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Abstract

Descriptor models are naturally obtained from the Euler-Lagrange modeling approach to
mechanical systems. Since the underlying system is nonlinear, global stabilization and/or
tracking is possible only in a limited number of cases. Therefore, we develop conditions for
local stabilization and tracking of discrete-time descriptor systems represented by Takagi-
Sugeno fuzzy models, using both quadratic and nonquadratic Lyapunov functions. An
estimate of the region of attraction is also obtained. The conditions are illustrated on a
numerical example and in tracking control for a robot arm.
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1. Introduction

Mechanical systems [1, 2, 3] are frequently used in transportation, handling, assem-
bly; security, surveillance, quality inspection, exploration can be done by mobile robots
[4]; and healthcare problems may be alleviated via bio-mechanic devices [5, 6]. The
dynamic models of such mechanical systems are generally determined using the Euler-
Lagrange equations [1, 3], which give second-order vector differential equations. Once
the Euler-Lagrange equations are obtained, the state-space representation is naturally in
a descriptor form [1, 7, 8], i.e., it has the mass matrix on the left-hand side. Since the
model is nonlinear, nonlinear tools should be used for the analysis and design of such
systems.

In the last two decades, Takagi-Sugeno (TS) fuzzy models [9] have attracted con-
siderable interest in the automatic stability analysis and controller design of nonlinear
systems. TS models represent the nonlinear system considered as a convex combination
of local linear models blended together by nonlinear membership functions (MFs), which
share the convex-sum property [10, 11]. When using the sector nonlinearity approach [10]
to obtain it, the TS model will be an exact representation of the system in the considered
compact set of the state-space. A shortcoming of this approach is that the number of
local models in the TS model is exponentially related to the number of nonlinearities in
the original nonlinear model [12], leading to increased computational costs. If descriptor
models are represented in this classical form (via matrix inversion), this number grows
very large.

Instead, the goal of this paper is to develop conditions that ensure local asymptotic
stability of discrete-time TS models directly in the descriptor form, i.e., we study the
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case when the considered equilibrium point is only locally stable. To our best knowledge,
this is the first time that this topic has been addressed. We consider the problem of local
stabilization and estimating a domain of attraction of the equilibrium point. We combine
the tools existing in the discrete TS framework with the determination of a non-quadratic
domain of attraction using an easy procedure that requires only the knowledge of the
membership functions. We also extend this procedure to input-to-state stability (ISS).

In order to obtain an exact TS representation of the original nonlinear model, we use
the sector nonlinearity approach. A TS descriptor model [13] generalizes the standard
one and is obtained by applying the approach to both sides of the nonlinear differential
equation. In this way, the nonlinear terms are separated and thus a smaller number
of local models [14, 15, 16] and a reduced number of LMI constraints [17, 18] may be
achieved.

We develop conditions for local asymptotic stability and tracking. Since TS models
are nonlinear, for their analysis and control synthesis the direct Lyapunov approach has
been employed, using initially quadratic Lyapunov functions [19, 12, 20], then piece-
wise continuous Lyapunov functions [21, 22], and recently, nonquadratic Lyapunov func-
tions [23, 24, 25], that have significantly improved existing results [23, 26, 27, 28]. The
conditions for stability analysis or controller and observer design are developed in general
in form of linear matrix inequalities (LMIs) that can be solved using available convex
optimization methods [29, 30].

Classic conditions, particularly in the discrete-time case, have been developed to
establish global asymptotic stability of the (closed-loop) model, i.e., if the conditions are
satisfied, then the model is globally asymptotically stable, but if they are unfeasible, no
conclusions may be drawn. Thus, when the model is only locally stable or stabilizable,
these conditions will not be satisfied. If the studied equilibrium point is only locally
stable, the existing conditions become unusable, in the sense that the LMI conditions
become unfeasible. In our previous works [31, 32] we have developed sufficient conditions
for local stability and stabilization of classic discrete-time TS models. However, these
results are not directly applicable to descriptor models, due to the descriptor matrix
appearing on the left-hand side. In this paper we specifically address local stability and
set point tracking for descriptor models.

Next to developing local conditions, we also estimate the region of attraction of the
considered equilibrium point. Results on this topic are scarce even for linear models.
References [33, 34] consider linear discrete-time systems with actuator and/or state satu-
rations and the stability analysis is performed using quadratic Lyapunov functions, while
trying to find the maximum admissible quadratic domain of attraction. Others, consid-
ering the same problem of actuator saturation still using quadratic Lyapunov functions,
proposed ways to design the domain of attraction based on convex set as polyhedrons
[35] or as being saturation dependent [36]. Here, we determine instead a non-quadratic
domain of attraction based simply on the system’s dynamics.

The paper is organized as follows. Section 2 presents the notations to be used through-
out the paper and states the preliminaries. Section 3 concerns local stabilization of de-
scriptor TS models. The conditions for local tracking are developed in Section 4. The
conditions are discussed and illustrated on a numerical example and in tracking control
of a robot arm in Section 5. Section 6 concludes the paper.
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2. Notation and preliminaries

The dynamics of mechanical systems is usually represented in a state-space form,
which can be obtained from the Euler-Lagrange equations [1]:

M(q)q̈ + Co(q, q̇)q̇ + Fr(q̇) + Gr(q)q = τ (1)

where q is the generalized position of the joints, q̇ is the velocity, q̈ is the acceleration,
M(q) is the mass matrix, Co(q, q̇) is the Coriolis/centrifugal matrix, Fr(q̇) is the friction,
Gr(q) is the gravity matrix, τ is the input vector. Note that the mass matrix is positive
definite and thus in what follows we consider regular descriptor models.

