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Abstract

The Kalman filter provides an efficient means to estimate the state of a linear process, so
that it minimizes the mean of the squared estimation error. However, for naturally distri-
buted applications, the construction and tuning of a centralized observer may present diffi-
culties. Therefore, we propose the decomposition of a linear process model into a cascade
of simpler subsystems and the use of a Kalman filter to individually estimate the states of
these subsystems. Both a theoretical comparison and simulation examples are presented.
The theoretical results show that the distributed observers, except for special cases, do not
minimize the overall error covariance, and the distributed observer system is therefore sub-
optimal. However, in practice, the performance achieved by the cascaded observers is com-
parable and in certain cases even better than the performance of the centralized observer.
A distributed observer system also leads to increased modularity, reduced complexity, and

lower computational costs.
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1 Introduction

Many problems in decision making, control, and monitoring require the estimation
of states and possibly uncertain parameters, based on a dynamic system model
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and a sequence of noisy measurements. For such a purpose, dynamic systems are
often modeled in the state-space framework, using a state-transition model, which
describes the evolution of states over time and a measurement model, which relates
the measurement to the states. In state-estimation problems, these models may also
be given in a probabilistic form.

The most well-known and widely used probabilistic estimation methods are the
Kalman filter and its extension to nonlinear systems, the Extended Kalman Filter
(Kalman, 1960; Welch and Bishop, 2002). While the Kalman filter has severe limi-
tations and becomes unstable for highly nonlinear processes, for a linear process, it
provides an efficient means to estimate the states so that it also minimizes the mean
of the squared error. The filter supports the estimation of past, present and future
states, even if a precise model of the system considered is unknown.

Since the publication of the Kalman’s seminal paper (Kalman, 1960), the Kalman
filter has been the subject of extensive research and applications, particularly in the
area of autonomous robots, assisted navigation and sensor data fusion (Lee et al.,
1995; Dorfmiiller-Ulhaas, 2003; Caron et al., 2006). A wide variety of Kalman
filters have also been developed from the Kalman’s original formulation: the ex-
tended Kalman filter, the information filter and the family of sigma-point Kalman
filters (van der Merwe and Wan, 2003).

The Kalman filter is also extensively used in combination with fuzzy systems. Since
the Takagi-Sugeno fuzzy model (Wang et al., 2000) is a nonlinear combination of
local linear models, Kalman filters have been used to develop state estimators for
nonlinear systems which can be represented by models in this form (McGinnity
and Irwin, 1997; Simon, 2003; Zhang and Wei, 2003). Fuzzy systems can also be
used to tune parameters in a Kalman filter (Aja-Fernandez et al., 2003).

In multi-agent applications, each agent should be able to observe at least some local
states and make decisions based on these observations. This can be achieved by
using local observers, i.e., each agent implements an individual observer. However,
currently, no results are available on the performance analysis of the local observers
versus a centralized observer. In this paper, we provide such results and study the
conditions under which Kalman-type observers can be used in a cascaded setting.

We propose the decomposition of a system model into cascaded subsystems, and
use separate estimators for the subsystems. The idea behind this type of estimation
is that many systems can be represented as cascaded, observable subsystems, which
are less complex than the original system. Separate observers can be designed for
the individual subsystems. This makes the tuning easier. Moreover, different types
of observers can be combined, depending on the subsystems considered. Most im-
portantly, such a setting is well suited for a cooperative multi-agent system. Each
agent has the task of observing one of the subsystems, possibly using different
methods and relying on its own measurements and the information gathered from



other agents. In turn, each agent communicates its own results to other agents. If
all the agents in a system use the same estimation method, then such a distributed
observer system can be designed and implemented in a modular manner.

In this paper, Kalman-type filters are designed for cascaded subsystems and the
performance of the cascaded filters is studied. We present a theoretical comparison
of the centralized and cascaded Kalman filter and also compare their performance
both on academic examples and simulated real-world problems. These examples
illustrate the possible application of the proposed distributed setting not only for
large-scale systems, but also a class of nonlinear systems.

The paper is organized as follows. Section 2 presents the proposed cascaded ob-
server setting, Section 3 reviews the Kalman Filter methodology. The distributed
Kalman filters are presented in Section 4, with three illustrative examples in Sec-
tion 5. Section 6 presents the application of the cascaded Kalman filters to a large-
scale system and Section 7 presents the application of the proposed approach to a
nonlinear system. Finally, Section 8 concludes the paper.

