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Controller design for TS models using
delayed non-quadratic Lyapunov functions

Zs. Lendek, Member, IEEE, T. M. Guerra, Member, IEEE, and J. Lauber,

Abstract—In the last few years, non-quadratic Lyapunov func-
tions have been more and more frequently used in the analysis
and controller design for Takagi-Sugeno fuzzy models. In this
paper we developed relaxed conditions for controller design using
nonquadratic Lyapunov functions and delayed controllers and
give a general framework for the use of such Lyapunov functions.
The two controller design methods developed in this framework
outperform and generalize current state-of-the-art methods. The
proposed methods are extended to robust and H∞ control and
α-sample variation.

Index Terms—discrete-time Takagi-Sugeno models, controller
design, non-quadratic Lyapunov functions, LMI.

I. INTRODUCTION

Takagi-Sugeno (TS) fuzzy systems [1] are nonlinear, convex
combinations of local linear models, and have the property that
they are able to exactly represent a large class of nonlinear
systems [2].

In order to analyze the stability or to design controllers
and observers for a TS fuzzy model, the direct Lyapunov
approach has been used. Stability conditions have been derived
using quadratic Lyapunov functions [3], [4], [5], piecewise
continuous Lyapunov functions [6], [7], and more recently,
to reduce the conservativeness of the conditions, nonquadratic
Lyapunov functions [8], [9], [10]. Other works try to introduce
some properties of the membership function [11], or try to
reduce the complexity of the LMI conditions. The stability or
design conditions are generally derived in the form of linear
matrix inequalities (LMIs).

Although also used for continuous-time TS models [12],
[13], [14], [10], non-quadratic Lyapunov functions have shown
a real improvement of the design conditions in the discrete-
time case [8], [15], [16], [17]. It has been proven that
the solutions obtained by non-quadratic Lyapunov functions
include and extend the set of solutions obtained using the
quadratic framework. A different type of improvement in the
discrete case has been developed in [9], conditions being
obtained by replacing the classical one sample variation of
the Lyapunov function by its variation over several samples
(α-sample variation).

More recently, by using Polya’s theorem [18], [19] asymp-
totically necessary and sufficient (ANS) LMI conditions have
been obtained for stability and stabilization in the sense of
a chosen quadratic or nonquadratic Lyapunov function and
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control law. For linear-time invariant systems [20] investi-
gated stability based on Polya’s theorem and homogeneously
polynomially parameter-dependent Lyapunov functions and
ANS conditions in the sense of the membership function-
dependent Lyapunov matrix have been obtained. [21] extended
the results of [20] to TS models and homogeneous polynomi-
ally parameter-dependent non-parallel distributed compensa-
tion law, thus giving ANS stability conditions for both mem-
bership function-dependent model and membership function-
dependent Lyapunov matrix. By increasing the complexity of
the homogeneously polynomially parameter-dependent Lya-
punov functions and the complexity of the homogeneous
polynomially parameter dependent control laws, in theory any
sufficiently smooth Lyapunov function and control law can
be approximated. Thus [21] represents all Lyapunov functions
and all control laws that are continuous in the membership
functions. This issue deservers further study, as the conditions
in many cases cannot be relaxed. Being ANS may not give
a solution, due to computational intractability. The number
of LMIs that have to be solved increase quickly, leading to
numerical intractability [22]. Although slack matrices can be
introduced to relax the conditions, these also increase the
computational burden. Constructing a family of Lyapunov
functions that covers the whole set of continuous Lyapunov
functions can be done, but deciding which one is the most
likely to be used to obtain good results is still an open problem.
Moreover, a common assumption in all the results enumerated
above is that the scheduling variables may not depend on the
control input, in order to avoid solving implicit equations.
Although this assumption is highly impractical as it means
that the system has to be input-affine, it is necessary for the
results in the literature.

With the considerations above, in this paper, we propose a
general framework for using delayed non-quadratic Lyapunov
functions for controller design. For discrete time TS models, in
the nonquadratic framework, delayed controllers and observers
have been proposed in [23]. The observer design method has
been generalized further on in [24], but the controller design
had the shortcoming of an increased number of LMIs. Thanks
to the use of delayed Lyapunov functions and control laws,
new possibilities for relaxing the derived conditions appear.
While it is not our goal and we do not derive ANS conditions
in this paper, using delayed Lyapunov functions and control
laws, we show that the use of delay can lead to significant
improvements. Finding a good structure of the control law
reduces in a very important manner the conservatism of the
results. The key point is finding a suitable solution that is
compatible with actual solvers. Moreover, by using a delayed
controller, the assumption that the scheduling variables must
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not depend on the current control input is no longer necessary,
as solving the implicit equation is avoided. Thus, we present
new possibilities for controller design based on the past states
for a wider class of nonlinear systems. Furthermore, in the
proposed framework, delayed systems can be easily handled.
We also extend the results for robust control, H∞ control and
to α-sample variation, similar to [9].

