design the observer gains L1i , i = 1, 2, . . . , m for each rule of the subsystem with states x1 so that
(26) is a stable observer, given that the gains L2i , i = 1, 2, . . . , m have already been designed such that the observer

˙̂x2 =
m∑

i = 1

wi (̂z)(A2i x̂2 + B2i u + L2i (y2 − ŷ2))

ŷ2 =
m∑

i = 1

wi (̂z)C22i x̂2

is stable for the subsystem without the interconnection terms:

ẋ2 =
m∑

i = 1

wi (z)(A2i x2 + B2i u)

y2 =
m∑

i = 1

wi (z)C22i x2

The system structure considered exhibits coupling in both states and measurements. Such a system is presented in
Fig. 3. Two cases are distinguished, according to whether or not the scheduling vector depends on some of the states
to be estimated.

4.2. State-independent scheduling vector

In this section, we consider the case when the scheduling vector does not depend on states to be estimated.
For this case, we first propose non-LMI conditions for the stability of the dynamics of the global estimation error,
from which we derive LMI conditions. We finally show that if a bound on the interconnection terms is known before-
hand, a decoupled observer design can be performed, similar to those in the literature.
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4.2.1. Distributed observer design
If the scheduling vector does not depend on the states to be estimated, the error systems can be expressed as

ė1 =
m∑

i = 1

m∑
j = 1

wi (z)w j (z)[A1i e1 + A12i e2 − L1i C1 j e]

ey1 =
m∑

i = 1

wi (z)C1i e

ė2 =
m∑

i = 1

m∑
j = 1

wi (z)w j (z)[A2i e2 + A21i e1 − L2i C2 j e]

ey2 =
m∑

i = 1

wi (z)C2i e (27)

where C1i = [C11i C12i ] and C2i = [C21i C22i ], or

ė =
m∑

i = 1

m∑
j = 1

wi (z)w j (z)

(
A1i − L1i C11 j A12i − L1i C12 j

A21i − L2i C21 j A2i − L2i C22 j

)
e (28)

Note that since L1i , i = 1, 2, . . . , m have to be designed, a simple special case is when there exist P1 = PT
1 > 0

and L1i , so that H(P1(A1i − L1i C11 j )) < 0 and A12i − L1i C12 j = 0 ∀i, j : ∃z : wi (z)w j (z) � 0. In this case the error
system (28) is cascaded, and further restrictions are not necessary, and the stability conditions can be summarized as
follows.

Corollary 2. The error system (28) is asymptotically stable if there exist P1 = PT
1 > 0, P2 = PT

2 > 0, L1i , L2i ,
i = 1, 2, . . . , m so that ∀i, j : ∃z : wi (z)w j (z) � 0

H(P1(A1i − L1i C11 j )) < 0

H(P2(A2i − L2i C22 j )) < 0

A12i − L1i C12 j = 0

Proof. This follows directly from Theorem 3, applied for the case when ẑ = z. �

Note that the third condition of Corollary 2 is more likely to be satisfied if the measurement matrix is common for
the rules of a subsystem and the coupling is present only in measurements. However, in general this is not the case and
it is not possible to find such L1i . Therefore, the results from Section 3 can be appropriately modified:

Corollary 3. The error system (28) is exponentially stable, if there exist L1i , L2i , i = 1, 2, . . . , m, P1 = PT
1 > 0,

P2 = PT
2 > 0, Q1 = QT

1 > 0, Q2 = QT
2 > 0, so that

H(P1G1i j ) < −2Q1 ∀i, j : ∃z : wi (z)w j (z) � 0

H(P2G2i j ) < −2Q2 ∀i, j : ∃z : wi (z)w j (z) � 0

�min(Q1) ≥ max
i j

‖P1G12i j‖

�min(H(P1G1i j + Q1))

maxi j ‖P1G12i j‖ >
maxi j ‖P2G21i j‖2

�min(Q2)�min(H(P2G2i j + Q2))

where G1i j = A1i − L1i C11 j , G2i j = A2i − L2i C22 j , G12i j = A12i − L1i C12 j , and G21i j = A21i − L2i C21 j .

Proof. This follows directly from Theorem 4 applied to the error dynamics (28). �
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Remark. In order to facilitate the design of observer for the next subsystem, the conditions of Corollary 1 can be
appropriately modified.