2 Cascaded Subsystems

Consider the following observable linear MIMO system:

)

and assume that this system can be partitioned into subsystems. For the ease of
notation, and without a loss of generality, only two subsystems are considered,

x=[x" x*'[Tandy = [y y*'|":
Xl(k) = Allxl(k — ].) + Bﬂ.l(]{? — 1) (2)
y'(k) = Cux' (k)
and
XQ(I{,’) = AQQXz(k’ — 1) + lel(k’ — 1) + Angl(kI — 1) (3)

Y2 (k) = Coox*(k) + Corx (k)
so that (2) is observable. Note that, since both systems (1) and (2) are observable,

this also means that the subsystem (3) is observable for given x*(k) and x'(k — 1).
In fact, for subsystem (3), x' (k — 1) is an input.

In general, such a partition of the model does not necessarily exist. The necessary
and sufficient condition for the existence of a partition is that the A and C' matrices
can be transformed into block lower-triangular forms. If the partition exists, it might



not be unique. Consider, for instance, the system

r(k) =21 (k— 1)+ 23(k — 1) y1(k) = x1(k)
z3(k) = u(k — 1)

This system is observable, and there are two possible ways to partition it: by using
as the first subsystem

(k—1)+a3(k—1) yi1(k) = 21(k)

(k—1)+a3(k —1) Y2 (k) = xo(k)

both being observable.

Given the above partitioning, state estimators can be designed for the two subsys-
tems separately, with the second observer using the results of the first observer.
Such a structure is depicted in Figure 1.
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Fig. 1. Cascaded observers.

Although the framework is presented for linear, time-invariant systems, the pro-
posed distributed observer approach is applicable also for cascaded general non-
linear systems. In general, the distributed estimation approach is applicable when
the system considered can be represented by a directed acyclic graph structure,
where each node corresponds to an observable subsystem. In many cases, these
subsystems are much simpler than the global system (e.g., some subsystems may
be linear). Therefore, simpler observer can be designed.

Currently, a general analysis of the joint performance (convergence, convergence
speed, optimality) of the cascaded observers and a centralized observer designed
for a cascaded system does not exist. In the remainder of the paper we study the
conditions under which Kalman-type filters can be designed for the two subsystems
of the form (2)—(3), so that the performance of the cascaded filters is the same as
that of a single Kalman filter for system (1).



3 Kalman Filter

The Kalman filter addresses the problem of estimating the state x € R" of a linear
discrete-time process:

o
—

=y
~—

I

Ax(k— 1)+ Bu(k — 1)+ w(k — 1) @
¥(k) = Ox(k) + v(k)

with x, (initial state) and F, (initial covariance of the states) known or previously
estimated.

The inputs w and v are random variables, representing the process and measurement
noise, respectively. These random variables are assumed to be independent, white
and with normal probability distributions w(k) ~ N(0,Q) and v(k) ~ N(0, R).
In general, the process and measurement noise covariance matrices () and R),
the state transition matrix A and the measurement matrix C' can change at every
time step; however, here, they are assumed constant to simplify the notation. The
objective is to recursively estimate or filter the state x; based on the available mea-
surements.

The Kalman filter works in two steps: prediction:

%(k|k — 1) = Ax(k — 1) + Bu(k — 1)

P(klk —1) = AP(k — 1)AT +Q ®)
and update or correction:
X(k) =x(k|lk — 1)+ K(k)(y(k) — CX(k|k — 1)) ©)
P(k)= (I — K(k)C)P(k|k — 1)(I — K(k)C)' + K(k)RK™ (k)

where X(k) (P(k)) refers to the estimate of the states (covariance) obtained by using
all the measurements up to k. The Kalman gain K (k) is computed at each step k
so that it minimizes the error covariance P(k). This is obtained by minimizing the
trace of P(k) at every step:

Ar(P(k) _ _ —1)C” (k) =
O 2CP(k|k —1) + 2(CP(klk — 1)CT + R)YKT (k) =0 N

— K(k) = P(klk — 1)CT(CP(k|k —1)CT + R)™

Then, assuming that at step & — 1 the error covariance is P(k — 1), the covariance
and the Kalman gain at step £ can be expressed as:

P(k)= (I — K(k)C)(AP(k — AT + Q)(I — K(k)C)" + K(k)RK™ (k)

K(k) = (AP(k — DAT + Q)CT(C(AP(k — DAT + Q)CT + R)™! )



A generic Kalman filter algorithm is summarized in Algorithm 1.

