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Abstract— We consider parallelized particle filters for state
tracking (estimation) of freeway traffic networks. Particle filters
can accurately solve the state estimation problem for general
nonlinear systems with non-Gaussian noises. However this high
accuracy may come at the cost of high computational demand.

We present two parallelized particle filtering algorithms
where the calculations are divided over several processing
units (PUs) and that reduces the computational demand per
processing unit. Existing parallelization approaches typically
assign sets of particles to PUs such that each full particle resides
at one PU. In contrast, we partition each particle according to
a partitioning of the network into subnetworks based on the
topology of the network.

The centralized case and the two proposed approaches are
evaluated with a benchmark problem by comparing the esti-
mation accuracy, computational complexity and communication
needs.

This approach is in general applicable to systems where it
is possible to partition the overall state into subsets of states,
such that most of the interaction takes place within the subsets.
Keywords: Parallel particle filters, freeway traffic state track-
ing.

I. INTRODUCTION

To manage urban and freeway road traffic, traffic data
is collected in traffic control centers in many countries.
This data is often used for traffic monitoring, control, and
information dissemination. The quality of the data is for
several reasons often not as good as one would wish. Direct
traffic measurements from the sensors are corrupted by noise,
or some data may be missing, and in some countries the data
is aggregated over a longer time period, or the detectors are
located at large distances to each other1.

In this paper we present a particle filtering (PF) method
that can cope with the above mentioned problems and is
suitable to large networks by the possibility of parallel
implementation. State estimation filters provide an estimation
of the traffic state combining the knowledge of the system be-
havior with the available (sometimes sparse) measurements
to estimate the state.

Several traffic state tracking filters have been investigated
in the literature. In [17] an extended study is presented of
estimation schemes with the extended Kalman filter (EKF).
This approach is evaluated for real traffic data in [15], [16].
In [10] a PF is applied to estimate the traffic state (speed
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and density) based on flow and speed measurements at
the boundaries of the stretch. In a similar study the PF is
compared with an unscented Kalman (UKF) filter in [11].
The performance of the EKF and the UKF is compared for
traffic state estimation in [7] for several filter settings. In
[14] a mixture Kalman filter is employed to simultaneously
detect the discrete traffic state (free-flow or congested) and
track the traffic speed.

For general nonlinear systems with non-Gaussian noises
particle filters are more suitable than most of the existing ap-
proaches. The only potential disadvantage of particle filtering
compared with the other methods is the higher computational
complexity. The reduce complexity, different approaches for
parallelized and distributed particle filters are proposed in the
literature [4], [9], [13].They can be classified in two groups:
i) algorithms transmitting particle values and their weights
between the processing units (PUs) or ii) communicating a
parametric approximation. Most of these implementations are
for sensor network related problems and have the tendency
to minimize communications. In [13] two distributed particle
filters are proposed with Gaussian mixture approximation of
the belief function. The parameters of the Gaussian mixture
model are estimated using an Expectation Maximisation
algorithm and then the mixture parameters are exchanged
instead of particle weights. Other implementations, e.g., [2]
focus of improved distributed resampling steps, and the
emphasis is on increasing speed and reducing complexity.
However, particles have to be exchanged between the PUs,
which can be particularly expensive (in terms of communi-
cation) if the number of particles is high.

In this paper we develop a particle filtering approach for
traffic networks, where the computational demand per PU is
reduced through parallelization. We present two approaches,
both using a parallelization scheme which is based on the
topological partitioning of a traffic network into subnetworks.

We demonstrate the parallelized approach with a bench-
mark problem, in which the traffic network consists of a
freeway stretch partitioned into two substretches. We com-
pare the accuracy, the computational complexity, and the
communication needs for the three filters.

II. STATE TRACKING BY PARTICLE FILTERING

In state estimation problems, the state-space representation
of the dynamical system is used. This describes the evolution
of the system state xk over time, and the measurements zk as
a function of the state:

xk = f (xk−1,vk−1) (1)
zk = h(xk,nk) (2)



where vk is the state noise, nk the measurement noise, and k
the sample step counter. These equations define a probability
density function (pdf) for the state transition p(xk|xk−1) and
for the measurement p(zk|xk).