4.2.2. LMI conditions
Note that Corollary 3 leads to a sequential implementation, similar to Algorithm 1. Once a stable observer is designed

for the subsystem

ẋ2 =
m∑

i = 1

wi (z)(A2i x2 + B2i u)

y2 =
m∑

i = 1

wi (z)C22i x2

the matrices P2, Q2, and the gains L2i , i = 1, 2, . . . , m are known, and therefore, G2i j can be computed. After adding
the interconnection terms, G21i j , i = 1, 2, . . . , m, j = 1, 2, . . . , m also the ratio

�= maxi j ‖P2G21i j‖2

�min(Q2)�min(H(P2G2i j + Q2))

can be computed. The conditions of Corollary 3 are then reduced to: find L2i , i = 1, 2, . . . , m, P1 = PT
1 > 0,

Q1 = QT
1 > 0, so that for i = 1, 2, . . . , m, j = 1, 2, . . . , m

H(P1G1i j ) < −2Q1

�min(Q1) ≥ max
i j

‖P1G12i j‖

�min(H(P1G1i j + Q1)) > �max
i j

‖P1G12i j‖

which is satisfied if

H(P1G1i j + Q1) < 0

Q1 ≥ max
i j

‖P1G12i j‖I

H(P1G1i j + Q1) < −�max
i j

‖P1G12i j‖I

The above conditions are satisfied if the following LMI is feasible, with the change of variables Mi = P1L1i : find L2i ,
i = 1, 2, . . . , m, P1 = PT

1 > 0, Q1 = QT
1 > 0, t1 > 0, t2 > 0, Mi , i = 1, 2, . . . , m, so that for i = 1, 2, . . . , m,

j = 1, 2, . . . , m

H(P1 A1i − Mi C1i + Q1) < −t1 I

Q1 > t2 I(
t2 I P1 A12i − Mi C21 j

(P1 A12i − Mi C21 j )T t2 I

)
> 0

(
t1 I P1�A12i − Mi�C21 j

(P1�A12i − Mi�C21 j )T t1 I

)
> 0

The observer design for the newly added subsystem can be summarized as follows.
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Algorithm 2.

1. For the existing observer of the subsystem

ẋ2 =
m∑

i = 1

wi (z)(A2i x2 + B2i u)

y2 =
m∑

i = 1

wi (z)C22i x2

compute

�̄ = ‖P2‖2

�min(Q2)�min(H(P2G2i j + Q2))

2. When the new subsystem and corresponding interconnection terms are added, compute � = �̄ maxi j ‖G21i j‖2. To de-
sign the observer for this subsystem, solve the LMI problem: find L2i , i = 1, 2, . . . , m, P1 = PT

1 > 0, Q1 = QT
1 > 0,

t1 > 0, t2 > 0, Mi , i = 1, 2, . . . , m, so that for i = 1, 2, . . . , m, j = 1, 2, . . . , m

H(P1 A1i − Mi C1i + Q1) < −t1 I

Q1 > t2 I(
t2 I P1 A12i − Mi C21 j

(P1 A12i − Mi C21 j )T t2 I

)
> 0

(
t1 I P1�A12i − Mi�C21 j

(P1�A12i − Mi�C21 j )T t1 I

)
> 0

4.2.3. Decoupled observer design
Note that above algorithm is useful if no bound on the interconnection terms is known before the subsystem is

added. If a bound on A12i , A21i , C21i , C12i , i = 1, 2, . . . , m is known beforehand, observers can be designed inde-
pendently for the subsystems, by analyzing the last condition of Corollary 3. Although the following manipulations
introduce further conservativeness, the design is decoupled, and LMI conditions are obtained. The result can be stated as
follows:

Corollary 4. The error system (28) is exponentially stable, if there exist Lki , i = 1, 2, . . . , m, j = 1, 2, . . . , m,
Pk = PT

k > 0, Qk = QT
k > 0 so that ∀i, j : ∃z : wi (z)w j (z) � 0

H(Pk Gki j ) < −2Qk

�min(Qk) ≥ max
i

‖Pk Tki j‖

�min(H(Pk Gki j + Qk)) > max
i j

‖Pk Tki j‖ (29)

where Gki j = Aki − Lki Ckj , Tki j = Akpi − Lki Ckpj is the interconnection term that influences the subsystem k and
Lki , i = 1, 2, . . . , m are the observer gains of the kth subsystem.

Proof. In order to obtain similar conditions for all the subsystems, let us impose

�min(Q2) ≥ max
i j

‖P2G21i j‖

Then, the last condition of Corollary 3 becomes

maxi j ‖P2G21i j‖2

�min(Q2)�min(H(P2G2i j + Q2))
≤ maxi j ‖P2G21i j‖

�min(H(P2G2i j + Q2))
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an expression that is similar to that of the reciprocal of the first part of the fourth condition of the corollary, i.e.,

�min(H(P1G1i j + Q1))

maxi j ‖P1G12i j‖
By imposing for both subsystems

�min(H(Pk Gki j + Qk))

maxi j ‖Pk Tki j‖ > 1

where Tki j is the interconnection term influencing the subsystem k, Tki j = Akpi − Lki Ckpj , k = 1, 2, the conditions are
decoupled. Summarizing, we have the conditions:

H(Pk Gki j ) < −2Qk

�min(Qk) ≥ max
i

‖Pk Tki j‖

�min(H(Pk Gki j + Qk)) > max
i j

‖Pk Tki j‖ �

Note that the conditions of Corollary 4 are not LMIs. However, an LMI problem may be formulated, which, when
satisfied, also satisfies the conditions of Corollary 4, as follows:

Theorem 6. The error system (28) is exponentially stable, if there exist Mki , i = 1, 2, . . . , m, Pk = PT
k > 0, Qk = QT

k ,
t1 > 0, t2 > 0 , tkM > 0, tkm > 0, so that ∀i, j : ∃z : wi (z)w j (z) � 0

tkm I ≤ Qk ≤ tkM I

H(Pk Gki j + Qk) < −tkM I

tkm I ≥ Qk A + QkC

Qk A ≥ t1 I

QkC ≥ t2 I(
t1 I �Ak Pk

�Ak Pk t1 I

)
≥ 0

(
t2 I �Ck Mki

�Ck MT
ki t2 I

)
≥ 0 (30)

Proof. Let

�min(H(Pk Gki j + Qk)) > �min(Qk)

and tkm I ≤ Qk ≤ tkM I . Then, the conditions (29) are satisfied if

tkm I ≤ Qk ≤ tkM I

H(Pk Gki j + Qk) < −tkM I

tkm I ≥ max
i j

‖Pk Tki j‖ (31)

Recall that the interconnection term Tki j is in fact Tki j = Akpi −Lki Ckpj , i.e., the interconnection term in the error dy-
namics. However, only the bounds on the interconnection terms in the subsystems are known, i.e., �Ak = maxpi ‖Akpi‖
and �Ck = maxpi ‖Ckpi‖, where k is the index of the current subsystem, k = 1, 2. Therefore, let Qk be the sum of two
positive definite matrices, Qk = Qk A + QkC , which satisfy

Qk A ≥ �Ak‖Pk‖I

QkC ≥ �Ck max
i

‖Pk Lki‖I
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The conditions above may be expressed as LMIs:

Qk A ≥ t1 I

QkC ≥ t2 I(
t1 I �Ak Pk

�Ak Pk t1 I

)
≥ 0

(
t2 I �Ck Mki

�Ck MT
ki t2 I

)
≥ 0

where Mki = Pk Lki .
Summarizing all the conditions, we obtain those of Theorem 6. These conditions are not only decoupled, but also

expressed as LMIs. �

Note however, that this result can only be used if a bound on the possible interconnection term is known. Also,
due to the restrictions imposed while deriving LMIs, the conditions of Theorem 6 are more conservative than those of
Corollary 3.

4.3. State-dependent scheduling vector

Consider now the case when the scheduling vector depends on the states to be estimated. For the simplicity of the
notation, only the case when the measurement matrices are common for all the rules of a subsystem is presented. Note
however, that if the measurement matrices are different for each rule, the observers can be designed in a similar fashion.

The error system (similar to Section 4.2) can be expressed as

ė1 =
m∑

i = 1

wi (̂z)[A1i e1 + A12i e2 − L1i C1e] +
m∑

i = 1

(wi (z) − wi (̂z))(A1i x1 + B1i u + A12i x2)

ey1 = C1e

ė2 =
m∑

i = 1

wi (̂z)[A2i e2 + A21i e1 − L2i C2e] +
m∑

i = 1

(wi (z) − wi (̂z))(A2i x2 + B2i u + A21i x1)

ey2 = C2e (32)

or

ė =
m∑

i = 1

wi (̂z)

(
A1i − L1i C11 A12i − L1i C12

A21i − L2i C21 A2i − L2i C22

)
e +

m∑
i = 1

(wi (z) − wi (̂z))

(
A1i x1 + B1i u + A12i x2

A2i x2 + B2i u + A21i x1

)
(33)

In order to be able to derive LMI conditions, it is assumed that

� =
m∑

i = 1

(wi (z) − wi (̂z))

(
A1i x1 + B1i u + A12i x2

A2i x2 + B2i u + A21i x1

)

can be written as � = Fe, with F a bounded uncertainty matrix, ‖F‖ ≤ �. Consider now the distributed observer
design. For the already existing subsystem the error is

ė2 =
m∑

i = 1

wi (ˆ̄z)[A2i e2 − L2i C22e2] +
m∑

i = 1

(wi (z̄) − wi (ˆ̄z))(A2i x2 + B2i u)

ey2 = C22e2 (34)

where z̄ depends only on the states of this subsystem. For this subsystem, there already exists a condition on the
model–observer mismatch, i.e., ‖�̄‖=‖∑m

i = 1(wi (z̄) − wi (ˆ̄z))(A2i x2 + B2i u)‖ ≤ �2‖e2‖, since, for this subsystem
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the observer has already been designed, and the scheduling vector depended on the states to be estimated. When a new
subsystem is introduced, both z and � change. In order to keep the symmetry and obtain a condition similar to that of
centralized observer design, in this paper we require that � is expressed as

m∑
i = 1

(wi (z) − wi (̂z))

(
A1i x1 + B1i u + A12i x1

A2i x2 + B2i u + A21i x1

)
=
(

F1 F12

F21 F2

)
e (35)

and that the uncertainties corresponding to different parts of the error are bounded:

‖F12‖ ≤ �12

‖F1‖ ≤ �1

‖F21‖ ≤ �21

‖F2‖ ≤ �2 (36)

Considering a distributed observer design for such a system, the following stability conditions can be formulated:

Corollary 5. The error system (33), with the properties (35) and (36), is asymptotically stable, if there exist
P1 = PT

1 > 0, P2 = PT
2 > 0, Q1 = QT

1 > 0, Q2 = QT
2 > 0, L1i , L2i , i = 1, 2, . . . , m so that

H(P2(G2i + F2)) < −2Q2, i = 1, 2, . . . , m

H(P1G1i ) < −2Q1, i = 1, 2, . . . , m

�min(H(Q1 + P1 F1)) > max
i

‖P1(G12i + F12)‖

�min(H(P1G1i + Q1))

maxi ‖P1(G12i + F12)‖ >
maxi ‖P2(G21i + F21)‖2

�min(Q2)�min(H(P2(G2i + F2) + Q2))

where G1i = A1i − L1i C11, G2i = A2i − L2i C21, G12i = A12i − L1i C12, G21i = A21i − L2i C21.

Proof. Consider first the following part of the system (33):

ėc =
m∑

i = 1

wi (̂z)

(
(A1i − L1i C11)e1c

A2i e2c + A21i e1c − L2i C2ec

)
+

m∑
i = 1

(wi (z) − wi (̂z))

(
0

A2i x2 + B2i u + A21i x1

)
(37)

This is a cascaded system and it is asymptotically stable, if the conditions of Theorem 3 are satisfied. First, we show
that system (37) is exponentially stable, if there exist P1 = PT

1 > 0, P2 = PT
2 > 0, Q1 = QT

1 > 0, Q2 = QT
2 > 0,

�2 ≥ 0, �21 ≥ 0, F2, F21 so that

H(P1G1i ) < −2Q1, i = 1, 2, . . . , m
m∑

i = 1

(wi (z) − wi (̂z))(A2i x2 + B2i u + A21i x1) = (F21 F2)ec

‖F21‖ ≤ �21

‖F2‖ ≤ �2

H(P2(G2i + F2)) < −2Q2, i = 1, 2, . . . , m

with G1i = A1i − L1i C11 and G2i = A2i − L2i C21.
The condition H(P2(G2i + F2)) < −2Q2 ensures that the already existing error system is exponentially stable.

Moreover, there exists � ∈ R+ so that Vc = eT
c diag(�P1, P2)ec is a Lyapunov function for (37) and V̇c < −2eT

c Qec,
with Q = diag(�Q1, Q2) and G21i = A21i − L2i C21. To prove this, consider the Lyapunov function

Vc = eT
c

(
�P1 0

0 P2

)
ec
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The derivative can be computed as

V̇c =
m∑

i = 1

wi (̂z)eT
c H

(
�P1G1i 0

P2(G21i + F21) P2(G2i + F2)

)
ec

For V̇c < −2eT
c Qec, it is required that(

�H(P1G1i ) (G21i + F21)T P2

P2(G21i + F21) H(P2(G2i + F2))

)
< −2

(
�Q1 0

0 Q2

)
which amounts to(

�H(P1G1i + Q1) (G21i + F21)T P2

P2(G21i + F21) H(P2(G2i + F2) + Q2)

)
< 0

Using the Schur complement, we obtain

�H(P1G1i + Q1) − (G21i + F21)T P2(H(P2(G2i + F2) + Q2))−1 P2(G21i + F21) < 0

which is satisfied by any � chosen such that

� >
1

�min(H(P1G1i + Q1))
· maxi ‖P2(G21i + F21)‖2

�min(H(P2(G2i + F2) + Q2))
(38)

Now, consider the full error system (33), together with the assumptions
m∑

i = 1

(wi (z) − wi (̂z))(A1i x1 + B1i u + A12i x1) = (F1 F12)e

‖F12‖ ≤ �12

‖F1‖ ≤ �1 (39)

Note that these assumptions, together with
m∑

i = 1

(wi (z) − wi (̂z))(A2i x2 + B2i u + A21i x1) = (F21 F2)ec

‖F21‖ ≤ �21

‖F2‖ ≤ �2 (40)

are effectively equivalent to those that would be used in the centralized design (see Theorem 2).
By using the above constructed V = Vc as a candidate Lyapunov function for (33), we obtain

V̇ =
m∑

i = 1

wi (̂z)eT

((
�H(P1G1i ) GT

21i P2

P2G21i H(P2G2i )

)
+
(

0 �P1G12i

�GT
12i P1 0

))
e + eT

(
�H(P1 F1) �P1 F12

�(P1 F12)T 0

)
e

< −eTH
(

�(Q1 + P1 F1) 0

0 Q2

)
e + 2eT

[
� max

i
‖P1(G12i + F12)‖

]
e

< −eT
(

�H(Q1 + P1 F1 − � maxi ‖P1(G12i + F12)‖) 0
0 H (Q2 − � maxi ‖P1(G12i + F12)‖)

)
e

which leads to the conditions

�min(H(Q1 + P1 F1)) > maxi ‖P1(G12i + F12)‖ (41)

�min(Q2) > � maxi ‖P1(G12i + F12)‖ (42)
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Combining (38) and (42), we find that � exists and V = Vc is a Lyapunov function if