Algorithm 1 Kalman filter
InplIt: u, y, Q7 Ra A> B7 07 X0, PO

Output: X, P
fork=1,2,... do

Prediction:
X(k|k —1) = Ax(k — 1) + Bu(k — 1) {predict states}
P(klk —1)= AP(k — 1)AT +Q {predict covariance}
Update:
K(k) = P(k|lk—1)CT(CP(k|k—1)CT+R)! {compute Kalman gain}
X(k) =x(k|k — 1)+ K(k)(y(k) — CX(k|k — 1)) {correct states}
P(k)=(I-K(k)C)P(klk—1)(I-K(k)C)T+ K (k)RK™T (k) {correct

covariance }

end for

4 Distributed Kalman Filters

Consider the linear system (4), corrupted with zero-mean Gaussian noise and as-
sume that the system can be written in the following form:

x! (k) _ A 0 x!(k—1) N By wlk— 1) + wi(k—1)

XQ(]C) A21 AQQ X2(l€ — 1) BQ WQ(I{Z — 1) (9)
y' (k) _ Cn 0 ) (x'(k) N vi(k)

y* (k) Co Oy ) \X*(k) v2(k)

1.e., as two cascaded subsystems. Our goal is to design separate observers for
the two subsystems, so that the cascaded observers have the same performance
(error covariance) as the Kalman filter designed for the joint system. Note that
for the system to be cascaded without losing available information (e.g. cross-
covariances of states belonging to different subsystems), it is also necessary that the

. . . . Ql 0 R1 O
covariance matrices are block-diagonal, i.e., () = and R =

0 Q2 0 Ry
While this condition appears restrictive, in practice one rarely knows the true cross-
covariances and it is often assumed that the covariance matrix is diagonal (Hue
et al., 2002; Aja-Fernandez et al., 2003).



Since our goal is to design separate observers for the two subsystems, but still
minimize the error covariance, it is logical to use separate Kalman filters, one for
each subsystem. The first subsystem can be expressed as:

x'(k) = Apx'(k — 1) + Byu(k — 1) + w'(k — 1) (10)

y' (k) = Cux' (k) + v' (k)
which is a linear system, with w!(k) ~ N(0,Q;) and v*(k) ~ N(0, Ry) and the
deterministic input u. In order to minimize the error covariance for this subsystem,
the Kalman filter presented in Section 3 is used. Then, for the first subsystem (with
the deterministic input u), the covariance and the gain at each time step can be
written as:

Py(k) = (I = K1(k)Ci1)(AnPi(k — DA, + Q1)(I — K1 (k)C1i)" + Ky (k)R KT (k)
Ky (k) = (A Pu(k — DAT, + Q1) CL (Cri (A Pi(k — DA, + Q1)CT, + Ry) ™!

(1)
The second subsystem can be expressed as:
x*(k) = Agox?(k — 1) + Bou(k — 1) + Agx* (k — 1) + w'(k — 1) (12)
Y2 (k) = Caox*(k) + Corx' (k) + v* (k)

with w?(k) ~ N(0,Q2) and v*(k) ~ N(0, Ry), the deterministic input u and the
stochastic variable x!. In a multi-agent setting, agents may communicate only the
state estimate, and not the covariance. In such a case, x! can also be considered as
a deterministic input. Thus, two cases can be distinguished.

Case 1: Use x! as another deterministic input besides u for the second subsystem.
This will be the case in a multi-agent system, if the agent entirely trusts the estimate
of another agent, considering it correct and not taking into account possible errors,
or a distribution of the estimate. In this case, the Kalman filter can be used also for
this subsystem, and the expression for covariance the and the gain are:

Py(k) = (I — Ka(k)Co2)(AgaPa(k — 1) A, + Q2) (I — Ka(k)Co2)" + Ka(k)Ro K (k)
Ky(k) = (ApPa(k — 1AL + Q2)CL(Coy(Aga Py (k — 1) AL + Q2)CL + Ry) ™!
(13)
However, in this case, the computed error covariance is not equal to the true error
covariance for the second subsystem.