Since the system and the measurements are stochastic, the
exact state cannot be inferred from the measurements, only
the pdf of the state p(xk|z1:k) can be determined given all
measurements z1:k from sample step 1 to k. So, the goal of the
state estimation problem is to determine p(xk|z1:k). Although
it is possible to use Bayes’ rule to express this conditional
density in terms of the state transition pdf p(xk|xk−1), and
the measurement pdf p(zk|xk), it requires the evaluation
of several integrals, which is not possible (analytically) in
general, not is it efficent to evaluate them numerically [12].
For these reasons we will focus on particle filtering.

In the next section we introduce the general formulation
of particle filtering and present two approaches for paral-
lelization. Although the parallelization is explained for traffic
networks, the same approach can be followed for other
processes where the overall state can be partitioned into
subsets of states where the interaction between the states
takes mainly place within one subset.

A. General formulation particle filtering

The goal of the state estimation is to determine the pdf
p(xk|z1:k) at each time step k. According to Bayes’ rule this
may be written as

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
. (3)

To circumvent the integration that is necessary for the
evalutation of the right hand side of (3), in particle fil-
ters the pdf p(xk|z1:k) is approximated by a random mea-
sure {xi

0:k,wi
k}

I
i=1, where {xi

0:k, i = 0, . . . , I} is a set of
support points with weights {wi

k, i = 0, . . . , I}, where each
{xi

0:k,wi
k}

I
i=1 is called a particle. The posterior density at k

is approximated as

p(x0:k|z1:k)≈
I

∑
i=1

wi
kδ (x0:k− xi

0:k). (4)

Each particle {xi
0:k,wi

k} can be considered as a hypothesis
that the real state trajectory is xi

0:k with belief wi
k. This

hypothesis is updated in two steps:
1) state update. When k is increased by one, a new value

is appended to xi
0:k to form xi

0:k+1, according to the state
equation (1), using the assumption that the previous
state was xi

k and a sample drawn from vi
k ∼ p(vk).

2) measurement update. When a measurement arrives,
the belief in the particles will in general change, which
is reflected by the updates weights wi

k+1. The belief in
the particle changes according to how well it explains
the measurement.

In both steps the principle of importance sampling plays a
crucial role, which can be explained as follows (cf. [1]).

1) Importance sampling: Suppose we want to determine
the pdf p(x) which is difficult to sample, but for which a
test π(x) ∝ p(x) exists that can be evaluated for a given x.
Let xi ∼ q(x), i = 1, . . . I be samples that are drawn (sampled)
from another pdf q(x), which is called importance density or
proposal distribution. Then an approximation of the pdf p(x)
is given by

p(x)≈
I

∑
i=1

wiδ (x− xi) , with wi ∝
π(xi)

q(xi)
, ∑

i
wi = 1,

where wi is the normalized weight of the i-th sample.
Given this principle, the weights in (4) are defined to be

wi
k ∝

p(xi
0:k|z1:k)

q(xi
0:k|z1:k)

,

where the proposal distribution q(x) can be chosen arbitrarily.
Note that the choice of q(x) is a relevant step. It can be
shown [1] that if q(x) is chosen to factorize as

q(x0:k|z1:k) = q(xk|x0:k−1,z1:k)q(x0:k−1|z1:k−1)

then the weights are determined recursively by

wi
k ∝ wi

k−1
p(zk|xi

k)p(xi
k|xi

k−1)

q(xi
k|xi

k−1,zk)
. (5)

This expression can be easily evaluated for a given triple
of xi

k−1,xi
k, and zk since it contains the known measurement

and the state model in the numerator, and the user-defined
proposal distribution q in the denominator.

A frequently used proposal distribution is the prior:

q(xk|xi
k−1,zk) = p(xk|xi

k−1).

Using this in (5) results in a simple weight update rule:

wi
k ∝ wi

k−1 p(zk|xi
k).

2) Degeneracy and resampling: It has been proven that
the variance of the weights can only increase over time.This
means in general that after a few iterations all but one weight
will be (close to) zero, which is called the degeneracy prob-
lem. The result is that eventually one particle will represent
the entire pdf, which is of course undesired. Therefore, the
particles are regularly resampled, i.e., particles with small
weights are eliminated, and new particles are created at or
around the ones with large weights (such that the approxi-
mation in (4) still holds). To decide when to resample, the
effective number of particles Îeff = 1/∑I

i=1(wi
k)

2 is compared
with some predifend threshold I threshold.