Rewriting (1) as
(

I 0
0 M(q)

)(
q̇
q̈

)
=

(
q̇

−Co(q, q̇)q̇ − Fr(q̇)−Gr(q)q

)
+

(
0
I

)
τ (2)

a state-space representation of (2) may be obtained by defining x =
(

q
q̇

)
as the state

vector and u = τ as the input and can be written in the general form [1]

E(x)ẋ = f(x,u) (3)

with E(x) being a positive definite matrix. Equation (3) is in the general form of the
so-called descriptor model [7]. When discretizing (3), still a descriptor form is obtained:

E(x(k))x(k + 1) = f(x(k), u(k)) (4)

In what follows, we will consider this discrete-time descriptor model.

Takagi-Sugeno (TS) fuzzy models are convex combinations of local linear models,
with the descriptor TS model [18] having the form

re∑

j=1

vj(z(k))Ejx(k + 1) =
r∑

i=1

hi(z(k))(Aix(k) + Biu(k))

where (Ej , Ai, Bi) are local linear models, x is the state vector, u is the input vector, z
is the scheduling vector, r and re are the number of local linear models, vj(z) and hi(z)
are the membership functions that hold the convex sum property, i.e., vj(z) ∈ [0, 1],∑re

j=1 vj(z) = 1, hi(z) ∈ [0, 1],
∑r

i=1 hi(z) = 1.
TS models may be either an approximation of the nonlinear model (obtained e.g., by

local linearization [12] or by substitution [37]) or an exact representation (when applying
the sector nonlinearity approach [10]) in a compact set of the state-space. In this paper,
the sector nonlinearity approach [10] is used, thus the resulting TS model will exactly
represent the dynamic system in the considered compact set.

The main idea of obtaining a fuzzy model using the sector nonlinearity approach [10]
is as follows. Consider the nonlinear descriptor system

E(z(k))x(k + 1) = f(z(k))x(k) + g(z(k))u(k)
y(k) = Cx(k)

(5)
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with E, f and g smooth nonlinear matrix functions, x ∈ Rn the state vector, u ∈ Rnu

the input vector, and y ∈ Rny the measurement vector, z some vector function of x, y,
all variables assumed to be bounded on a compact set D.

Let nlj(·) ∈ [nlj , nlj ], j = 1, 2, . . . , p be the set of bounded nonlinearities on the
right-hand-side, i.e., components of either f or g and nlej(·) ∈ [nlej , nl

e

j ], j = 1, 2, . . . , pe

those on the left-hand-side, i.e., components of E. An exact TS fuzzy representation
of (5) can be obtained by constructing first the weighting functions

wj
0(·) =

nlj − nlj(·)
nlj − nlj

wj
1(·) = 1− wj

0(·) j = 1, 2, . . . , p

wj
e0(·) =

nl
e

j − nlej(·)
nl

e

j − nlej
wj

e1(·) = 1− wj
e0(·) j = 1, 2, . . . , pe

and defining the membership functions as

hi(z) =
p∏

j=1

wj
ij

(zj) vi(z) =
pe∏

j=1

wj
eij

(zj) (6)

with i = 1, 2, · · · , 2p, ij ∈ {0, 1} and i = 1, 2, · · · , 2pe , ij ∈ {0, 1}, respectively. These
membership functions are normal, i.e., hi(z) ≥ 0 and

∑r
i=1 hi(z) = 1, r = 2p, vi(z) ≥ 0

and
∑re

i=1 vi(z) = 1, r = 2pe , where r and re are the number of rules. The local matrices
for each rule are obtained by substituting the corresponding upper or lower bounds of
the nonlinearities.

Using the membership functions defined in (6), an exact representation of (5) is
given as:

re∑

j=1

vj(z(k))Ejx(k + 1) =
r∑

i=1

hi(z(k))(Aix(k) + Biu(k)) (7)

where x denotes the state vector, r and re are the number of rules on the right and left-
hand side, respectively, z is the scheduling vector, hi, i = 1, 2, . . . , r, vj , j = 1, 2, . . . , re

are normalized membership functions, and Ai, Bi, Ej , i = 1, 2, . . . , r, j = 1, 2, . . . , re,
are the local models.

Remark: Since we assume that E is positive definite and thus it is invertible, by
multiplying the nonlinear model with E−1 one can obtain a classic state-space model
and continue with a classic TS modeling. However, as shown in [14, 17, 18], keeping
the descriptor form presents several advantages, among which having a smaller number
of local models and obtaining a reduced number of LMI constraints. This is why we
consider descriptor TS models.

In this paper we develop sufficient conditions for the local stabilization of TS fuzzy
models in descriptor form, i.e., of the form (7). Note that local results may also be
obtained by simply linearizing the dynamics (4) around x = 0 and computing a stabi-
lizing state-feedback control law u = −Fx. However, this linear control law in general
will guarantee the stability of the closed-loop system only in a very small domain. By
considering the TS descriptor representation (7) and developing local conditions, we aim
to guarantee a much larger domain of attraction.
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In what follows, we use the following shorthand notations for generic matrices X:

Xv ≡
re∑

i=1

vi(z(k))Xi Xh ≡
r∑

i=1

hi(z(k))Xi

Xvh ≡
re∑

i=1

r∑

j=1

vi(z(k))hj(z(k))Xij

X−1
vh ≡




re∑

i=1

r∑

j=1

vi(z(k))hj(z(k))Xij



−1

Thus, (7) will be denoted as:

Evx(k + 1) = Ahx(k) + Bhu(k)