�min(Q2)

maxi ‖P1(G12i + F12)‖ >
maxi ‖P2(G21i + F21)‖2

�min(H(P1G1i + Q1))�min(H(P2(G2i + F2) + Q2))

or

�min(H(P1G1i + Q1))

maxi ‖P1(G12i + F12)‖ >
maxi ‖P2(G21i + F21)‖2

�min(Q2)�min(H(P2(G2i + F2) + Q2))
�

Note that for this case (i.e., when the scheduling vector depends on states to be estimated), a cascaded error system
can only be obtained in special cases. As in Section 4.2, the conditions of Corollary 5 can be implemented in a two-step
algorithm, similar to Algorithm 2. In order to facilitate the design of observer for the next subsystem, the appropriately
modified conditions of Corollary 1 can be used. If a bound on the interconnection terms is known in advance, a
decoupled design is also possible, similar to that given in Theorem 6.

5. Examples

In this section we illustrate on two examples how our approach can be applied for stability analysis and observer
design, respectively. The first example presents sequential stability analysis for a nearly cascaded system, while the
second one illustrates sequential observer design.

5.1. Stability analysis

First we present a numerical example to illustrate sequential stability analysis. This example involves a nearly
cascaded system, i.e., a system where one interconnection terms is strong, and the other one is weak. Note that for such
systems, sequential stability analysis is in general better suited than the parallel approaches that can be found in the
literature. The explanation is that for a nearly cascaded system, the subsystem influenced by the strong interconnection is
not able to dominate the interconnection term. However, this is not the case in sequential analysis, where one subsystem
has to handle the product of the interconnection terms.

Consider a distributed system consisting of two subsystems, as follows:

Subsystem 1:
If z is small, then

ẋ1 = A11x1 =
(

−1 1

1 −5

)
x1

If z is large, then

ẋ1 = A12x1 =
(

−3 2

1 −4

)
x1

Subsystem 2:

ẋ2 = A2x2 = − 10x2

The interconnection terms are given as f21 = [0.1 0]T x2 and f12 = [5 0]x1.
This system is “nearly cascaded”, and stable, which is provable with a common Lyapunov function of the form

V = [xT
1 x2]P[xT

1 x2]T . Note that f12 is a strong connection between the subsystems, while f21 is a weak connection.
Using the stability analysis of [29], we obtain the conditions following:

H(P1 A11) < −Q1

H(P1 A12) < −Q1

�min(Q1) ≥ 2 + 25‖P2
1 ‖ (43)
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and

H(P2 A2) < −Q2

�min(Q2) ≥ 2 + 0.01‖P2
2 ‖

respectively. According to Matlab’s feasp, condition (43) is unfeasible, and therefore stability cannot be proven with
the method of [29].

Using the conditions of Theorem 4, derived in this paper, we have

H(P1 A11) < −2Q1

H(P1 A12) < −2Q1

� = 135.98

H(P2 A2) < −2Q2

Q2 ≥ 0.1P2

−2(P2 A2 + Q2) > 0.1�P2

which is feasible. Hence, in this case, the proposed sequential stability analysis is better suited than approaches in the
literature (see also Remark 3.1 in [29], stating that in case of distributed stability analysis, the interconnection terms
for all subsystems should be “small enough”).

5.2. Observer design

In this example, we illustrate the sequential observer design for a real-world system.
Consider a distributed system where each individual subsystem is a cascaded tanks system as shown in Fig. 4.
This system is described as follows: water is pumped into the upper tank 1 that has a cross-sectional area A1. The

level of the water in this tank is denoted by h1. From this tank, the water flows out through a pipe with cross-sectional
area s1 into the lower tank 2 that has a cross-sectional area A2. The level of the water in this tank is h2. From the lower
tank, the water flows out through a pipe with cross-sectional area s2 into a reservoir.

The system has one control input, u, which is the voltage applied to the motor that pumps water into the upper tank
with a flow rate Fin. The measured output is the water level h2 in the lower tank.

The dynamics of this system are described by

	1 Ḟin = −Fin + Qs · u

ḣ1 = Fin

A1
− s1

√
2gh1

A1

ḣ2 = s1
√

2gh1

A2
− s2

√
2gh2

A2
(44)

where Qs is the input-to-flow gain, 	 is the motor time constant, and g is the acceleration due to gravity.

u
Fin

A1

A2

h1

h2

1

S1

S2

2

Fig. 4. A cascaded tanks system.
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Fig. 5. Coupled cascaded tanks system.

In a distributed system, several of these individual cascaded tanks systems are interconnected. For instance, a system
with three subsystems is shown in Fig. 5. The interconnection between the subsystems consists in redistributing part
of the water that would flow to the reservoir to the neighboring tanks, indicated in Fig. 5 by the links d12, d21, d23,
and d32.