There exist several efficient resampling algorithms of O(I)
that typically map the newly created particles to existing ones
with high weights, such as the residual resampling [8] and the
systematic resampling [1]. In this paper we will use system-
atic resampling as given by the algorithm RESAMPLE, and
the basic (centralized) particle filtering algorithm is described
by the algorithm PF.



[{x j∗
k ,w j

k, i j}I
i=1] = RESAMPLE[{xi

k,wi
k}

I
i=1]

- Initialize the cumulative density function: c1 = w1
k

for i = 2 : I do
- Construct the cumulative density function:
ci = ci−1 +wi

k
end
- Let i = 1
- Draw starting point: u1 ∼ U[0, I−1( j−1)]
for j = 1:I do

- Let u j = u1 + I−1( j−1)
while u j > ci do

i = i+1
end
- Assign sample: x j∗

k = xi
k

- Assign weight: w j
k = I−1

- Assign parent: i j = i
end

[{xi
k,wi

k}
I
i=1] = PF[{xi

k−1,wi
k−1}

I
i=1,zk]

for i = 1 : I (for each particle) do
- Draw xi

k ∼ q(xi
k|xi

k−1,zk)
- Determine the weight update factors according
to (5).
- Normalize weights, wi

k = wi
k/∑i wi

k
if Îeff < Ithreshold then

- Resample particles.
end
- Calculate the expected state: E[xk] = ∑I

i=1 wi
kxi

k.
end

B. Parallelization
When particle filtering is applied for the state tracking

of large traffic networks the computational complexity may
become too high for running in real-time on a single PU.
One way to tackle this problem is the parallelization of the
particle filtering. In this section we present two approaches
for parallelizing particle filtering.

The basic idea for the parallelization is to utilize the
possibility that a traffic network can be simulated in par-
allel. A natural way to parallelize the simulation of traffic
is to divide the traffic network into several subnetworks
(corresponding to geographical regions), where each PU
is responsible for one subnetwork and the relevant vari-
ables of the neighboring segments are communicated (as
illustrated in Fig. 1). The state of the traffic network and
the measurements can be correspondingly partitioned into S
subvectors xs

k,s = 1, ...,S with xk = [(x1
k)

T
,(x2

k)
T
, . . . ,(xS

k)
T
]T,

and zk = [(z1
k)

T
,(z2

k)
T
, . . . ,(zS

k)
T
]T. The system (1)-(2) can

now be described by

xs
k = f s

k (xs
k−1, x̂s

k−1,vs
k−1) (6)

zs
k = hs

k(xs
k,ns

k) (7)
s = 1, ...,S ,
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Fig. 1. An example of partitioning a traffic network into subnetworks for
parallelized simulation/particle filtering.

where the vector x̂s
k−1 collects all neighboring state variables

that act as an input to subnetwork s. Note that not all states
of the neighboring networks are communicated, only the
variables that serve as a input to subnetwork s.

Note also that for (7) it is assumed that the measurements
taken in a subnetwork only depend on the state in that
subnetwork. This assumption holds for traffic since detectors
typically measure the traffic variables at one given location.

In addition we assume the independence of state noises
between the subnetworks and of independence measurement
noises between the subnetworks:

p(xk|xk−1) =
S

∏
s=1

p(xs
k|xs

k−1, x̂s
k−1). (8)

p(zk|xk) =
S

∏
s=1

p(zs
k|xs

k) (9)

1) First approach: shared particles: In this approach the
PUs of different subnetworks share the same particles xi

k, and
the particles are partitioned into subparticles xs,i

k correspond-
ing to subnetwork s. The PU corresponding to subnetwork
s is responsible for the calculations for subparticles xs,i

k .
This approach is functionally equivalent to the centralized
approach, as presented above.