Furthermore, 0 and I denote the zero and identity matrices of appropriate dimensions,

and a (∗) denotes the term induced by symmetry in a matrix form, i.e.,
(

A B
(∗) C

)
=

(
A B

BT C

)
, and the symmetrical part of the expression on the left-hand side in inline

form, i.e., X +(∗)+Y = X +XT +Y . The subscripts ‘+’ (as in Ah+, P+) and ‘−’ stand
for the scheduling vector being evaluated at the next sample and at the previous sample,
i.e., at z(k + 1) and at z(k − 1), respectively. We will also make use of the following
results:

Lemma 1. [38] (Finsler’s lemma) Consider a vector x ∈ Rnx and two matrices Q =
QT ∈ Rnx×nx and R ∈ Rm×nx such that rank(R) < nx. The two following expressions
are equivalent:

1. xT Qx < 0, x ∈ {x ∈ Rnx ,x 6= 0,Rx = 0}
2. ∃M ∈ Rm×nx such that Q +MR+RTMT < 0

Proposition 1. (Congruence) Given a matrix P = PT and a full column rank matrix
Q it holds that

P > 0 ⇒ QPQT > 0

Proposition 2. Let A and B be matrices of appropriate dimensions and ranks, with
B = BT > 0. Then

(A−B)T B−1(A−B) ≥ 0 ⇐⇒ AT B−1A ≥ A + AT −B

Proposition 3. [29] (Schur complement) Consider a matrix M = MT =
(

M11 M12

MT
12 M22

)
,

with M11 and M22 being square matrices. Then

M < 0 ⇔
{

M11 < 0
M22 −MT

12M
−1
11 M12 < 0 ⇔

{
M22 < 0
M11 −M12M

−1
22 MT

12 < 0
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Proposition 4. (S-procedure) Consider matrices Fi = FT
i ∈ Rn×n, x ∈ Rn, such that

xT Fix ≥ 0, i = 1, . . . , p, and the quadratic inequality condition

xT F0x > 0 (8)

x 6= 0. A sufficient condition for (8) to hold is: there exist τi ≥ 0, i = 1, . . . , p, such that

F0 −
p∑

i=1

τiFi > 0

Analysis and design for TS models often lead to double convex-sum negativity prob-
lems of the form

xT
r∑

i=1

r∑

j=1

hi(z(k))hj(z(k))Γijx < 0 (9)

where Γij , i, j = 1, 2, . . . , r are matrices of appropriate dimensions and the functions
hi(z(k)) satisfy the convex properties, i.e., hi(z(k)) ∈ [0, 1] and

∑r
i=1 hi(z(k)) = 1,

∀z(k).
While in the literature an abundance of sufficient conditions to ensure the negativity

of the double sum above exist, for simplicity, in this paper we will use the following
lemma.

Lemma 2. [39] The double convex sum (9) is negative, if

Γii < 0
Γij + Γji < 0, i, j = 1, 2, . . . , r, i < j

(10)

3. Local stabilization

Consider the descriptor TS model, repeated here for convenience:

Evx(k + 1) = Ahx(k) + Bhu(k) (11)

defined on a domain D including the origin.
Our goal is to determine a control law of the form

u(k) = −FH−1x(k) (12)

where F and H are (possibly fuzzy) controller gains such that the closed-loop system,

Evx(k + 1) = (Ah −BhFH−1)x(k) (13)

has a locally asymptotically stable equilibrium point in x = 0 and determine a region of
attraction DS . For this, let us first assume the following

Assumption 1. There exists a domain DR and a symmetric (possibly fuzzy) matrix
expression R = RT so that

(
x(k)

x(k + 1)

)T

R
(

x(k)
x(k + 1)

)
≥ 0 (14)

holds ∀x(k) ∈ DR.
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Remark: Note that Assumption 1 expresses the domain DR as an implicit expression
depending on the dynamics of the system, i.e., DR is given by

DR =

{
x ∈ D

∣∣∣∣∣
(

x
E−1

v (Ah −BhFH−1)x

)T

R
(

x
E−1

v (Ah −BhFH−1)x

)
≥ 0

}

For a more compact and easier notation, in developing the conditions we will use the
form (14).

Assumption 1 above can always be satisfied, e.g., by choosing a constant matrix
R = R = RT > 0. The domain DR depends on the system being analyzed, and in the
worst case DR = {0}.

3.1. Local quadratic stabilization
We start with the following result.

Theorem 1. Given a symmetric matrix expression R = RT such that Assumption 1
holds, the discrete-time nonlinear model (13) is locally asymptotically stable if there exist
matrices P = PT > 0, F , H, and scalar τ > 0 so that

(−H−HT + P (∗)
AhH−BhF −EvP − (∗) + P

)
+ τ

(HT 0
0 P

)
R

(H 0
0 P

)
< 0 (15)

Moreover, the region of attraction , i.e., the region from which all trajectories converge
to zero, includes DS, where DS is the largest Lyapunov level set included in DR.

