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Abstract—In this paper, we present a parametric hardware
accelerator for Takagi-Sugeno fuzzy controllers. The architecture
consists of an application specific weighting function computation
block, generic control output computation unit, and a pro-
grammable register file based interface. The proposed hardware
design methodology is applied to a two degree of freedom robot
arm controller. FPGA implementation results indicate that the
hardware TS fuzzy controller supports throughputs up to 1.5
Msamples/sec, with maximum working frequencies of around
150 MHz.

Index Terms—Fuzzy control, robot arm control, FPGA accel-
eration

I. INTRODUCTION

Takagi-Sugeno (TS) fuzzy models can be used to tackle
non-linear systems, such as a wide range of mechanical sys-
tems – robot arm, drones, etc – by employing a convex com-
bination of local linear models [1], [2]. Thus, model-based
controllers that can guarantee stability and performances such
as robustness to model uncertainty and disturbance attenuation
can be developed. The stability and performance requirements
of TS fuzzy controllers can be included in the controller design
process. This is an important advantage with respect to other
non-linear model based controllers, such as fuzzy PID or gain
scheduling approaches. However, the resulting controllers may
suffer from high complexity.

One way to address this complexity is to employ hard-
ware acceleration, either using ASICs or FPGAs. The main
gains using dedicated circuitry are represented by increased
throughputs – or sampling rates –, as well as improved
energy/performance trade-offs. In this paper, we propose a
configurable TS fuzzy controller architecture that can be
customized with minimum redesign effort for: (i) different
applications that require non-linear modelling by re-designing
the membership function generation block, (ii) different val-
ues for physical parameters of the modelled non-linear system,
by employing a programmable modified register file for the
storage of different application parameters, and (iii) different
cost-throughput constraints by means of architecture parame-
ters. We provide numerical results of the proposed architecture
for a two degree-of-freedom (2-DOF) robot arm controller;
for this type of controller, we provide the implementation

results on a Virtex-7 FPGA device for two cost-throughput
configurations.

This paper is organized as follows: Section II presents the
theoretical aspects associated to the TS fuzzy controllers, as
well as the controller used for 2-DOF robot arm; Section III is
dedicated to the proposed configurable hardware architecture;
related work is presented in Section IV; concluding remarks
are given in Section V.

II. TAKAGI-SUGENO FUZZY CONTROLLERS

A. Takagi-Sugeno Fuzzy Model

A domain in which fuzzy systems have been extensively
utilized and brought significant improvements is nonlinear
control [2]. In this case, the usual “fuzzy”, linguistic interpre-
tation is rarely employed, but the name fuzzy is used to denote
the combination of functions. Although the underlying rules
still exist, the classical fuzzification/ inference/ defuzzification
trio is generally described directly by the corresponding math-
ematical formulas. Next to model-free [3], data-driven [4], or
expert-defined (neuro-)fuzzy controllers, model-based control
design methods that ensure stability and performance measures
have also been developed.
In the research described hereafter, we use dynamic Takagi-
Sugeno (TS) fuzzy models [1] for the controller design of
discrete-time nonlinear systems of the form:

x(k + 1) = f(x(k), u(k))
y(k) = g(x(k), u(k))

(1)

where f denotes the state transition function, describing the
evolution of the states over time, g is the measurement
function, relating the measurements to the states, x is the
vector of the state variables, u is the vector of the input
or control variables, and y denotes the measurement vector.
System (1) may also be affected by disturbances.

To design a controller in the TS framework, we first
represent system (1) by a TS fuzzy model of the form:

x(k + 1) =
r∑

i=1

wi(z(k))(Aix(k) + Biu(k))

y(k) =
r∑

i=1

wi(z(k))Cix(k)

(2)



where r is the number of local models, Ai, Bi, and Ci

are the matrices of the ith local model, z is the vector of
the scheduling variables, which may depend on the states,
inputs, measurements, or other exogenous variables, and wi

are normalized membership functions, i.e., wi(z) ≥ 0 and∑r
i=1 wi(z) = 1, ∀z.
The TS model is a universal approximator [5], and many

nonlinear systems can be exactly represented in a compact set
of state variables as TS systems [6]. Such a model presents
several advantages. System (2) is the convex combination of
local linear models, which facilitates stability analysis and
controller and observer design. In addition, many stability
and design conditions for TS systems can be formulated as
linear matrix inequalities (LMIs) [7], [8], for which efficient
algorithms exist.