In the state update step, the subparticles xs,i
k are now drawn

from the distribution q(xs
k|x

s,i
k−1, x̂

s,i
k−1,zs

k) which is based on
local information only (including neighboring states). Now,
choosing the proposal distribution q(xs

k|xs
k−1, x̂s

k−1,zs
k) such

that (c.f. (8))

q(xk|xi
k−1,zk) =

S
∏
s=1

q(xs
k|x

s,i
k−1, x̂

s,i
k−1,z

s
k) (10)

and using (8)-(9) and the facts that

p(xs,i
k |x

s,i
k−1) = ∑

j
p(xs,i

k |x
s,i
k−1, x̂

s, j
k−1)p(x̂s, j

k−1|x
s,i
k )

p(x̂s, j
k−1|x

s,i
k ) =

{
1 if i = j,
0 otherwise.

(11)



the weight update equation (5) can be rewritten as

wi
k ∝ wi

k−1

S
∏
s=1

ws,i
k−1 , ∑

i
wi

k = 1. (12)

ws,i
k−1 =

p(zs
k|x

s,i
k )p(xs,i

k |x
s,i
k−1, x̂

s,i
k−1)

q(xs,i
k |x

s,i
k−1, x̂

s,i
k−1,zs

k)
(13)

The consequence of (12–13) is that the state and mea-
surement update can be performed locally (divided over S
processors) except for the weight update.

For each time step k in the PF the following communica-
tion has to take place:
• The state variables x̂s,i

k−1 at the boundaries have to be
sent to subnetwork s.

• The weight update factors ws,i
k−1 can be calculated lo-

cally, and these results only need to be communicated
to a central PU to determine wi

k.
• The centrally calculated weights wi

k are normalized, and
sent back to the local PUs (after resampling, when
necessary).

• Resampling requires communication to a central PU
where all weights wp,i

k are collected and the wi
k are

calculated according to (12). For the residual resam-
pling [8] and the systematic resampling [1] methods it is
not necessary to communicate the particles themselves,
since these methods use only the weights as the input
and produce as a result the new particles as a selection
from the existing old ones (with some selected multiple
times, others not at all). Therefore, after resampling only
the indices describing the selection are communicated
back to the PUs. For the resampling algorithms that
create particles at new locations in the state space, such
as regularization [5] and the MCMC scheme [3] the
particles themselves also have to be communicated, and
consequently more communication is necessary.

The pseudo code for the algorithm is given by PF1.
2) Second approach: separate particles: In this approach

the particles of the different subnetworks are not shared, only
the statistics of the neighboring traffic state is communicated
over the boundaries to each subnetwork s. Consequently (11)
does not hold anymore, but instead

p(xs,i
k |x

s,i
k−1) =

∫

x̂s, j
k−1

{p(xs,i
k |x

s,i
k−1, x̂

s, j
k−1)p(x̂s, j

k−1|x
s,i
k−1)}dx̂s, j

k−1.

(14)

Applying Monte-Carlo sampling to the product
p(xs,i

k |x
s,i
k−1, x̂s

k−1)p(x̂s
k−1|x

s,i
k−1) with a proposal distribution

q(x̂s
k−1|x

s,i
k−1) results in the approximation

p(xs,i
k |x

s,i
k−1)≈∑

j

p(xs,i
k |x

s,i
k−1, x̂

s, j
k−1)p(x̂s, j

k−1|x
s,i
k−1)

q(x̂s, j
k−1|x

s,i
k−1)

Note that since the pdf of the communicated state variables
is independent of xs,i

k−1 (by assumption),

p(x̂s, j
k−1|x

s,i
k−1) = p(x̂s, j

k−1). (15)

[{xi
k,wi

k}
I
i=1] = PF1[{xi

k−1,wi
k−1}

I
i=1,zk]

for s = 1 : S (for each subnetwork simultaneously) do
for i = 1 : I (for each particle) do

- Draw xs,i
k ∼ q(xs

k|x
s,i
k−1, x̂

s,i
k−1,zs

k)
- Determine the weight update factors according
to (13) and send them to the central PU.
At the central PU:
- Determine wi

k according to (12).
- Normalize weights, wi

k = wi
k/∑i wi

k
if Îeff < Ithreshold then

- Resample particles (determine the mapping
i j)

end
- Send i j and wi

k to each local PU.
end

end
for s = 1 : S (for each subnetwork) do

- Update the particles according to
xs, j

k ← xs,i j

k , j = 1, . . . , I.
- Calculate the estimate of the state of
subnetwork s : E[xs

k] = ∑I
i=1 wi

kxs,i
k .