Proof. Consider the candidate Lyapunov function V = xT (k)P−1x(k). The difference is

∆V = xT (k + 1)P−1x(k + 1)− xT (k)P−1x(k)

=
(

x(k)
x(k + 1)

)T (−P−1 0
0 P−1

)(
x(k)

x(k + 1)

)

In the domain DR Assumption 1 holds, thus, using Proposition 4, we have ∆V < 0 if
there exists τ > 0 so that

(
x(k)

x(k + 1)

)T (−P−1 0
0 P−1

)(
x(k)

x(k + 1)

)

+ τ

(
x(k)

x(k + 1)

)T

R
(

x(k)
x(k + 1)

)
≤ 0

Furthermore, the dynamics (11) can be written as

(
Ah −BhFH−1 −Ev

) (
x(k)

x(k + 1)

)
= 0

Using Lemma 1, we have ∆V < 0 if there exist M so that

M (
Ah −BhFH−1 −Ev

)
+ (∗) +

(−P−1 0
0 P−1

)
+ τR < 0
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Choosing M =
(

0
P−1

)
leads to

( −P−1 (∗)
P−1Ah − P−1BhFH−1 −P−1Ev + (∗) + P−1

)
+ τR < 0

Congruence with
(HT 0

0 P

)
and applying Proposition 2 gives directly conditions (15)

and concludes the proof. Moreover, the region of attraction includes DS , where DS is
the largest Lyapunov level set included in DR.

Before discussing the choice of the structure of F and H, let us now consider the
case when R is to be determined. Our aim is to effectively find the domain DS where
the system (13) is locally asymptotically stable. For this, similarly to the result in [32],
we consider R as a decision variable, and, with a slight abuse of notation, τR will be
denoted simply by R. Thus, the following result can be formulated.

Theorem 2. The discrete-time descriptor model (13) is locally asymptotically stable in
the domain DS if there exist matrices P = PT > 0, F , H, i = 1, 2, . . . , r and W = WT

so that (−H−HT + P (∗)
AhH−BhF −EvP − (∗) + P

)
+ W < 0 (16)

where DS is the largest Lyapunov level set included in DR

⋂D and DR is given by

DR =

{
x(k) ∈ D |

(
x(k)

x(k + 1)

)T (H−T 0
0 P−1

)
W

(H−1 0
0 P−1

) (
x(k)

x(k + 1)

)
≥ 0

}

Proof. The proof follows the same lines as that of Theorem 1 and denoting

R =
(H−T 0

0 P−1

)
W

(H−1 0
0 P−1

)

Remark: Classical results in the literature are usually based on the choice M =(
0
M

)
, in Lemma 1. In this particular case, we chose M = P−1.

As can be seen, the domain DR and consequently the domain where local asymptotic
stability of the closed-loop system will be established will depend on the controller gains
and on the Lyapunov function. Moreover, since in the conditions (16), the matrix W
“compensates” for the difference in the Lyapunov functions, several possibilities can be

chosen, such as W =
(

W1 0
0 −I

)
, which establishes a direct relation between x(k) and

x(k + 1); a full W , which will give a more complex relation between two consecutive
samples and thus in principle a larger region, etc. In fact, as W is used to determine
a region where the difference in the Lyapunov function is negative, it should have a
structure to match this difference, and ultimately to match the nonlinearities in the
system model.
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Furthermore, since any trajectory that eventually gets in the domain DS is a stable
one, the region of attraction may be increased by looking at those trajectories that do
not start in DR, but arrive in several steps to DS .

Let us now discuss the choice of the controller gains F and H. Naturally, the simplest
choice is F = F , H = H, F and H being matrices of appropriate dimensions. For such a
choice, however, the controller is reduced to linear one, although (16) contains two sums
(one in h and one in v, thus relaxations cannot be applied).

In order to be able to use relaxations such as Lemma 2, F and H should contain at
least one sum in h, i.e., F = Fh and H = Hh. This means that (16) contains two sums
in h (for which the relaxations can be applied) and one in v. To increase the number of
decision variables, and thus relax the conditions, a sum in v can still be included in F
and H, leading to F = Fhv and H = Hhv, respectively. Note that this choice does not
lead to an increase in the number of sums.

Finally, continuing the line of thought above, for the general case, one may choose F =
Fhh...hv...v and H = Hhh...hv...v. By increasing the number of sums – and, equivalently,
the number of decision variables –, the controller becomes more general and the LMIs
less conservative. However, at the same time, the computational complexity increases,
eventually rendering the conditions computationally intractable in practice.

It should be noted that depending on the control problem considered other choices
(e.g., using a constant H and F = Fhv) may also be suitable. Moreover, choosing a
constant H = P recovers classic controllers from the literature.

3.2. Local non-quadratic stabilization
In what follows, we will consider local nonquadratic stabilization of the descriptor

model (13). For this we will use the nonquadratic Lyapunov function V = xT (k)P−1x(k),

together with the constraint
(

x(k)
x(k + 1)

)T

R
(

x(k)
x(k + 1)

)
between consecutive samples.

Then, following the lines of Theorem 2, we have the result:

Theorem 3. The discrete-time nonlinear model (13) is locally asymptotically stable in
the domain DS, if there exist P, F , H, and W, so that

(−HT −H+ P (∗)
AhH−BhF −EvP+ + (∗) + P+

)
+W < 0 (17)

where DR is given by

DR =

{
x(k) ∈ D |

(
x(k)

x(k + 1)

)T (H−T 0
0 P−1

+

)
W

(H−1 0
0 P−1

+

)(
x(k)

x(k + 1)

)
≥ 0

}

and DS is the largest Lyapunov level set included in DR

⋂D.

Proof. The proof follows the same lines as that of Theorem 2 and is therefore omitted.

Once the sums (membership functions) to be used in F , H, P, etc., are chosen,
sufficient LMI conditions can easily be derived for the above conditions. However, in
order to efficiently apply relaxations such as Lemma 2 to reduce the computational
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complexity, the sums used in the Lyapunov function and in the controller gains should
be suitably chosen.