In case of the system presented in Fig. 5, water is pumped into the upper tanks 1, 3, and 5. From these tanks, the
water flows to the lower tanks 2, 4, and 6. From the lower tanks, part of the water flows into a reservoir, and part is
redistributed to the neighboring tanks. Each cascaded tank system has one control input ui , which is the voltage applied
to the motor of the corresponding pump, and one measured output: the water level in the lower tank. The measured
outputs for the whole system are therefore h2, h4, and h6. The flow rates Fin,i , provided by the pumps, and the water
levels in the upper tanks have to be estimated, and therefore, an observer has to be designed. The dynamics of the
distributed system after all the subsystems have been added is given by

	1 Ḟin,1 = −Fin,1 + Qs,1 · u1

ḣ1 = Fin,1

A1
− s1

√
2gh1

A1
+ d21

s4
√

2gh4

A1

ḣ2 = s1
√

2gh1

A2
− s2

√
2gh2

A2

	2 Ḟin,2 = −Fin,2 + Qs,2 · u2

ḣ3 = Fin,2

A3
− s3

√
2gh3

A3
+ d12

s2
√

2gh2

A3
+ d32

s6
√

2gh6

A3

ḣ4 = s3
√

2gh3

A4
− s4

√
2gh4

A4

	3 Ḟin,3 = −Fin,3 + Qs,3 · u3

ḣ5 = Fin,3

A5
− s5

√
2gh5

A5
+ d23

s4
√

2gh4

A5

ḣ6 = s5
√

2gh5

A6
− s6

√
2gh6

A6
(45)

where d21(s4
√

2gh4/A1), d12(s2
√

2gh2/A3), d32(s6
√

2gh6/A3), and d23(s4
√

2gh4/A5) represent the interconnection
terms between the subsystems, i.e., the amount of water redistributed among the tanks.
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Table 1
Parameter values.

Parameter Symbol Value Units

Acceleration due to gravity g 9.81 m/s2

Cross-sectional area of tanks A1, A2, A3, A4, A5, A6 10, 11, 11, 9, 12, 10 m2

Outlet area of tanks s1, s2, s3, s4, s5, s6 0.2, 0.1, 0.2, 0.125, 0.25, 0.135 m2

Input to flow gains Qs1, Qs2, Qs3 33.3 m3/s/V
Motor time constants 	1, 	2, 	3 3 s
Distribution ratios d12, d21, d23, d31 0.3, 0.1, 0.1, 0.3 –
Minimum water level hmin 0.2 m
Maximum water level hmax 2 m

Our goal is to design observers to estimate the flow rates Fin,i , i = 1, 2, 3, and the water level in the upper tanks h1,
h3, and h5. It is assumed that the subsystems are added one after another, and, moreover, further subsystems can be
added to this system. Therefore, the design is performed sequentially.

The parameter values that will be used for simulation purposes are presented in Table 1.
It is assumed that the tanks have the same height, hmax = 2 m, and the water level in the tanks cannot drop below

hmin = 0.2 m. Therefore, all levels are bounded, hi ∈ [hmin, hmax], i = 1, 2, 3, 4, 5, 6.
In order to use the proposed design, we construct the distributed TS fuzzy model sequentially, as each subsystem is

being added: at t = t0 only the first system exists, to which at t = t1 the second one is added (with the interconnections),
to which at t = t2 the third cascaded system (with interconnections) is added, etc. Therefore, consider the first cascaded
tanks system with tanks 1 and 2, with the dynamics given by (44).

An exact fuzzy representation of the model (44) can be obtained using the sector nonlinearity approach [48]. Using
this approach, we obtain a four-rule TS fuzzy system, with the local matrices 2

A11 =

⎛⎜⎝−0.33 0 0

0.10 −0.19 0

0 0.18 −0.09

⎞⎟⎠ , A12 =

⎛⎜⎝−0.33 0 0

0.10 −0.19 0

0 0.18 −0.03

⎞⎟⎠

A13 =

⎛⎜⎝−0.33 0 0

0.10 −0.06 0

0 0.05 −0.09

⎞⎟⎠ , A14 =

⎛⎜⎝ −0.33 0 0

0.10 − 0.06 0

0 0.05 −0.03

⎞⎟⎠
scheduling variables h1 and h2, weighting functions 
0

1 =
(√

0.2
/√

h1

) (√
2 − √

h1

)/(√
2 − √

0.2
)

, 
1
1 = 1 − 
0

1,


0
2 =

(√
0.2
/√

h2

) (√
2 − √

h2

)/(√
2 − √

0.2
)

, 
1
2 = 1 − 
0

2, and membership functions w1 = 
0
1


0
2, w2 = 
0

1

2
2,

w3 = 
2
1


0
2, and w4 = 
2

1

2
2. Note that due to the nature of the interconnections, by the addition of a new subsystem, these

local matrices will not change. In turn, the nonlinearity in the interconnection term leads to two more weighting func-
tions, and therefore the membership functions do change. However, Assumption 1 is satisfied. To design the observer,
we follow the steps of Algorithm 2. It has to be noted is that the membership functions depend on h1, which is a state
that has to be estimated. The observer–model mismatch for this subsystem is bounded by �1 = 0.099.