end

[{xi
k,wi

k}
I
i=1] = PF2[{xi

k−1,wi
k−1}

I
i=1,zk]

for s = 1 : S (for each subnetwork) do
for i = 1 : I (for each particle) do

- Draw x̂s, ji
k−1 ∼ p(x̂s

k−1)

- Draw xs,i
k ∼ q(xs,i

k |x
s,i
k−1, x̂

s, ji
k−1,zs

k)
- Determine the weight update factors according
to (17).
- Normalize weights, ws,i

k = ws,i
k /∑i ws,i

k
if Îeff,s < Ithreshold,s then

- Resample particles.
end
- Calculate the estimate of the state of
subnetwork s : E[xs

k] = ∑I
i=1 ws,i

k xs,i
k .

end
end

Using this relation and taking only one sample from x̂s, ji
k−1 ∼

p(x̂s
k−1) for each i, and choosing q(x̂s, j

k−1|x
s,i
k ) = p(x̂s, j

k−1), (II-
B.2) simplifies to

p(xs,i
k |x

s,i
k−1)≈ p(xs,i

k |x
s,i
k−1, x̂

s, ji
k−1). (16)

In this approach the weights are updated locally since there
are no centralized particles (c.f. (12)):

ws,i
k = ws,i

k−1
p(zs,i

k |x
s,i
k )p(xs,i

k |x
s,i
k−1, x̂

s, ji
k−1)

q(xs,i
k |x

s,i
k−1, x̂

s, ji
k−1,zs

k)
(17)

This form means for the particle filter that first x̂s, ji
k−1 needs

to be sampled from p(x̂s
k−1) and then xs,i

k according to the
the importance density q(xs,i

k |x
s,i
k−1, x̂

s, ji
k−1,zs

k).The algorithm is
given by algorithm PF2.



In this approach there is no central PU, and there is only
communication between the neighboring PUs. The commu-
nication takes place in each time step when the neighboring
state variables x̂s, ji

k−1 are sent to subnetwork s. After these
quantities are drawn from x̂s, ji

k−1 ∼ p(x̂s
k−1). In this approach

resampling does not require communication since it can be
performed locally at each PU.

The advantages of this approach over the approach where
the particles are shared are the following:
• it can be expected that this approach requires less par-

ticles since the dimension of the state space is reduced
by a factor S (assuming that all subnetworks have the
same number of states).

• for each subnetwork a different number of particles can
be used. This can be an advantage when a different
accuracy is required for the different subnetworks.

A disadvantage of this approach is that an approximation is
introduced in the interaction (joint pdf) of the local states
with the states in neighboring subnetworks.

III. BENCHMARK

In this section we apply the developed parallelized particle
filters to a benchmark problem. The benchmark problem
consists of state tracking of a freeway link consisting of two
sublinks. The purpose of this benchmark is to compare the
estimation accuracy, computational load and communication
requirements for the centralized PF and the two paralleliza-
tion approaches.

The benchmark network is small, but the same approach
can be applied to networks of any size. Before the pre-
sentation of the benchmark problem, the freeway model is
presented.

3) Freeway model – the METANET model: Consider a
freeway link m that is subdivided into Nm segments, each
with a length Lm and λm lanes, and a discrete time step
with length T (h). Traffic dynamics is described in terms of
the aggregated variables speed vm,i(k) (km/h), flow qm,i(k)
(veh/h), and density ρm,i(k) (veh/km/lane), where i is the
segment index. In Fig. 2 the relevant variables are shown.

The METANET model equations are given by the funda-
mental relationship between speed, density and flow

qm,i(k) = ρm,i(k)vm,i(k)λm , (18)

the law of conservation of vehicles
ρm,i(k +1) = ρm,i(k)

+
T

Lmλm
(qm,i−1(k)−qm,i(k))+ξ ρ

m,i(k) (19)

and a heuristic relationship of the speed dynamics

vm,i(k +1) = vm,i(k)+
T
τ

(V (ρm,i(k))− vm,i(k))

+
T
Lm

vm,i(k)(vm,i−1(k)− vm,i(k))

−
ηT
τLm

ρm,i+1(k)−ρm,i(k)
ρm,i(k)+κ

+ξ v
m,i(k) (20)

V (ρm,i(k)) = vfree,m exp
[
−

1
am

(
ρm,i(k)
ρcrit,m

)am]
(21)

where ξ ρ
m,i(k), and ξ v

m,i(k) are random variables representing
the random (unmodeled) dynamics in the speed and density
evolution2. This noise model formulation is the same as
in [17] and [7]. Furthermore, vfree,m is the free-flow speed
in segment m, ρcrit,m is the critical density (the density at or
above which traffic becomes unstable), and τ , η , am, κ , are
model fitting parameters without direct physical meaning.