A similar line of choices of the sums used in the control gains and in the Lyapunov
function as in the case of quadratic stabilization can be discussed also here. Since, due to
the nonquadratic Lyapunov function, P+ appears in the conditions, the choice of delayed
Lyapunov matrices, such as those in [40] may be warranted. When using fuzzy expression
in both the gains and the Lyapunov function, the least number of sums that allows for
the use of relaxations both in h and v is 5: H = Hh, F = Fh, P = Pv−, where v−
denotes the membership functions v evaluated at the previous sampling instant. This
choice leads to

(−Hh −HT
h + Pv− (∗)

AhHh −BhFh −EvPv + (∗) + Pv

)
+W < 0 (18)

The domain DR is obtained based on W, Hh and Pv. While even a constant matrix W
may lead to a nonconvex set, in order to maximize the degrees of freedom in W, one can
choose W = Whhvvv−, i.e., include all the indices that appear on the left-hand side.

Then, the following sufficient LMI conditions may be formulated:

Corollary 1. The discrete-time descriptor model (13) is locally asymptotically stable
if there exist matrices Pk = PT

k > 0, Hi, Fi, Wijklm = WT
ijklm, i, j = 1, 2, . . . , re,

k, l, m = 1, 2, . . . , r, so that (10) hold, with

Γi,j,k,l,m =
(−Hi −HT

i + Pm (∗)
AjHi −BjFi −EkPl + (∗) + Pl

)
+ Wijklm

Moreover, the region of attraction includes DS , where DS is the largest Lyapunov level
set included in DR, where DR is defined as

DR =

{
x(k) ∈ D |

(
x(k)

x(k + 1)

)T (
H−T

h 0
0 P−1

v

)
W

(
H−1

h 0
0 P−1

v

)(
x(k)

x(k + 1)

)
≥ 0

}

4. Local set point tracking control

Consider now the discrete-time TS descriptor system (11)

Evx(k + 1) = Ahx(k) + Bhu(k)
y(k) = Cx(k)

(19)

defined on a domain D including the origin, where y denotes the output.
Our goal is to determine a control law, such that y tracks a desired reference signal yr.

For this, we will use the auxiliary state variable xI(k) – corresponding to an integral
term – with the dynamics given by xI(k +1) = xI(k)−Cx(k)+yr. The extended state
dynamics are

Evx(k + 1) = Ahx(k) + Bhu(k)

xI(k + 1) = xI(k)− Cx(k) + yr
10



Denoting xe =
(

x(k)
xI(k)

)
, Ae =

(
Ah 0
−C I

)
, Be

h =
(

Bh

0

)
, Ee

v =
(

Ev 0
0 I

)
, D =

(
0
I

)
we

have
Ee

vxe(k + 1) = Ae
hxe(k) + Be

hu(k) + Dyr

and we consider a control law u(k) = −FH−1xe(k). The closed-loop system is

Ee
vxe(k + 1) = (Ae

h −Be
hFH−1)xe(k) + Dyr (20)

It is well-known [41] that if the closed-loop system (20) with yr = 0 is globally uniformly
asymptotically stable, then it is also input-to-state stable (ISS) with respect to the ex-
ogenous input yr. In what follows, we determine conditions for the local tracking and
determine a region where tracking is possible.

Similarly to the stabilization problem, consider the nonquadratic Lyapunov function

V = xeT (k)P−1xe(k), together with the constraint
(

xe(k)
xe(k + 1)

)T

R
(

xe(k)
xe(k + 1)

)
be-

tween consecutive samples. Then, following the lines of Theorem 2, we have the result:

Theorem 4. The discrete-time nonlinear model (20) is locally ISS with respect to the
exogenous input yr in the domain DS, if there exist P, F , H, and W, so that

(−HT −H+ P (∗)
Ae

hH−Be
hF −Ee

vP+ + (∗) + P+

)
+W < 0 (21)

where DR is given by

DR =

{
xe(k) ∈ D |

(
xe(k)

xe(k + 1)

)T (H−T 0
0 P−1

+

)
W

(H−1 0
0 P−1

+

) (
xe(k)

xe(k + 1)

)
≥ 0

}

and DS is the largest Lyapunov level set included in DR

⋂D.

Proof. Consider the candidate Lyapunov function V = (xe)T (k)P−1xe(k). The differ-
ence in V is

∆V = (xe)T (k + 1)P−1
+ xe(k + 1)− (xe)T (k)P−1xe(k)

=
(

xe(k)
xe(k + 1)

)T (−P−1 0
0 P−1

+

)(
xe(k)

xe(k + 1)

)

The dynamics (20) can be written as

(
Ae

h −Be
hFH−1 −Ee

v D
)



xe(k)
xe(k + 1)

yr


 = 0

11



Then, we have

∆V =
(

xe(k)
xe(k + 1)

)T (−P−1 0
0 P−1

+

)(
xe(k)

xe(k + 1)

)

+




xe(k)
xe(k + 1)

yr




T 





0
P−1

+

0


 (

Ae
h −Be

hFH−1 −Ee
v D

)
+ (∗)







xe(k)
xe(k + 1)

yr




=
(

xe(k)
xe(k + 1)

)T ( −P−1 (∗)
P−1

+ (Ae
h −Be

hFH−1) −P−1
+ Ee

v + (∗) + P−1
+

)(
xe(k)

xe(k + 1)

)

+ 2yrP−1
+

(
(Ae

h −Be
hFH−1)xe(k) + Dyr

)

≤ Q(xe) + 2δ‖yr‖‖xe(k)‖+ 2α‖yr‖2

where

Q(xe) =
(

xe(k)
xe(k + 1)

)T ( −P−1 (∗)
P−1

+ (Ae
h −Be

hFH−1) −P−1
+ Ee

v + (∗) + P−1
+

)(
xe(k)

xe(k + 1)