To design the observer, we solve 3 the following LMI problem: find P1 = PT
1 > 0, Q1 = QT

1 > 0, R = RT > 0, Mi ,
i = 1, 2, 3, 4, so that

H(P1 A1i − Mi C) < −4Q1 − R(
R − �2

1 P1

P1 I

)
> 0 (46)

2 All values are rounded to two decimal places.
3 The LMIs in this section have been solved using the SeDuMi solver within the Yalmip toolbox [49] for Matlab.
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Fig. 6. Estimation error for one subsystem.

and we obtain

P1 = 0.1I, Q1 = 9.84 × 10−4 I, R =

⎛⎜⎝ 0.06 −0.01 −0.00

−0.01 0.02 0.00

−0.00 0.00 0.27

⎞⎟⎠ .

The observer gains are computed as L1i = P−1
1 Mi and we obtain the values

L11 =

⎛⎜⎝−0.01

0.18

2.67

⎞⎟⎠ , L12 =

⎛⎜⎝ 2.68

2.86

2.70

⎞⎟⎠ , L13 =

⎛⎜⎝ 2.68

2.80

2.67

⎞⎟⎠ , L14 =

⎛⎜⎝ 2.68

2.80

2.70

⎞⎟⎠
Moreover, we have �min(Q1) = 9.84 × 10−4, �min(H(P1 A1i − Mi C + Q) + R) = 1.98 × 10−3, ‖P1‖ = 0.1, and

�̄1 = 5.1704 × 103 (see Algorithm 2). As illustrated in Fig. 6, this observer correctly estimates the states of the first
subsystem. The trajectory presented in Fig. 6 has been obtained for a randomly generated input vector, u drawn from
the uniform distribution U[0, 0.1], the true initial states being x0 = (0.1 0.5 0.3)T and the estimated initial states being
x̂0 = (0 0.2 0.2)T .

At the time t = t1 the second subsystem (the cascaded tank system with tanks 3 and 4) is added, together with the
interconnection terms to and from the first subsystem (d12 and d21 in Fig. 5). The upper bound on these interconnection
terms are v21 =‖d21(s4

√
2gh4/A1)‖ ≤ 0.0078 and v12 =‖d12(s2

√
2gh2/A3)‖ ≤ 0.171. With these bounds, we have

�1 = 1.50. An exact TS representation of this second subsystem is obtained using the sector nonlinearity approach,
similar to the TS model of the first subsystem. Since one of the scheduling variables is h3, which is a state that has to be
estimated, again an observer–model mismatch that is bounded by �2 = 0.11, appears. Since the interconnection terms
depend on measured variables, we have that �12 = 0 and �21 = 0. Note that although there will be eight rules, there are
only four different matrices that concern the individual dynamics of the second subsystem (the other four are due to
the nonlinearity in the interconnection term). Moreover, as already stated, the introduction of the interconnection term
does not change the local matrices of the existing subsystem.

To design the observer for this second subsystem, we solve the problem find P2 = PT
2 > 0, Q2 = QT

2 > 0,
R2 = RT

2 > 0, Mi , i = 1, 2, 3, 4 so that

H(P2 A2i − Mi C) < −4Q2 − R(
R − �2

2 P2

P2 I

)
> 0
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Fig. 7. Simulation results for the addition of the second subsystem. (a) Estimation error for subsystem 1. (b) Estimation error for subsystem 2.

(
(1 − �)Q2 v12 P2

v12 P2 (1 − �)Q2

)
> 0

(
(1 − �)Q2 �1v12 P2

�1v12 P2 (1 − �)Q2

)
> 0 (47)

The goal is to be able to solve the inequalities above for the largest � ∈ [0, 1] possible. This can be done either by
using a BMI solver (e.g., Penbmi [50]) or by a line search on �. For a fixed �, (47) becomes an LMI problem. For this
example, we solved it for � = 0.7, and obtained

P2 =

⎛⎜⎝ 77.50 16.72 −16.84

16.72 46.27 −45.87

−16.84 −45.87 47.59

⎞⎟⎠ , Q2 = 5.14I,

and the observer gains computed as L2i = P−1
2 Mi . An error trajectory is illustrated in Figs. 7(a) and (b). The second

subsystem has been added at t1 = 20s. The true initial states for the second subsystem were x0 = (2 0.3 1.4)T and the
estimated initial states x̂0 = (0 0.2 0.2)T . The input to the system has been randomly generated from U[0, 0.1].

In the simulation, instead of the measured values, the estimated values of h2 and h4 have been used in the second
and first subsystem, respectively. Consequently, due to the incorrect estimate of the initial state, the addition of the new
subsystem influences the estimation error of the existing subsystem. This can be seen in Fig. 8.

With the two observers designed, we can compute � to determine the Lyapunov function for the combined er-
ror dynamics, and we obtain � = 1.44 × 10−4. Consequently, the Lyapunov matrix for the first two subsystems is

P12 =
(

�P2
0

0
P1

)
, with ‖P12‖ = max{�‖P2‖, ‖P1‖} = 0.1, and Q12 = �

(
�Q2

0
0

Q1

)
, with �min(Q12) = � min{��min(Q2),

�min(Q1)} = 5.19 × 10−4. Moreover, we also have that H(P12 A12
i − M12

i C + Q12) + R12 < −2Q12, and we can
compute �̄2 = 1.8534 × 104.