The structure of the paper is as follows. Section II presents
the notations used in this paper and the general form of the
TS models, and motivates our work through a simple example.
Section III develops the proposed conditions for controller
design. The design methods are extended to robust control,
α-sample variation and H∞ control in Section IV. Section V
concludes the paper.

II. PRELIMINARIES

A. TS models

The discrete-time TS model considered in this paper for
controller design is of the form

x(k + 1) = Azx(k) + Bzu(k) (1)

where Az denotes the convex sum Az =
∑r

i=1 hi(z(k))Ai, Ai

and Bi, i = 1, 2, . . . , r are the local matrices, r denotes the
number of rules, k is the sample, x ∈ Rnx is the state vector,
u ∈ Rnu is the control input, z ∈ Rnz is the scheduling
vector. It is assumed that the scheduling variables z(k) are
available at the sample k.

In what follows, we will make use of the following results:

Lemma 1. [25] Consider a vector x ∈ Rnx and two matrices
Q = QT ∈ Rnx×nx and R ∈ Rm×nx such that rank(R) < nx.
The two following expressions are equivalent:

1) xT Qx < 0, x ∈ {x ∈ Rnx , x 6= 0, Rx = 0}
2) ∃M ∈ Rm×nx such that Q + MR + RT MT < 0

Observer and controller design for TS models often lead to
double-sum negativity problems of the form

xT
r∑

i=1

r∑

j=1

hi(z(k))hj(z(k))Γijx < 0 (2)

where Γij , i, j = 1, 2, . . . , r are matrices of appropriate
dimensions.

Lemma 2. [26] The double-sum (2) is negative, if

Γii < 0
Γij + Γji < 0, i, j = 1, 2, . . . , r, i < j

Lemma 3. [27] The double-sum (2) is negative, if

Γii < 0
2

r − 1
Γii + Γij + Γji < 0, i, j = 1, 2, . . . , r, i 6= j

Property 1. (Congruence) Given a matrix P = PT and a full
column rank matrix Q it holds that

P > 0 ⇒ QPQT > 0

Property 2. Let A and B be matrices of appropriate dimen-
sions and ranks, with B = BT > 0. Then

(A−B)T B−1(A−B) ≥ 0 ⇐⇒ AT B−1A ≥ A + AT −B

Property 3. [28] (Schur complement) Consider a matrix

M = MT =
(

M11 M12

MT
12 M22

)
, with M11 and M22 being square

matrices. Then

M < 0 ⇔
{

M11 < 0
M22 −MT

12M
−1
11 M12 < 0

⇔
{

M22 < 0
M11 −M12M

−1
22 MT

12 < 0

B. Motivation

For the sake of simplicity, in this section, we de-
note the convex sum

∑r
i=1 hi(z(k))Xi as Xz , X−1

z =
(
∑r

i=1 hi(z(k))Xi)−1, the subscript z meaning that the sum
is evaluated at sample k. The subscript z− stands for the sum
being evaluated at sample k− 1, e.g., Xz− =

∑r
i=1 hi(z(k−

1))Xi, z+ means evaluation at sample k + 1, e.g., Xz+ =∑r
i=1 hi(z(k +1))Xi, and multiple subscripts imply multiple

sums, e.g., Xzz+ =
∑r

i=1 hi(z(k))
∑r

j=1 hj(z(k + 1))Xij .
In what follows, 0 and I denote the zero and identity

matrices of appropriate dimensions, and a (∗) denotes the term
induced by symmetry.

In [23], an observer design method based on the delayed
Lyapunov function V = eT Pz−e, e denoting the estimation
error, has been proposed, that improved existing conditions,
without increasing the number of LMIs to be solved. In what
follows, we solve the dual problem, i.e., propose controller
design conditions based on a delayed Lyapunov function that
are able to improve the existing conditions without increasing
the number of LMIs. This will serve as a motivating example
for the general framework that will be presented in the
following sections.

For the sake of the example, consider the TS model

x(k + 1) =
r∑

i=1

hi(z(k))(Aix(k) + Biu(k))

= Azx(k) + Bzu(k)

(3)

and the delayed controller similar to the one used in [23]

u(k) = −Fzz−H−1
zz−x(k) (4)

Using the Lyapunov function V = xT P−1
z−x, we have the

difference

∆V1 =V (k + 1)− V (k) =

=x(k + 1)T P−1
z x(k + 1)− x(k)T P−1

z−x(k)

=
(

x(k)
x(k + 1)

)T (−P−1
z− 0

0 P−1
z

)(
x(k)

x(k + 1)

)

The closed-loop system dynamic is

(
Az −BzFzz−H−1

zz− −I
) (

x(k)
x(k + 1)