TS fuzzy models may also appear in descriptor form [9],
in particular when considering mechanical systems. In the
descriptor form, the system also contains non-linear terms on
the left-hand side and the corresponding TS model is of the
form:

re∑
i=1

we
i (z(k))Eix(k) =

r∑
i=1

wi(z(k))(Aix(k) + Biu(k))

y(k) =
r∑

i=1

wi(z(k))Cix(k)

(3)
i.e., the left-hand side will also be a convex combination

of local models, possibly depending on membership functions
different from those on the right-hand side. This separation of
the nonlinearities leads to a smaller number of local models
[10] and a reduced number of LMI constraints [11], [12], i.e.,
reduced complexity compared to a classic TS model.

Thus, a descriptor model is characterized by the right-hand
side non-linearities nlj(·) ∈ [nlj , nlj ], and the left-hand side
non-linearities nlej(·) ∈ [nlej , nl

e

j ]. An exact descriptor TS
representation is constructed by computing first the weighting
functions:

h0
j (·) =

nlj − nlj(·)
nlj − nlj

h1
j (·) = 1− h0

j (·)

v0
j (·) =

nl
e

j − nlej(·)
nl

e

j − nlej
v1

j (·) = 1− v0
j (·)

(4)

Based on these weighting functions, the membership functions
wi and we

i , are computed as follows:

wi(z) =
p∏

j=1

h
ij

j (zj) we
i (z) =

pe∏
j=1

v
ij

j (zj) (5)

The computation of the weighting functions h0
j (·) and

v0
j (·) is dependent on the physical properties of the modelled

process. Furthermore, their value changes each sample, being
dependent on the current measured state of the process.

B. Controller Design

Next, we consider controller design for system (3). In
order to ensure that the controller stabilizes the closed-loop

system, a classic controller structure is the Parallel Distributed
Compensator (PDC), which consists of linear state feedbacks
gains blended together using the the nonlinear membership
functions wi(z), we

i (z), and has the form:

u(k) = −
r∑

i=1

wi(z(k))
re∑

i=1

we
i (z(k))Kijx(k) (6)

The controller gains Kij are computed based on Lyapunov
synthesis and by solving a set of LMIs [7]. These gains
are constant and they are usually computed offline. In what
follows, we denote:

u(k) = −Khvx(k)

Khv =
r∑

i=1

wi(z(k))
re∑

i=1

we
i (z(k))Kij

(7)

Therefore, computing the actual control input u(k) to be
applied to the system requires the following steps:

• Compute the weighting functions h0
j (·) and v0

j (·), corre-
sponding to the modelled process

• Compute the membership functions wi and we
i , as

products between weighting functions h0
j (·), h1

j (·) /
v0

j (·), v0
j (·), as described in (5)

• Compute the final gain matrix Khv , and the control output
u(k), using (7)

Note that the first step is application dependent, while the
computation of membership functions, final gain matrix and
the control output is the same for all types of TS fuzzy
controllers.

C. Numeric Example - 2-DOF Robot Arm Control

In this subsection, we exemplify how a TS representation
is derived and, based on this representation, a TS controller
is computed for a 2 degree-of-freedom (2-DOF) robot arm
controller. The state vector of the robot arm is given by angles
and the angular velocities of the two joints – x = (q, q̇). Of
these, the two angles are measured. The control inputs are the
motor torques of the two joints - u = τ . The reference to be
followed is given by a pair of desired angles for the two joints.
The dynamic model associated to the 2-DOF robot arm is:

M(q)q̈ = −D(q, q̇)q̇ + Iτ (8)

where M represents the mass matrix and D contains the Cori-
olis, centrifugal and friction forces. The physical parameters
are given in Table I. This model can also be written as

E(x)ẋ = A(x)x + Bu (9)

where

E(x) =
[
I 0
0 M(x)

]
A(x) =

[
0 I
0 −D(x)

]
B =

[
0
I

]
(10)



The mass matrix and the Coriolis, centrifugal and friction
matrix are expressed as:

M(x) =

[
m1(x) 0

0 M2L2
2

4 + I2y

]

D(x) =
[
d1(x) 0
d2(x) b2

] (11)

with
m1(x) = I1x + I2z + cos(x2)

2(I2x − I2z)+

+ M2(L1) +
L2 cos(x2)

2
)2

d1(x) = −x4(sin(2x2)(
M2L

2
2

4
+ I2x − I2z)+

+ L1L2M2 sin(x2)) + b1

d2(x) = x3(
sin(2x2)

2
(I2x − I2z +

L2

4
)+

+
L2M2L1 sin(x2)