Case 2: If the covariance of the estimates is also available, then x' can be consid-
ered as a stochastic input, with computed covariance P, (k), for the second subsys-
tem. For this case, a Kalman-type gain can be computed by minimizing the trace
of the error covariance for the second subsystem, assuming that x* is a stochastic



variable with a known covariance matrix P;:

0 = —2Ca (A9 Py(k — 1) AL, + Ay P (k — 1) AL + Qy)+
2(Cog(ApaPy(k — 1) AL + Ay Pi(k — 1) AL + Q22) Oy + Ro) Ky (k)T +
205, Py (k — 1)C, K3 (k)
Ky(k) = (Coa(ApPy(k — 1AL + Ay Py(k — )AL + Q)T - ((Cag(Ana Po(k — 1) AL+

Ao Pi(k — 1)A3) + Q22)Cy + Ry + O Pi(k — 1)Cyy) )"
(14)
The solution of the above equation leads to the following expression of Py (k):

Py(k) = (I — Ky(k)Co2)(AgaPo(k — 1) AL + Ay P (k — 1) AL +
Q2)(I — K3(k)Co2)" + Ks(k)Ro Ky (k) + Ky (k)Cor Pi(k — 1)(Ka(k)Car)™
(15)
and P;,(k) is the true covariance obtained for the states of the second subsystem.

In both cases, the observer gain and the covariance matrix for the whole system are
expressed as:
K, 0 P 0
K = P = (16)
0 K2 0 P2

However, only in the second case (if x! is considered a stochastic input), the co-
variance matrix for the joint system equals the true covariance obtained by the
observers.

Proposition 1: The cascaded setting achieves the same error covariance as the cen-
tralized Kalman filter if and only if the subsystems are independent, i.e., in (9),
A21 = 0, 021 = 0, R12 = 0 and ng = 0.

Proof: Assume that the joint form of the cascaded Kalman filters is equivalent to
that of the centralized Kalman filter. If this assumption holds, then it is also possible
to decompose the error system and the Kalman gain obtained for the joint system.
In order to study this possibility, let

Py P
Pklk—1)=| """ (17)
P21 P22

Then,
CP(klk —1)CT + R =

Cnpnofl + Ry 011P11Cgl + 011P1202Tg + Ry
021P1101T1 + 022P2101T1 + Ry CQl(Pnchi + PlZCQTz) + 022(]3210;1 + P2202Tg) + Ry



The conditions for the observer to be partitioned without losing optimality, are:

Pncn = (k)(CnPnCH + Ry1)
Py 103 + PyyChy = Ka(k)(Cor (P11 Cyy + PiaChy) + Con(Por1Cay + ParChy) + Rao)
P11021 —|- PlgcQTQ - 1(k)(011P11021 + CHP12022 + ng)
PQ]_CE — KQ(k)(C]_]_Pl]_CQl + C]_]_P]_QCQQ + R]_Q)
(18)
Moreover,
P P
P(k|k—1): 11 £712
Plg Pys

A Py (k — 1)A1T1 +Qn Ay Py (k- 1)14;1 + A1 Pro(k — 1)14;2 + Q12

= APk —1)AL + Aoy (Pri(k — 1)AL + Po(k — 1)AL)
+ A1 Pia(k — 1) AL + Q1) +Aga(Por(k — 1) AL + Pyo(k — 1)AL) + Qoo
(19)

and it is also required that P»; = P 5 = 0 (due to the form of the covariance matrix
obtained in (16)). Under these conditions, the requirements expressed by (18) will
only be fulfilled if the two subsystems are independent, i.e. Ay; = 0, Cy; = 0,
Rz = 0 and Q12 = 0. Only in this case, the cross-covariances Pjo(k|k — 1) and
Pj5(k) and their transpose will also be zero. a

Since the distributed filters obtain the same performance as the Kalman filter if and
only if the subsystems are independent, in general, the distributed observers will not
minimize the joint covariance. However, in practice, the performance of the cen-
tralized and distributed observers is comparable, as demonstrated in the following
sections.

Although the framework was presented for linear time-invariant Gaussian systems,
the proposed distributed filtering approach is also applicable also the system con-
sidered can be cascaded so that the subsystems are linear time-varying. Therefore,
the deterministic version of the proposed cascaded Kalman filter can be applied
even for a class of nonlinear systems, where the individual subsystems are linear
time-varying. When only two subsystems are considered, the nonlinear system has
to be bilinear, so that the states present in the bilinear terms are contained in dif-
ferent subsystems. A real-world application example to illustrate this feature, is
presented in Section 8.



5 Examples

In the previous sections, the basic form of the Kalman filter and the proposed dis-
tributed version were given. Here, three examples are presented to compare the
performance of the distributed and centralized observers, both in open-loop and
closed-loop control.