At the time t = t2 the third subsystem (the cascaded tank system with tanks 5 and 6) is added, together with
the interconnection terms to and from the second subsystem (d32 and d23 in Fig. 5). The upper bound on these
interconnection terms are v32 = ‖d32(s6

√
2gh6/A3)‖ ≤ 0.0231, and v23 = ‖d23(s4

√
2gh4/A5)‖ ≤ 0.0065. With these

bounds, we have �2 = 0.7891. An exact TS representation of this subsystem is obtained similar to the previous ones.
The observer-model mismatch is bounded by �3 = 0.13. To design the observer, we solved the LMI problem 4 find

4 Similar to the design for the second subsystem, this can also be formulated as a BMI problem, with both � and Q3 decision variables.
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Fig. 8. Influence of the addition of the new subsystem.

P3 = PT
3 > 0, Q3 = QT

3 > 0, R = RT > 0, Mi , i = 1, 2, 3, 4, so that

H(P3 A3i − Mi C) < −4Q3 − R(
R − �2

3 P3

P3 I

)
> 0

(
(1 − �)Q3 v23 P3

v23 P3 (1 − �)Q3

)
> 0

(
(1 − �)Q3 �2v23 P3

�2v23 P3 (1 − �)Q3

)
> 0 (48)

for �= 0.3, and obtained

P2 =

⎛⎜⎝ 14.34 2.02 −2.38

2.02 10.29 −9.70

−2.38 −9.70 11.53

⎞⎟⎠ , Q2 = 1.15I,

and the observer gains were computed as L3i = P−1
3 Mi . An error trajectory of this subsystem is illustrated in Fig. 9.

The subsystem has been added at t1 = 40 s. The true initial states were x0 = (1 0.25 0.6)T and the estimated initial
states x̂0 = (0 0.2 0.2)T . The input to the system has been randomly generated from U[0, 0.1].

With the third observer designed, we have �2 = 0.0022, ‖P13‖ = max{�2‖P3‖, ‖P12‖} = 0.1, and �min(Q13) =
� min{�2�min(Q3), �min(Q12)} = 1.66 × 10−5. Moreover, we also have that �̄3 = 1.81 × 107, and we can start de-
signing an observer for yet another new subsystem.

6. Discussion and conclusions

Many physical systems, such as power systems, communication and distribution networks, economic systems,
and traffic networks are composed of interconnections of lower-dimensional subsystems. In this paper, the stability
of such distributed systems was investigated for the case when the subsystems are represented as TS fuzzy systems.
We considered the case when subsystem are added online, one-by-one to an existing system, and propose conditions for
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Fig. 9. Estimation error for the third subsystem.

establishing the stability of the whole system when a new subsystem was added. This setting has also been extended
to state estimation, by developing a method to sequentially design observers for a distributed system.

The motivation for the sequential analysis and design comes from allowing that subsystems may be added to or
removed from a distributed system. Current approaches in the literature assume that the structure of the system is
known, that is, the number of subsystems is known a priori. Therefore, subsystems can no longer be added. Moreover,
it is often required [5,31,34] that the analysis of the subsystems is performed in parallel, at the same time. To be able to
address analysis and design for a distributed system to which subsystems may be added, we have proposed a sequential
approach.

Next we discuss some theoretical and practical aspects of the proposed analysis and design methods.
A shortcoming of the method stems from the fact that we consider fairly general nonlinear systems (the only

assumption we make is Assumption 1), with any type of interconnection, i.e., we do not exploit a specific structure.
Due to this, and due to the fact that Assumption 1 allows for the change of membership functions, we use a membership
function independent Lyapunov function, more specifically, a common quadratic Lyapunov function, which renders
the result conservative. Another source of conservativeness is the use of a block-diagonal Lyapunov matrix. Using such
a matrix ensures the stability of each individual subsystem, and consequently allows the addition or the removal of
subsystems (together with the corresponding interconnection terms). If, for instance, subsystems cannot be removed,
then a full Lyapunov matrix can be used, and it is no longer a necessary condition that each subsystem is stable. This
issue will be addressed in our future research.

From a practical point of view, the main limitation of the proposed methods is given by Assumption 1, i.e., by
the assumption that by adding a new subsystem, the individual dynamics of the existing one do not change. For
many systems, this assumption is not satisfied. This assumption will be relaxed in our future research, where we will
investigate the case when due to the addition of a new subsystem, the dynamics of the individual subsystems change.

A second practical shortcoming is that with each newly added subsystem, the conditions become more and more
conservative, in particular, when applying Corollary 1 (or the corresponding design method). We will address this
issue in our future research by considering other types of Lyapunov functions, e.g., membership-dependent Lyapunov
functions, such as those used in [51,52].
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