2
)

(12)

The mass matrix presents one non-linearity, while the D(x)
matrix presents two non-linearities. Therefore, the TS fuzzy
model associated to this process has three weighting functions
v0(x), h0

1(x) and h0
2(x), with the following expressions:

h1 = −x4(sin(2x2)(M2
L4

2

4
+ I2x − I2z) + L1L2M2 sin(x2))

h2 = x3
sin(2x2)

2
(I2x − I2z + L2

2
M2

4
) + L2M2L1

sin(x2)

2

v = I1x + I2z + M1
L2

1

4
+ cos2(x2)(I2x − I2z)+

+ M2(L1 + L2
cos(x2)

2
)2

(13)
A set-point tracking controller that is able to follow some

desired reference angles has been designed using the approach
described in [13].

This controller has a form similar to (7):

u = −Khv[x(k)T , (xI(k))T ]T (14)

where x denotes the states of the physical system (angles
and angular velocities), xI(k) is a vector of auxiliary vari-
ables (“controller states”) used in order to ensure that the
tracking is realized without steady-state errors and Khv =∑r

i=1 wi(z(k))
∑re

i=1 we
i (z(k))Kij is a convex combination

of the controller gain matrices. The controller states are
updated each sample k as:

xI(k + 1) = xI(k) + yref − Cx (15)

where yref denotes the reference to be followed and the
matrix C is the output (measurement) matrix, i.e., C =(

1 0 0 0
0 1 0 0

)
.

The membership functions w and we are computed based
on the weighting functions h1, h2, and v as follows: we

1 = v,
we

2 = 1− v, w1 = h1h2, w2 = h1(1− h2), w3 = (1− h1)h2,

TABLE I
2-DOF ROBOT ARM PHYSICAL PARAMETERS

L1[m] length first-second joint
L2[m] length second joint end-effector
M1[kg] mass first joint
M2[kg] mass second joint
g[m/s2] gravitational acceleration

I1x[kgm2] moment of inertia
I1y [kgm2] moment of inertia
I1z [kgm2] moment of inertia
I2x[kgm2] moment of inertia
I2y [kgm2] moment of inertia
I2z [kgm2] moment of inertia

b1[−] friction coefficient, first joint
b2[−] friction coefficient, second joint

w4 = (1 − h1)(1 − h2). For an easier implementation, the
weighting functions are rewritten as:

h1 = c1 + x4(k) sin(2x2(k))c2 + x4(k) sin(x2(k))c3+

+ c4 cos(x2(k) + c5 cos(x2(k)))2

h2 = c6 + c7x
r
3(k) sin(2x2(k)) + c8x3(k) sin(xr

2(k))

v = c9 + c10 cos(x2(k)) + c11 cos(x2(k))2
(16)

The parameters ci are constant for a specific set of physical
parameters, and can be computed offline, see Table II.

TABLE II
WEIGHTING FUNCTION PARAMETERS

Notation Formula

c1
max(h1)−(I1x+I2z+M1

L2
1
4 −M2L2

1)

max(h1)−min(h1)

c2
Ts(M2

L2
2
4 +I2x−I2z)

max(h1)−min(h1)

c3
TsL1L2M2

max(h1)−min(h1)

c4
−L1L2M2

max(h1)−min(h1)

c5
−M2

L2
2
4 +I2x−I2z

max(h1)−min(h1)

c6
max(w2,1)

max(h2)−min(h2)

c7
−Ts(I2x−I2z+L2

2
M2
4

2(max(h2)−min(h2))

c8
−TsL1L2M2

2(max(h2)−min(h2))

c9
(max(v1)−(I1x+I2z+L2

1
M1
4 +L2

1M2))

max(v1)−min(v1)

c10
−L1L2M2

max(v1)−min(v1)

c11
−(I2x−I2z+M2

L2
2
4 )

max(v1)−min(v1)

In order to obtain increased throughput, as well as efficient
FPGA resource consumption, a fixed point implementation for
the controller has been considered. An analysis of the required
precision, based on Matlab simulations, suggests that a 24-
bit precision implementation, with 16 bits corresponding to
the fractional part, yields negligible controller performance
loss with respect to the floating point version. For computing
the trigonometric functions 2nd and 3rd order Taylor series
approximations proved sufficient.