1 Distributed Kalman Filter in Open-Loop

Consider the following, randomly generated discrete-time system:

x(k) = Ax(k — 1) + Bu(k — 1) + w(k — 1)

y(k) = Cx(k) + v(k)
with
—0.2034 0 0 1
100
A=|-0.8520 —0.3182 —1.2951 B=10 C = 010
0.0218 0.5776 0.9522 0
w(k) ~ N(0,Q) v(k) ~ N(0, R)
0.6818 0.2244 0.0577
0.1679 0.0616
Q = 10.2244 0.2796 0.1039 R= (20)

0.0616 0.1204
0.0577 0.1039 0.2263

It can be easily seen that the deterministic part of the system can be cascaded. Two
cases are distinguished:

a) Approximate noise covariance: Since the cascaded filters do not take into ac-
count the cross-covariance between the subsystems, in order to ensure the exact
same conditions for both types of filters, consider for both the Kalman filter and
the cascaded filters the following approximate noise covariances:

0.6818 0 0
_ 0.1679 0
0 0.2796 0.1039 R = (21)
0 0.1204
0 0.1039 0.2263

Qi
Il

The input signal is presented in Figure 2. Using the centralized Kalman filter,

10



b)

after 300 steps, we obtain:

0.1349 0.0004 0.0015 0.8036 0.0036
P =10.0004 0.1091 —0.0438 K =10.0026 0.9060
0.0015 —0.0438 0.4804 0.0090 —0.3640

while for the cascaded subsystems:

0.1350 0 0 0.8037 0
b= 0 0.1078 —0.0461 K. = 0 0.8982
0 —0.0461 0.4646 0 —0.3921

if x! is considered to be a deterministic input (Case 1) and

0.1350 0 0 0.8037 0
P.= 0 0.1091 —0.0438 K. = 0 0.9059
0 —0.0438 0.4812 0 —0.3921

if x! is considered to be a stochastic input (Case 2).

10

1 1 1 1
0 50 100 150 200 250 300
Discrete time steps

Fig. 2. Input used for the distributed filters in open-loop.

Histograms of the residuals obtained for x3 (the state which is not measured)
with the centralized Kalman filter, and for both cases of the distributed filters are
presented in Figure 3. The statistics of the distributions of the residuals for all
states and observers are given in Table 1. It can be seen that the performance
of the cascaded observers is comparable with that obtained with the centralized

observer.

True noise covariance: The Kalman filter uses the true noise covariances (20),
while the cascaded filters neglect the cross covariance between the subsystems

11



Table 1
Statistics of the residuals when the centralized and distributed observers use the same co-

variance matrix.

State Method Mean  Standard deviation
T centralized —0.0032 0.1890
cascaded —0.0033 0.1889
T centralized —0.0105 0.1246
cascaded deterministic —0.0103 0.1262
cascaded stochastic —0.0113 0.1318
T3 centralized 0.0420 0.4022
cascaded deterministic ~ 0.0397 0.4035
cascaded stochastic 0.0420 0.4024

and consider only (21). The same input is used as in the previous case. The
centralized filter performs slightly better than the cascaded one.

The histogram of the residuals obtained for x5 is presented in Figure 4. The
statistics of the distributions of the residuals for all states and observers are given
in Table 2.

Table 2

Statistics of residuals with the cascaded Kalman filter disregarding the cross-covariance.

State Method Mean  Standard deviation

T centralized —0.0077 0.2058
cascaded —0.0076 0.2058

T9 centralized —0.0074 0.1406
deterministic —0.0106 0.1444
stochastic —0.0106 0.1522

T3 centralized —0.0070 0.3757
deterministic ~ 0.0072 0.4393
stochastic 0.0077 0.4365

12
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(a) Residuals for x3 with the centralized

Kalman filter.

[a gl WWW !

-02 0 0.2 0.4 0.6 -1 -08  -06 -04 02 0 0.2

# samples
# samples
5

(b) Residuals for x3 with the cascaded (c) Residuals for z3 with the cascaded
Kalman filter and deterministic input Kalman filter and stochastic input (case 2).
(case 1).

Fig. 3. Results when the centralized and cascaded filters use the same covariance matrix.

For this case, the final covariance and the Kalman gain obtained after 300 steps
by the centralized Kalman filter are

0.1350 0.0496 0.0098 0.8036  0.0002
P =10.0496 0.1074 —0.0359 K ={-0.0399 0.9126
0.0098 —0.0359 0.4214 0.2064 —0.4036

while those obtained by the cascaded observers are the same as in item 1.