)

and δ ≥ 0 and α ≥ 0 are bounding constants, i.e., ‖P−1
+ (Ah − BhFH−1)‖ ≤ δ and

‖P−1
+ D‖ ≤ α.
Let us now consider Q(xe). Assuming that there exists R and a domain DR such

that (
xe(k)

xe(k + 1)

)T

R
(

xe(k)
xe(k + 1)

)
≥ 0

Q(xe) < 0, if
( −P−1 (∗)
P−1

+ (Ae
h −Be

hFH−1) −P−1
+ Ee

v + (∗) + P−1
+

)
+R < 0

Congruence with
(HT 0

0 P+

)
and applying Proposition 2 gives

(−HT −H+ P (∗)
Ae

hH−Be
hF −Ee

vP+ + (∗) + P+

)
+

(HT 0
0 P+

)
R

(H 0
0 P+

)
< 0 (22)

or (−HT −H+ P (∗)
Ae

hH−Be
hF −Ee

vP+ + (∗) + P+

)
+W < 0

Furthermore inDR where (22) holds, ∃λ > 0 so thatQ(xe) < −λ‖xe(k)‖2. Consequently,
in this domain,

∆V ≤ −λ‖xe(k)‖2 + 2δ‖yr‖‖xe(k)‖+ 2α‖yr‖2

and by the completion of squares, 2δ‖yr‖‖xe(k)‖ ≤ 1
θ‖xe(k)‖2 + δ2θ‖yr‖2, ∀θ > 0, thus

∆V ≤ −λ‖xe(k)‖2 +
1
θ
‖xe(k)‖2 + δ2θ‖yr‖2 + 2α‖yr‖2

12



Choosing θ > 1
λ and denoting c1 = λ− 1

θ > 0 and c2 = δ2θ + 2α, we have

∆V ≤ −c1‖xe(k)‖2 + c2‖yr‖2

Furthermore, consider τ ∈ (0, 1). Then,

∆V ≤ −(1− τ)c1‖xe(k)‖2 − τc1‖xe(k)‖2 + c2‖yr‖2

≤ −(1− τ)c1‖xe(k)‖2 ∀‖xe‖2 ≥ c2

τc1
‖yr‖2

i.e., the closed-loop system (20) is ISS with respect to the exogenous input yr, with an
ultimate bound given by c2

τc1
.

While the bounding constants α and δ do not affect the feasibility of the developed
LMI conditions, they do affect the bound above and how closely the systems output y
will track the reference signal yr. Thus, in what follows, we develop LMI conditions for
the minimization of this bound. Recall that ‖P−1

+ (Ae
h−Be

hFH−1)‖ ≤ δ and ‖P−1
+ D‖ ≤ α

and consider first ‖P−1
+ D‖ ≤ α. This is satisfied if

DTP−1
+ P−1

+ D ≤ α2I

α2I −DTP−1
+ P−1

+ D ≥ 0

By the Schur complement, we have
(

α2I DTP−1
+

P−1
+ D I

)
≥ 0

Congruence with diag(I P+) gives
(

α2I DT

D P+P+

)
≥ 0

and using Proposition 2 on P+P+ we obtain
(

α2I DT

D 2P+ − I

)
≥ 0 (23)

Consider now ‖P−1
+ (Ae

h −Be
hFH−1)‖ ≤ δ. This is satisfied, if

(P−1
+ (Ae

h −Be
hFH−1))TP−1

+ (Ae
h −Be

hFH−1) ≤ δ2I

Using the Schur complement and congruence with diag(HT P+) gives
( HT δ2H (∗)

Ae
hH−Be

hF P+P+

)
≥ 0

and using Proposition 2 on both HT δ2H and P+P+ leads to
(HT +H− 1

δ2 I (∗)
Ae

hH−Be
hF 2P+ − I

)
≥ 0 (24)

13



Furthermore, since the bound c2
τc1

depends on c1, which in turn depends on λ, λ
should be maximized. Then, Q(xe) ≤ −λ‖xe(k)‖, if

( −P−1 + λ (∗)
P−1

+ (Ae
h −Be

hFH−1) −P−1
+ Ee

v + (∗) + P−1
+

)
+R < 0

Similarly to the proof of Theorem 4, congruence with
(HT 0

0 P+

)
and applying Propo-

sition 2 gives
(−HT −H+ λHTH+ P (∗)

Ae
hH−Be

hF −Ee
vP+ + (∗) + P+

)
+W < 0

which, after applying the Schur complement results in


−HT −H+ P (∗) (∗)
Ae

hH−Be
hF −Ee

vP+ + (∗) + P+ 0
HT 0 − 1

λI


 +

(W 0
0 0

)
< 0 (25)

This result can be summarized as follows.

Corollary 2. The discrete-time nonlinear model (20) is locally ISS with respect to the
exogenous input yr in the domain DS , if there exist P, F , H, and W, so that condition
(21) holds. Furthermore, the ultimate bound on the states can be minimized by solving

minimize α, δ, maximize λ
subject to (23), (24), (25)

together with (21).

5. Examples

In this section we illustrate the proposed conditions first on a numerical example and
then on a 2DOF robot arm.