III. CONFIGURABLE HARDWARE TAKAGI-SUGENO FUZZY
CONTROLLER

A. Generic Architecture

Our main goal is to develop a generic and parametrizable
architecture for the TS fuzzy controllers that can be tuned and
programmed for a specific control application with minimum
redesign effort. The proposed hardware controller consists of
the following modules - Fig. 1 :

1) Application specific fuzzy scalar computation block
- this module computes the weighting functions hi and
vi. It is application dependent, and has to be redesigned
for each control application.

2) Generic parameterizable control block - this module
can be customized based on the following parameters:
(i) number of control outputs nu - size of the u vector,
(ii) number of non-linearities in the controlled process
nnl, and (iii) parallelism degree in the scalar-matrix
and vector-matrix multiplications pm. Modifying the
control application, as well as the throughput/cost trade-
offs requires the regeneration of this module with the
corresponding set of parameters. It consists of:
• Fuzzy scalar multiplication module - computes

the multiplications between the weighting functions
required in the computation of the final gain ma-
trix Khv; the inputs of this block are the fuzzy
scalars hi and vi, while the outputs are the products∏

i 6=j;k 6=l hi(1−hj)vk(1−vl); the 2nnl products are
stored in a register file; the 2nnl multiplications are
performed in a serial manner;

• Gain matrix computation block - computes the
final gain matrix Khv based on (7) using the 2nl

fuzzy scalar products and the 2nnl Kij matrices; pm

multiply-add fused units are employed, computing
in parallel pm elements of Khv;

• Output computation block - performs the multipli-
cation between the Khv matrix and the x, xI vector,
according to (14); it outputs the control vector u;
this block is made of pm multiply-add fused units

• Difference computation block - computes the next
internal state of the controller, see (15), based on
the process state x, current controller state xI and
the input reference yref ;

3) Programmable parameter modified register file -
this module consists of register files used to store the
parameters ci, the gain matrices Kij and the matrix
C. These register files can be accessed via a slave bus
interface (e.g. AMBA AXI interface), and therefore can
be software programmed. It has two access ports: (i) a
1-word port used to access the modified register file via
the slave interface, and (ii) a multiple-word port used
to access the modified register file from the processing
units of hardware controller (Fig. 2); the number of
words corresponding to the processing access port is
parametrizable;

The parameters of the hardware controller are:

Fig. 1. Generic TS fuzzy controller architecture

1) the data quantisation, and the size of the fractional part
expressed as the number of bits;

2) the number of non-linearities in the model of the con-
trol process nnl; this number is equal to the number
of fuzzy scalars hi and vi; the number of products∏

i 6=j;k 6=l hi(1 − hj)vk(1 − vl), as well as the number
of gain matrices Kij is equal to 2nnl ;

3) the number of control outputs nu;
4) the parallelism degree for scalar-matrix and vector-

matrix multiplication pm - the number of elements in the
result matrix/vector that are computed simultaneously;
this parameter is limited by the number of control
outputs nu (the number of elements in the final output
vector u);

Fig. 2. Modified register file

The proposed architecture provides the following levels of
flexibility:

1) For a specific application, the modification of different
physical parameters within the controlled process (e.g.
for the 2-DOF robot arm, the variation of masses,
lengths, friction coefficients of joints in the robot arm



or moments of inertia) leads to the modification of
controller parameters ci and controller gain matrices
Kij ; these changes will require the re-programming via
the slave bus interface of the modified register files used
to store these values;

2) In order to change the control application, the following
steps have to be carried out:
• Redesign of the application specific fuzzy scalar

computation block that computes the fuzzy scalars
hi and vi, according to the control application;

• Re-generation of the gain matrix computation block,
with the modification of the following two parame-
ters: (i) the number of control outputs, and (ii) the
number of non-linearities in the controlled process;

3) In order to modify the throughput characteristics of the
controller architecture, the re-generation of the gain ma-
trix computation block and the modified register file, by
appropriately changing the pm parameter used in scalar-
matrix and vector-matrix multiplications is needed; an
increase in the parallelism degree in the scalar-matrix
and vector-matrix multiplications leads to increased in
performance and larger implementation cost;

B. Two degree of freedom robot arm controller case study

The 2-DOF robot arm controller accelerator presents the
generic architecture described in the previous subsection,
and depicted in Fig. 1, with the following parameters for
the generic parametrizable control block: number of non-
linearities nnl = 3, and the number of control outputs nu = 2.
Since nu = 2, the values for the parallelism degree of the
scalar-matrix and the vector-matrix pm parameter are either 1
- fully serial -, or 2.