An extension was introduced to be able to express the
different anticipation behavior of the drivers at the head
and the tail of a traffic jam (i.e., a shock wave) [6]. The
parameter η in (20) is replaced by the density dependent
ηm,i(k) according to:

ηm,i(k) =

{
ηhigh if ρm,i+1(k)≥ ρm,i(k)
ηlow if ρm,i+1(k) < ρm,i(k).

A. Boundary conditions
The variables qm,0, vm,0, ρm,Nm+1 are boundary variables

which incorporate the influence of upstream and downstream
segments from the considered link. Usually qm,0 and vm,0 can
be measured directly, whereas in practice the density ρm,N+1
is not measured directly and must be estimated. Even though
qm,0 and vm,0 can be measured directly, the measurements
will be corrupted by errors. Therefore we will consider all
boundary variables as extra states of the system and we will
estimate them from the measurement data, similarly to the
other state variables. This approach is also recommended
in [17]. The dynamic evolution of the boundary variables is
described by a random walk:




qm,0(k +1)
vm,0(k +1)

ρm,Nm+1(k +1)


 =




qm,0(k)
vm,0(k)

ρm,NM+1(k)


+




ξ q
m,0(k)

ξ v
m,0(k)

ξ ρ
m,NM+1(k)


 (22)

where ξ q
m,0(k),ξ v

m,0(k),ξ
ρ
m,Nm+1(k) are stochastic variables.

B. Measurements
The most frequently used traffic measurement devices

typically measure speed and flow. For the segments that are
equipped with sensors the measurement equations are:

yq
m,i(k) = qm,i(k)+nq

m,i(k) (23)
yv

m,i(k) = vm,i(k)+nv
m,i(k) (24)

2Although (19) is an exact relationship and therefore modeling error is
not present, we include the random variable ξ ρ

m,i(k), to allow a state filter
to correct the number of vehicles in the network.
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Fig. 2. In the METANET model, a freeway link is divided into segments.
The main variables in the model are the average outflow of a segment
qm,i(k), the average speed vm,i(k), the average density ρm,i(k), and the
segment length Lm.
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Fig. 3. The shock wave (left) and the forward wave (right) scenario, used
for the evaluation of the filters. The colors indicate the speed. Please note
the difference in color bar scales: the shock wave scenario includes a wider
range of speed since it also contains congested traffic.

where nq
m,i(k), and nv

m,i(k) are the measurement noises for
the flow and the speed respectively.3

C. State space representation

To bring equations (18)–(22) into the state-space represen-
tation required by the various filters, the state xk is defined as4

xk = [ρ1(k), . . . ,ρN(k),v1(k), . . . , vN(k),v0(k),q0(k),ρN+1]
T,

and the measurement vector zk = [yq
m,i(k)T ,yv

m,i(k)T ]T collects
the flow and speed measurements from (23) and (24) for the
segments equipped with sensors.

D. Experiment design

1) Lay-out: The benchmark network consists of a 2-lane
freeway link of 10 segments of 1 km each. For the two
parallel approaches this link is divided into two sublinks
(“subnetworks”) consisting of respectively the first and the
last five segments.

2) Scenario: Two different scenarios are used to eval-
uate the filters: one with downstream propagating waves
(in free-flow) and one with an upstream propagating
shock wave as shown in Fig. 3. These scenarios are de-
fined by selecting the upstream and downstream bound-
ary conditions. The motivation to select these two sce-
narios is to have both conditions where information prop-
agates forward and where information propagates back-
ward over the sublink boundaries. The state and mea-
surement noises are taken to be Gaussian (although any
other distribution could be taken) with state noise variances,
var(ξ v

m,i(k)) = 0.5 (km/h)2,var(ξ ρ
m,i(k)) = 0.5 (veh/km/lane)2,

and measurement noise variances var(nv
m,i(k)) = 4 (km/h)2,

and var(nq
m,i(k) = 22500 (veh/h)2.