5.1. Numerical example
Consider the discrete-time descriptor TS model:

2∑

i=1

vi(z(k))Eix(k + 1) =
4∑

i=1

hi(z(k))(Aix(k) + Bu(k)) (26)

with (x1(k), x2(k)) ∈ R2, z = x,

v1 =
1− sin(x1)

2
v2 = 1− v1

h1 =
1− sin(x1)

2
1− sin(x2)

2
h2 =

1− sin(x1)
2

1 + sin(x2)
2

h3 =
1 + sin(x1)

2
1− sin(x2)

2
h4 =

1 + sin(x1)
2

1 + sin(x2)
2

14



E1 =
(

1 0
0 1

)
E2 =

(
1 1
1 3

)
B =

(
0
1

)

A1 =
(−0.55 −0.25
−0.85 0.66

)
A2 =

(−0.85 −0.12
−1.20 −0.06

)

A3 =
(

0.48 −0.15
−0.6 −0.43

)
A4 =

(−0.08 −0.60
1.53 −1.35

)

Our goal is to determine a controller that is able to track the reference signals pre-
sented in Figures 1(a) and 1(b). Using classical conditions for the global stabilization of
this system, the LMIs are unfeasible. Thus, we consider a local approach. For the
easier graphical representation, we consider a common quadratic Lyapunov function

V (xe) = xeT (k)Pxe(k), xe =
(

x
xI

)
with P = PT > 0 and the following choices:

H = P , F = Fhv, W =
(

W1 0
0 −I

)
. Note that with the choice of H = P the controller

is reduced to a classic PDC controller. The following results have been obtained:

P =




1.36 −0.21 1.55
−0.21 2.34 −1.63
1.55 −1.63 5.95


 W1 =




0.28 0 0
0 0.28 0
0 0 0.28




F1,1H
−1 =

(−1.06 0.68 0.25
)

F1,2H
−1 =

(−0.48 1.03 0.46
)

F2,1H
−1 =

(−1.39 −0.05 0.25
)

F2,2H
−1 =

(−0.34 0.11 0.45
)

F3,1H
−1 =

(−0.89 −0.42 0.25
)

F3,2H
−1 =

(−1.79 −0.21 0.45
)

F4,1H
−1 =

(
1.28 −1.30 0.25

)
F4,2H

−1 =
(
1.20 −0.39 0.46

)

As can be seen in the tracking results illustrated in Figures 1(c) and 1(d), the tracking
is indeed only possible locally: for instance, the reference yr = −2 (see Figure 1(b))
cannot be tracked – at least with this choice of the control law and the Lyapunov functions
–, although for yr = −0.2, x1 converges to the reference.

The domain in this case is determined by

DR =

{
xe(k) ∈ D |

(
xe(k)

xe(k + 1)

)T (
P−1 0

0 P−1

)(
W1 0
0 −I

)(
P−1 0

0 P−1

) (
xe(k)

xe(k + 1)

)
≥ 0

}

=



xe(k) ∈ D | xe(k)T




0.35 −0.07 −0.12
−0.07 0.1 0.05
−0.12 0.05 0.06


xe(k)+

+ xe(k + 1)T



−1.26 0.25 0.45
0.25 −0.34 −0.19
0.45 −0.19 −0.22


xe(k + 1) ≥ 0





=



xe ∈ D | xeT




0.35 −0.07 −0.12
−0.07 0.1 0.05
−0.12 0.05 0.06


 xe+

+ xeT (Ae
h −Be

hFH−1)T (EeT
v )−1



−1.26 0.25 0.45
0.25 −0.34 −0.19
0.45 −0.19 −0.22


 (∗)xe ≥ 0




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(a) Reference signal for Example 5.1
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(b) Reference signal for Example 5.1
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(c) Results for the reference in Figure 1(a)
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(d) Results for the reference in Figure 1(b)
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(e) Lyapunov level sets corresponding to xI = 0
and points that are in DR.
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(f) The domain DR

Figure 1: Results for Example 5.1.

Since the Lyapunov function depends on x1, x2 and xI , its projection on the x1 − x2

plane, i.e., the level sets for xI = 0, and those points (denoted by ‘o’ ) which are in DR

are presented in Figure 1(e). The points that are in DR for x1 ∈ [−1, 1], x2, xI ∈ [−2, 2]
are graphically represented in Figure 1(f).

Two issues need to be noted here:
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• Although not the case for asymptotic stabilization, in case of ISS, the obtained
domain also depends on the auxiliary integral variable xI . Since this variable
directly depends on the exogenous input yr, it naturally follows that stability will
only be ensured for some reference signals.

• The domain of attraction is actually determined by an implicit equation of the
state (stabilization) and of yr (in case of ISS). Depending on the nonlinearities in
the membership functions, the choice of the sums in the controller gains, and the
(possibly delayed) Lyapunov matrix, analytically solving this equation may not be
possible.

Remark: For comparison purposes we also computed a linear state-feedback con-
trol law u = −Fx for the linearized model, and obtained the controller gain F =(−0.29 −0.35 −0.05

)
. However, this control cannot even stabilize the original nonlin-

ear system from the initial point x =
(
0.1 0.1

)T , not to mention tracking a reference.
This clearly illustrates the advantages of designing a local nonlinear controller.

5.2. Tracking for a robot arm
In what follows, we consider a tracking problem for the 2DOF robot arm shown in

Figure 2(a). The schematic representation of this arm is shown in Figure 2(b).

(a) A 2DOF robot arm (b) Schematic representation of a 2DOF robot
arm

Figure 2: A 2DOF robot arm
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Using the Euler-Lagrange modeling approach, the dynamic model of this arm can be
obtained as

M(q)q̈ =−D(q, q̇)q̇ + Iτ (27)

where q =
(
q1 q2

)T are the angles of the two joints, q̇ =
(
q̇1 q̇2

)T are the angular

velocities, τ =
(
τ1 τ2

)T are the torques. M represents the mass matrix and D contains
the Coriolis, centrifugal and friction forces. The parameters of the system have been
experimentally identified and are presented in Table 1.