The fuzzy scalar computation block computes the weighting
functions h1, h2, and v, according to (16). This module
comprises of two parts: (i) the computation of the trigono-
metric functions cos(x), sin(x), and sin(2x), and (ii) the
computation of the fuzzy scalars using a multiply-add based
pipeline. The three trigonometric function are computed in
parallel using the Taylor series based approximations.The
three fuzzy scalars are computed in a serial manner, while
the multiply-add operations corresponding to each scalar are
performed in parallel (Fig. 3). Therefore, a maximum of 5 ci

parameters are required to be read simultaneously from the
modified register file. Thus, the modified register file storing
them has a 5-word port associated to the processing unit.

C. Implementation Results

We have implemented the 2-DOF controller design for
Xilinx Virtex-7 VX485T-2 FPGA device, using the Xilinx
Vivado 2017.1 tool. The data quantisation used is 24 bit length,
with 16 bits for the fractional part. The design is pipelined,
such that, the maximum number of multiplier or multiply-add
units per pipeline stage is one. Results are depicted in Table
III for pm = 1 and pm = 2. Sampling rate is estimated as
the number of samples that can be processed by the controller
per second. It is dependent on the maximum frequency of the

TABLE III
IMPLEMENTATION RESULTS FOR 2-DOF ROBOT ARM CONTROLLER

Matrix Slices DSP Frequency Sampling rate
Parallelism Blocks [Ksamples/sec]

1 1948 34 142 MHz 807
2 1948 38 150 MHz 1515

controller, and the number of clock cycles required to process
a set of input samples.

Table III indicates that the main difference in terms of cost
between the two configurations is represented in the number
of DSP blocks, while the usage of logic and register based
memory resources is almost the same. The difference in cost
between the two configuration is of only 4 DSP blocks due to
the high cost in terms of DSPs of the fuzzy scalar computation
block - 26 blocks. The increase in parallelism for matrix
computations - a cost increase of 11% in the amount of DSP
blocks - leads to almost doubling in the controller sampling
rate.

IV. RELATED WORK

Hardware acceleration for fuzzy controllers has been de-
signed for a wide range of application that require nonlinear
modelling. These include the type-1 fuzzy controllers in [14],
[15], as well as the type-2 fuzzy and neuro-fuzzy controllers in
[4], [16], [17] that can be used when a model is not available.
A comparison between the proposed fuzzy controller and these
approaches is difficult to perform due to:

• The different type of implemented controllers - although
the proposed implementation can be categorized as a
type-1 fuzzy controller, it does not use linguistic fuzzy
rules. The latter relies on comparators, such as the min-
max modules in [14]–[17]; in the proposed controller,
the fuzzy rules are embedded in the computation of the
weighting functions h and v; furthermore, the application
field for the controllers presented in [14]–[17] is different;

• Different FPGA devices used for the evaluation - the
design in [14] is implemented on a Xilinx Spartan-3
device, the one in [15] is implemented on a Xilinx
Virtex-5, the one in [16] is implemented on a Xilinx
Virtex II devices, the controller proposed in [3], [4] are
implemented for ASIC, while the proposed approach is
implemented on a Xilinx Virtex-7;

A review of the existing FPGA and hardware implementations
for fuzzy controllers indicates that the proposed approach
represents the first accelerator design of a TS fuzzy controller
without an inference memory storing the linguistic rules.

V. CONCLUSIONS

In this paper, we presented a configurable hardware archi-
tecture for a specific class of TS fuzzy controllers, having the
fuzzy rules embedded in the multiply-add based computation
of specific weighting functions. To the best of our knowledge
this is the first attempt to implement in hardware such a TS
fuzzy controller with guaranteed stability and performance
measures.



Fig. 3. Computation of weighting parameters h1, h2, v - the parameters ci are read from the C PAR MRF as follows:
{c1, c2, c3, c4, c5}, {c6, c7, c8, 0, 0}, {c9, c10, c11, 0, 0}

The main goal is to obtain a high degree of flexibility in
the controller architecture that allows its tuning with minimum
redesign effort for different control applications, different
physical parameters specific to a controlled process, as well as
different cost-throughput trade-offs. The proposed accelerator
uses a single module, mainly the computation block of the
application dependent weighting functions hi and vi, that
needs to be redesigned for different control applications.

We use the proposed TS fuzzy controller architecture design
methodology for the implementation of a 2-DOF robot arm
controller. For this use-case, we have provided two configu-
rations with different parallelism degree in the scalar-matrix
and vector-matrix multiplications. FPGA implementation re-
sults indicate that by increasing this degree we have roughly
doubled the controller throughput, at the cost of around 11%
increase in the amount of DSP blocks used.
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