The statistics of the residuals confirm that the cascaded filters are suboptimal. How-
ever, the difference between the residuals is minimal, even if x! obtained from the
first subsystem is considered as a deterministic input, and the computed covariance
is not the correct one.

13
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5

aulll] m,

o

-0.4 -0.2 0 0.2 0.4 0.6

%3

(a) Residuals for x3 with centralized Kalman

filter.

0 0.2 0.4 0.6 0.8 1 *W‘S 0.6 0.4 0.2 [ 0.2 0.4 0.6 0.8 Fl
(b) Residuals for x3 with cascaded (c) Residuals for xz3 with cascaded
Kalman filter and deterministic input Kalman filter and stochastic input
(Case 1). (Case 2).

Fig. 4. Results with discarded cross-covariances.

2 Distributed Kalman Filter in Closed-Loop

In this section, two examples are presented to compare the performance of the
distributed and centralized observers, in closed-loop control. For this purpose, a
state-feedback control is designed based on the system model. However, not all
the states are measured, and the control input is computed based on the estimated
states. Such a setting is depicted in Figure 5.

Example 2: Consider the following, randomly generated discrete-time system:

[
—~
Ny
~—
I

Ax(k — 1)+ Bu(k — 1) + w(k — 1)
y(k) = Cx(k) + v(k)

14
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Fig. 5. Cascaded observers in closed-loop.

11274 0 0 0.1
A=10.0639 0.9091 0.0391 B=1|0 C =
0.1381 —0.2306 1.0020
w(k) ~N(0,Q)  v(k) ~N(0,R)
0.0097 0.0026 0.0032
Q = [ 0.0026 0.0066 0.0002 R=
0.0032 0.0002 0.0128

for which a state feedback control with constant gain L = [9.3853 16.2397 3.2858|
has been computed.

100
010

0.0035 0.0078
0.0078 0.0118

The deterministic part of the system is decomposed. The cascaded filters do not
take into account the noise covariances between the subsystems. Now the control
is applied for four different cases:

(1) the states are known, and the controller is applied directly;

(2) the first two states are measured, and the control input is computed based on
the estimate given by a centralized Kalman filter;

(3) the first two states are measured, and the control input is computed based on
the estimate given by a cascaded Kalman-type filter, with the second subsys-
tem considering the estimates of the first subsystem as stochastic inputs;

(4) the first two states are measured, and the control is computed based on the
estimate given by a cascaded Kalman-type filter, with the second subsystem
considering the estimates of the first subsystem as deterministic inputs.

The results obtained can be seen in Figure 6. The estimation error for the first two
states, which are measured, is very small. However, for the third state the estimate
of the centralized observers converges more slowly than the estimate of the cas-
caded one.

Example 3: Consider the following, randomly generated discrete-time system:

x(k) = Ax(k — 1) + Bu(k — 1) + w(k — 1)
y(k) = Ox(k) + v(k)

15
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(c) 23 @) u

Fig. 6. Example 2 state estimates in closed-loop with different observers (state feedback

without observer, Kalman, stochastic cascaded, deterministic cascaded).

1.1137 0 0 0.1 00
A=10.0087 1.0829 0.0117 B=10 C = 010
0.0170 —0.0009 1.0909 0

for which a state feedback control with constant gain L = [5.1743 298.9764 —
106.2475] has been computed. The state and measurement noises have the same
covariance as in the previous example. Note that the closed-loop system with the
centralized Kalman filter becomes unstable.

The estimates of the states using the distributed observers can be seen in Figure
7. While the estimate is noisy, and this noise is also reflected in the control law,
the system does not become unstable. A possible explanation of this result is the
following: though the Kalman filter is optimal, its convergence is not guaranteed,
in particular when it is used in closed loop with a linear state feedback controller.
This is why the systems may become unstable.

Based on theoretical considerations, the situation when the centralized system is
stable and the distributed one is unstable is also possible. However, simulations
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indicate that in most cases, if the cascaded system becomes unstable, then also
the centralized does. To quantify the occurrences, batches of simulations were run,
using randomly generated system matrices. Two cases were studied:

(1) the Kalman filter uses the full covariance matrix: the centralized filter failed
in 2327 cases out of 3000 cases, while the cascaded only in 69. Both filters
failed simultaneously in 69 cases.

(2) exactly the same covariance matrices are used: the failure rate for the central-
ized Kalman filter is 882/3000, versus 78/3000 for the cascaded filters, and
both fail simultaneously in 77 cases, which means than in only one case from
3000 the centralized Kalman filter is stable while the cascaded is not.