3Note that in practice, traffic systems provide measurements with a
larger sampling time than the model time step. Typically the measurement
sampling time step is 1 or 5 minutes, while the model time step is 10s.
Including this fact in the development of a PF is straightforward, but for
the sake of simplicity we assume that each model time step a measurement
is available.

4The link index m is omitted in the rest of this section assuming that all
the variables introduced hereafter refer to the same link.

3) Parameters: The following model parameters are used:
T = 10 s, τ = 18 s, a = 1.867, ηhigh = 65 km2/h, ηlow =
30 km2/h, κ = 40 veh/km/lane, ρcrit,m = 33.5 veh/km/lane,
vmin = 7 km/h, vfree,m = 102 km/h.

4) Detector configurations: Several detector configura-
tions are investigated. Segments that have detectors provide
speed and flow measurements. For most experiments it is
assumed that all segments are equipped with detectors.

For the experiment investigating the information exchange
over the subnetwork boundaries it was assumed that seg-
ments 1 and 10 are measured (the two ends of the complete
link), and only the segments of the downstream sublink
(sublink 2) are measured for the shock wave scenario. In
this way the upstream sublink gets information about the
incoming backward propagating shock wave only from the
downstream sublink and not from the measurements, and
the performance of the upstream link will depend on the
information from the downstream neighbor link.

Similarly for the forward wave scenario only the upstream
sublink is measured (and segment 10), to investigate the
communication over the sublink boundary in case of a
forward propagating wave (corresponding to downstream
propagating information).

5) Filter setup: The particle filters are set up accord-
ing to the algorithms in Section II-A and II-B. For the
proposal distribution the prior is used, and the filters are
investigated for several numbers of particles in the range
I ∈ {20,50,100,200,500,1000}. The resampling threshold
is chosen to be Ithreshold = 0.3. The state noise vi

k, which is
sampled during the operation of the filters, is taken to have
the same realization for the three different filters, for better
comparability.

6) Performance measures: The performance of the filters
is evaluated by the following three performance measures:
• Tracking accuracy. For each filter the root mean square

error (RMSE) is determined of the expected value of
the particles x̃k = E(xi

k) relative to the states x̂k in the
reference scenarios. The RMSE is determined for the
speed and the density separately, according to

JRMSE,ρ =

√
(ρ̂i,k− ρ̃i,k)2

KNm

where ρ̂i,k and ρ̃i,k are the density components of
respectively the real state and the expected state of the
particles for segment i at time k, and K is the number
of simulation steps. JRMSE,v is calculated similarly.

• Communication. The communication needs of the fil-
ters are evaluated on the basis of the number of commu-
nicated real numbers (doubles) for a complete run of the
simulation. Depending on the filter this communication
may include the communication of the measurements
to the PU, the communication of boundary states and
weights between the PUs, and the communication of the
weights to and from the central PU.

• CPU time. As a measure for the computational demand
the time that each filter needs for a complete run is
determined.



IV. RESULTS & DISCUSSION

Fig. 4 shows the results for the tracking accuracy as a
function of the number of particles. In these experiments
all segments were measured and the shock wave scenario
was used. The experiments were repeated 10 times and the
figure shows the averages and the standard deviations of
these experiments. For all filters the performance get better
(lower error) when the number of particles increases. The
performance of the centralized filter and the performance of
approach 1 is equal because the two filters are functionally
equivalent and the same noise realization is used.

Interestingly, the average performance of approach 2 is
significantly better for all numbers of particles. From this
it can be concluded that the fact that the same number of
particles covers a smaller state space (i.e., a state space
with lower dimensions) better is more important than the
deterioration following from the approximation of the pdf’s
made at the boundaries of the sublinks.

Since there is no visible improvement between I = 500
and I = 1000 we select I = 500 for the other experiments.

Fig. 5 shows the CPU time needed by the different filters
to complete a full scenario, as a function of the number
of particles, again averaged over 10 runs. The averaging
is necessary here as the measured CPU time may vary
with some internal operations of the PC, such as memory
swapping. The simulations were executed on a 2800 MHz
Intel Pentium IV PC.