Table 1: Margin settings

L1[m] 0.095 length first-second joint
L2[m] 0.1 length second joint end-effector
M1[kg] 0.0.095 mass first joint
M2[kg] 0.37 mass second joint
g[m/s2] 9.81 gravitational acceleration

I1x[kgm2] 2.27 · 10−2 moment of inertia
I1y[kgm2] 8.33 · 10−5 moment of inertia
I1z[kgm2] 1.81 · 10−5 moment of inertia
I2x[kgm2] 8.33 · 10−5 moment of inertia
I2y[kgm2] 2.27 · 10−2 moment of inertia
I2z[kgm2] 7.07 · 10−5 moment of inertia

b1[−] 0.24 friction coefficient, first joint
b2[−] 0.16 friction coefficient, second joint

The model (27) is naturally in descriptor form. With the notation x =
(
q1 q2 q̇1 q̇2

)T ,
we have

Ec(x) =
(

I 0
0 M(x)

)
Ac(x) =

(
0 I
0 −D(x)

)
Bc =

(
0
I

)

M(x) =

(
I1x + I2z + cos(x2)2(I2x − I2z) + M2(L1 + L2 cos(x2)

2 )2 0
0 M2L2

2
4 + I2y

)

D(x) =

(
−x4(sin(2x2)(

M2L2
2

4 + I2x − I2z) + L1L2M2 sin(x2)) + b1 0
x3(

sin(2x2)
2 (I2x − I2z + L2

4 ) + L2M2L1 sin(x2)
2 ) b2

) (28)

The state variables are bounded as q1, q2 ∈
(−3π

4 , 3π
4

)
and q̇1, q̇2 ∈

(−3, 3
)
. Using

a simple forward Euler discretization with sampling time Ts = 0.045 and the sector
nonlinearity approach, an equivalent TS descriptor model is:

2∑

i=1

vi(z(k))Eix(k + 1) =
4∑

i=1

hi(z(k))(Aix(k) + Bu(k))
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with the matrices

E1 =




1 0 0 0
0 1 0 0
0 0 0.0242 0
0 0 0 0.0236


 E2 =




1 0 0 0
0 1 0 0
0 0 0.0307 0
0 0 0 0.0236




A1 =




1 0 0.045 0
0 1 0 0.045
0 0 0.0132 0
0 0 −0.003 0.0164


 A2 =




1 0 0.045 0
0 1 0 0.045
0 0 0.0132 0
0 0 0.003 0.0164




A3 =




1 0 0.045 0
0 1 0 0.045
0 0 0.02 0
0 0 −0.003 0.0164


 A4 =




1 0 0.045 0
0 1 0 0.045
0 0 0.02 0
0 0 0.003 0.0164




B = 0.045Bc C =
(

1 0 0 0
0 1 0 0

)

Similarly to the numerical example in the previous section, our goal is to determine
a controller such that the angles x1 and x2 track a given reference signal. Using classical
conditions for the global stabilization of this system, the LMIs for the descriptor form
are unfeasible. Thus, we consider a local approach. We consider a common quadratic
Lyapunov function V (xe) = xeT (k)Pxe(k), with P = PT > 0 and the following choices:

H = P , F = Fhv, W =
(

W1 0
0 −I

)
. The obtained Lyapunov matrix, W and some of

the gains are:

P =




0.13 0 −0.05 0 0.68 0
0 0.13 0 −0.05 0 0.68

−0.05 −0.00 1.27 0 −0.5 0
0 −0.05 0 1.26 0 −0.50

0.68 0 −0.5 0 9.92 0
0 0.68 0 −0.50 0 9.92




W1 =




−0.10 0 −0.1 0 0.04 0
0 −0.1 0 −0.1 0 0.4

−0.1 0 1.23 0 −0.18 0
0 −0.1 0 1.22 0 −0.18

0.04 0 −0.18 0 1.95 0
0 0.04 0 −0.18 0 1.95




F1,1H
−1 =

(
4.18 0 0.47 0 −0.22 0
0 4.2 −0.006 0.54 0 −0.22

)

F4,2H
−1 =

(
4.11 0 0.62 0 −0.21 0
0 4.2 0.006 0.54 0 −0.22

)

The tracking results are presented in Figure 3.
Note that the domain in which the tracking controller is locally asymptotically stable
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Figure 3: Tracking results for a robot arm.

is determined by

DR =

{
x(k) ∈ D |

(
xe(k)

xe(k + 1)

)T (
P−1W1P

−1 0
0 P−2

)(
xe(k)

xe(k + 1)

)
≥ 0

}

thus it will also depend on the reference signal to be tracked.
Finally, the experimental results obtained for the 2DOF robot arm are shown in

Figure 4. Since the angular velocities for this robot arm are actually not measured, a
linear observer has been used to estimate them. The observer has been computed for the
linearized model by placing the poles of the estimation error dynamics at 0.6, 0.65, 0.7,

and 0.75. The observer gain is L =




0.3 0
0 0.34

0.83 0
0 0.23


. The controller uses the measured

angles and the estimated angular velocities.
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Figure 4: Experimental results for the robot arm.
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6. Conclusions

In this paper, we have developed conditions for the local asymptotic stability and
input-to-state-stability of discrete-time descriptor TS models. The conditions have been
formulated as linear matrix inequality conditions that are easy to solve. An estimate
of the domain of attraction has also been determined based on the Lyapunov function
used and on the system matrices. The application of the proposed conditions has been
illustrated on a numerical example and experimentally on a 2DOF robot arm.

In our future work, we will extend the conditions for general delayed Lyapunov func-
tions and controller gains.
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