The system matrices were independently generated in each case. It can be seen that
the centralized Kalman filter becomes unstable more often than the cascaded filter.

A possible explanation is that the error for the states in the two subsystems is not
the same for the centralized and cascaded case. For instance, a large overshoot of
the error for a state from the second subsystem does not influence the states of the
first subsystem in the cascaded setting. However, this can also be a shortcoming
in cases, when the second subsystem could be used to dampen the error of the
first subsystem. This is why, in one trial the centralized system is stable while the
cascaded is not.

6 Cascaded Kalman Filtering for a Water Treatment Plant

This example demonstrates the application of the proposed Kalman filter approach
to a linear large-scale system. Since the process consists of several treatment stages,
separate observer design is convenient in this application.

Drinking water is usually collected from a natural water source, such as a river
or a lake and undergoes several treatment stages to remove chemicals and organic
materials.

A simple model of a treatment plant describes the effect of different chemical
dosages and reactions through the so-called M and P numbers (concentrations),
related to the pH. These numbers need to be estimated through 12 treatment steps:
coagulation, mixing, HCI dosage, rapid sand filtration, transportation, ozonization,
second HCI dosage, activated carbon filtration, NaOH dosage, slow sand filtration
and storage before distribution. In each treatment step, the dynamic model can be
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Fig. 7. Example 3 state estimates in closed-loop with different observers (state feedback
without observer, stochastic cascaded, deterministic cascaded). The system using the cen-

tralized Kalman filter is unstable in this case, and the results are not shown.

expressed as:
- F F
M = V(MPYCV - M) + VfM(Tin) - RM(M,P,’I“,T)

. F F
P = V(Pprev - P) + VfP(TiIJ - RP<M7P7T7T)

. F

7= V(Tin —r)—R.(M,P,rT)
where F' is the flow, V' is the water volume in the corresponding process step,
r is the reactant, R);, Rp and R, are the reaction kinetics in the treatment step,
dependent of the temperature 7, f3; and fp are the instantaneous changes in M and
P due to the dosage of chemicals and M., and P, are the M and P numbers

from the previous treatment step.

In this paper, we consider f; and fp are linear in r;,, and Ry;, Rp and R, as known
linear combinations of M, P and r. The parameters of these functions also change
in each treatment step, depending on the reaction type. The measurements are linear
combinations of M, P and r, different for each treatment step. For estimation pur-
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poses, the model was first discretized with the Euler method, using a sample period
of T" = 0.01 s, to preserve the accuracy of the simulation. The model was simulated
using randomly generated reactant data, and both the states and the measurements
were corrupted by zero-mean, Gaussian noises. We compare the estimates of the
centralized Kalman filter and a cascaded deterministic Kalman filter (case 1). The
total number of states is 36 (3 in each stage), and in each stage a different linear
combination of the states is measured.

The histogram of the residuals for the 12th step for the state M and two types of
filters are presented in Figure 8, a section of the true and estimated trajectories
are given in Figure 9, while the means and standard deviations of all the states,
computed for 1000 time steps, are given in Table 3. Based on the data presented,
one can easily see, that though the standard deviations obtained by the cascaded
filter are indeed slightly larger than those obtained by the centralized Kalman filter,
the difference is minimal.
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(a) M with centralized KF (b) M with cascaded KF

Fig. 8. Histograms of the residuals of M using centralized and cascaded Kalman filters.
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(a) Trajectory of M with centralized KF  (b) Trajectory of M with cascaded KF

Fig. 9. Section of the trajectory of M, estimated by centralized and cascaded Kalman filters.
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Table 3

Statistics of residuals of the states.

State Mean (centralized) Std (centralized) Mean (distributed) Std (distributed)

M -0.0047 0.0482 -0.0060 0.0483
P 0.0056 0.0506 0.0065 0.0509
T -0.0041 0.0407 -0.0051 0.0408

7 Cascaded Kalman Filtering for Estimating Overflow Losses in a Hopper

Dredger

Prior to stating the estimation problem, the principle of the dredging process is
briefly explained. The dredger is a large ship using a drag head to excavate soil
from the sea bottom. A mixture of soil and water is transported through a pipe to
the hopper, which is a large storage tank inside the ship (see Figure 10).

Overflow pipe
o0 o oo A X X
I
\ Hopper

Pump

Drag head

Fig. 10. Schematic drawing of a hopper dredger.