The shown values are normalized by the number of parti-
cles, and the curves are nearly flat which indicates that the
required CPU depends linearly on the number of particles (as
expected). For both parallelization approaches the CPU time
required by one of the PUs corresponding to one sublink, is
clearly less than the CPU of the centralized filter. However,
based on the number of floating point operations it would
be expected that the parallelized filters have a computational
demand around 50% of the centralized filter since the same
operations are executed by 2 PUs instead of 1. The difference
between the expectation and the simulation results can be
explained by the overhead CPU time that is needed by all
filters during code execution, such as the time needed to
call the state transition functions, which is called the same
amount of times for all PUs.

The effect of the approximation introduced in approach 2
is investigated by two experiments with the shock wave
and the forward wave scenarios. The detector locations are
selected such that there are no detectors near the boundary in
sublink 1 for the shock wave scenario, and no detectors near
the boundary in sublink 2 for the forward wave scenario. In
this way the information about the waves is communicated
through the boundary of the two PUs and not via the
measurements.

The performance of approach 2 is compared with the
centralized filter (or the functionally equivalent approach 1)
in Table I. Also in this case, the performance is averaged
over 10 experiments and the standard deviation is shown in
parentheses. The performance of approach 2 is significantly
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Fig. 4. The filter root mean square error as a function of the number of
particles for the centralized filter (top), approach 1 (middle), and approach
2 (bottom). The dots connected by the solid line indicate the mean, and
the vertical lines with the ’+’-signs the standard deviation over the 10
experiments. All segments are measured. Note the logarithmic scale of the
horizontal axis.

I centralized approach 1 approach 2
20 7180 57440 28720
50 7180 132830 61030

100 7180 258480 114880
200 7180 509780 222580
500 7180 1263680 545680

1000 7180 2520180 1084180

TABLE II
THE NUMBER OF COMMUNICATED DOUBLES FOR EACH APPROACH AS A

FUNCTION OF THE NUMBER OF PARTICLES.

better, so we can conclude that the communication between
the sublinks is sufficient to track forward and backward
propagating waves.

Finally, the communication needs are shown in Table II.
For the centralized filter only the measurements are commu-
nicated, which are independent of the number of particles.
For the parallelized approaches, communication also takes
place between the boundary of the sublinks, and to the central
PU in case of approach 1, which increases the communi-
cation needs significantly. Nevertheless, these amounts of
communication should not impose a problem for running
these filters in real-time.

V. CONCLUSIONS

We proposed two approaches for the parallelization of the
particle filters. The approaches are evaluated with a freeway
state tracking problem for two scenarios. The performance
in terms of tracking accuracy, computational load per PU are
equal (approach 1) or significantly better (approach 2) than



detector location scenario centralized approach 1 approach 2
(segment index) Jrmse,v Jrmse,ρ Jrmse,v Jrmse,ρ Jrmse,v Jrmse,ρ
1,x,x,x,x,6,7,8,9,10 shock wave 11.4 (2.5) 14.6 (4.6) 11.4 (2.5) 14.6 (4.6) 4.6 (2.3) 4.7 (2.9)
1,2,3,4,5,x,x,x,x,10 forward wave 3.1 (0.26) 1.8 (0.16) 3.1 (0.26) 1.8 (0.16) 2.8 (0.18) 1.7 (0.11)

TABLE I
THE PERFORMANCE AND STANDARD DEVIATION (IN PARENTHESES) FOR DIFFERENT DETECTOR LOCATIONS AND SCENARIOS, WITH I = 500 AND ALL

EXPERIMENTS ARE REPEATED 10 TIMES. THE ‘X’ INDICATES AN UNMEASURED SEGMENT.
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Fig. 5. The CPU time per particle for approach 1 (top) and approach 2
(bottom) as a function of the number of particles. The solid line is the CPU
time for the centralized filter. All segments are measured. The simulations
were executed on a 2800 MHz Intel Pentium IV PC. Note the logarithmic
scale of the horizontal axis.

for the centralized filter with the same number of particles.
So the main conclusion is that despite the approximation
used in approach 2, the performance of the filter was superior
to the others for the experiments we carried out. Naturally,
the communication needs of the parallelized approaches are
higher than for the centralized filter, but the communication
demand should not be a problem for the current data net-
works.
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