The soil gradually settles at the bottom of the hopper, while excessive water (in
fact low-density mixture) is discharged through an overflow pipe whose level can
be adjusted (see Figure 11). As the height of the settled sand bed rises, so does the
concentration of the overflow mixture and eventually the losses become so high
that it is no longer economical to continue dredging. The ship then sails back to
deliver the load. After the sand is discharged, the ship sails again to the dredging
location and the whole cycle repeats.

The efficiency of the sedimentation process heavily depends on the type of soil
and is influenced by the flow-rate and density of the incoming mixture and the
manner the overflow pipe is controlled. An important factor in the optimization of

the dredging performance is the minimization of the overflow losses.

Using nonlinear volume and mass balance equations, the losses can be estimated.
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Fig. 11. The sedimentation process in the hopper.

The discrete volume and mass balance equations can be written as :

Vik = Vik—1 + T(Qig—1 — Qok—1) (22)
My = Mej—1 + T(Qik—1pik—1 — Qok—1Pok—1) (23)

where V; and m;, are the total volume and mass of the mixture in the tank, (); is the
inflow rate, p; is the density of the incoming mixture, (), and p, are the flow-rate
and the density of overflowing mixture and 7" = 5s is the sampling period. To
estimate (), and p,, the state equations are augmented with a random-walk model
for ), and p,:

Qo = Qok—1 + €Qr-1 (24)
Pok = Pojk—1 + €p k-1 (25)

The augmented state, input and output vectors are:

Vi

my Qi Vi
Tr = y u = s y —=

QO Pi my

Po

The inputs (); and p; and the outputs V; and m, are measured, (), and p, need to
be estimated. The corrupting noises are considered zero-mean Gaussians (€, ~
N (0, v,;)), and their standard deviations are determined experimentally.

The system (22)—(25) is nonlinear, therefore a centralized Kalman filter cannot be
used, and for an efficient estimation of (), and p,, a particle filter (Doucet et al.,
2000; Chen et al., 2005) is needed. However, the model can be decomposed into
two subsystems, and observers may be designed separately for the subsystems. The
first observer uses the model

Vik = Vig—1 + T(Qig—1 — Qop—1) + €vik—1

26
Qo = Qojk—1 + €Q k-1 (26)
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where V; is the measured output. The second observer uses the model

My = Meg—1 + T(Qik—1Pik—1 — Qok—1Pok—1) T Em k-1

(27)
Pok = Pok—1 T €pk—1

where m, is the measured output and (), was obtained by the first observer. The
individual subsystems are linear time-varying and assumed to be corrupted by
Gaussian noise, and therefore, cascaded Kalman filters can be used.

To test the observer, the data were generated using the first-principle sedimentation
model described by Babuska et al. (2006), i.e., not the model used by the cascaded
Kalman filter. The results are presented in Figure 12. As can be seen, the cascaded
Kalman filter obtains a good estimate of both (), and p,, even better than the results
obtained by the particle filter, which requires extensive tuning and a considerable
computational power. However, when the data is measured, and the noise is no
longer Gaussian, a particle filter is beneficial.
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Fig. 12. Estimates of the overflow losses with different observers (particle filter, distributed

Kalman).

8 Conclusions

We have proposed a distributed setting for state estimation. In many real-life appli-
cations, a complex process model can be decomposed into simpler subsystems, and
observers can be designed for these individual subsystems. This partitioning of a
process and observer leads to increased modularity and reduced complexity of the
estimation problem, with reduced computational costs and easier tuning.

For cascaded systems, distributed, Kalman-like filters can be designed. The ob-
servers are optimal for the individual subsystems, and the error system will con-
verge to a zero-mean Gaussian. However, the overall filter will not necessarily
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be optimal. The theoretical results show that the distributed Kalman filters can be
jointly optimal, if and only if the subsystems are independent. However, based on
several simulation examples, we conclude that the performance of the cascaded
Kalman filter is comparable to that of the centralized Kalman filter. Moreover, the
simulations show that for certain cases, especially in closed-loop, the cascaded ob-
servers perform better than the Kalman filter. Two application examples were pre-
sented to illustrate the distributed Kalman filters in a high dimensional and even
nonlinear system. The results were comparable with those obtained by the central-
ized observer, while obtaining increased modularity.

In our future research, we will investigate the conditions under which such a de-
composition of the process and the estimation problem is possible for other types
of observers while maintaining the performance (convergence, rate of convergence)
of the centralized one.
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