)
= 0 (5)
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Using Lemma 1 with (5), ∆V1 < 0, if there exist M ∈
R2nx×nx so that(−P−1

z− 0
0 P−1

z

)
+ M

(
Az −BzFzz−H−1

zz− −I
)

+ (∗) < 0

The implication 2. → 1. of Lemma 1 with the choice M =(
0

P−1
z

)
and congruence with

(
Hzz− 0

0 Pz

)
leads to

( −HT
zz−P−1

z−Hzz− (∗)
AzHzz− −BzFzz− −Pz

)
< 0

this being a sufficient condition. Using Property 2, we obtain
(−Hzz− −HT

zz− + Pz− (∗)
AzHzz− −BzFzz− −Pz

)
< 0 (6)

This result can be formulated as

Theorem 1. The control law (4) asymptotically stabilizes the
system (1) if there exist Pz = PT

z , Fzz−, and Hzz−, so that
(6) holds.

Relaxed LMI conditions can easily be formulated using
Lemmas 2 or 3, as follows.

Corollary 1. The closed-loop system (5) is asymptotically
stable, if there exist Pi = PT

i , Fij , and Hij , i, j = 1, 2, . . . , r
so that

Γijk + Γjik < 0

for i, j, k = 1, 2, . . . , r, i ≤ j, or

Γiik < 0
2

r − 1
Γiik + Γijk + Γjik < 0

for i, j, k = 1, 2, . . . , r, where

Γijk =
(−Hjk −HT

jk + Pk (∗)
AiHjk −BiFjk −Pi

)
< 0

The proof of the above corollary is straightforward.
Note that the conditions above are not equivalent to those

in the literature, e.g., those in [8], which involve the negative
definiteness of sums of the form( −Pz (∗)

AzHz −BzFz −Hz+ −HT
z+ + Pz+

)
< 0 (7)

Remark: Both approaches lead to a triple sum, thus the
number of conditions remains the same.

Consider the following example.

Example 1. Consider the two-rule TS model having the local
matrices

A1 =
(

2 0.04a + 6.9
−1 0.03b− 2.9

)
B1 =

(
0.03b− 2.9

1

)

A2 =
(

1 0.04a + 6.9
−1 0.03b− 2.9

)
B2 =

(
1
5

)

where a and b are real-valued parameters, a, b ∈ [−4, 4].
Using the conditions in [8], involving 3 sums, the values of
a and b for which a solution can be found are presented in
Figure 1(a). Using the conditions in [15], involving 4 sums,
the values of a and b for which a solution can be found are

−5 0 5
−5

0

5

a

b

(a) Results using the conditions in [8].

−5 0 5
−5

0

5

a
b

(b) Results using the conditions in [15].

−5 0 5
−5

0

5

a

b

(c) Results using Theorem 1.

Fig. 1. Feasible solutions for Example 1.

presented in Figure 1(b). By using the conditions of Theorem 1,
involving 3 sums, we obtain solutions for the values presented
in Figure 1(c).

Important remark: The Lyapunov function used, i.e.,
introducing P−1

z− instead of P−1
z has shown the possibility to

cope with new controllers, i.e., Fzz−H−1
zz− instead of FzP

−1
z

[8] or FzP
−1
zz [15]. This is crucial because in (6), z− is present

both in Hzz− and in Pz− and therefore helpful to reduce
the conservatism as shown in the example. In comparison,
approaches such as [8], [15], or [21] cannot introduce these
extra degrees of freedom, as, because of the LMI formulation
the controllers should depend on the future state z+, for
instance Fzz+P−1

z .
In view of this important remark, many new possibilities are

now offered. Following [15], for example, we could introduce
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Pz−z− or even generalize it as in [21]. Another possibility
could be to use extra delayed states, for instance z− 1, z− 2,
or mixed approaches. In order to propose such generalization
we need to introduce some helpful notations.

C. Notations

For convenience, the following notations will be used in this
paper.

Definition 1. (Multiple sum) We denote a multiple sum with
nP terms and delays evaluated at sample k of the form

PGP
0

=
r∑

i1=1

hi1(z(k + d1))
r∑

i2=1

hi2(z(k + d2)) . . .

r∑

inP
=1

hinP
(z(k + dnP

))Pi1i2...inP

where GP
0 is the multiset of delays GP

0 = {d1, d2, . . . , dnP
}.

Definition 2. (Multiset of delays) GP
0 denotes the multiset

containing the delays in the multiple sum involving P at
sample k. GP

α denotes the multiset containing the delays in
the sum P at sample k + α.

Definition 3. (Cardinality) The cardinality of a multiset G,
|G|, is defined as the number of elements in G.

Definition 4. (Index set) The index set of a multiple sum PG

is IG = {ij |ij = 1, 2, . . . , r, j = 1, 2, . . . , |G|}, the set of
all indices that appear in the sum. Note that these indices are
directly related to the delays in G. An element i ∈ IG is a
multiindex.

Definition 5. (Multiplicity) The multiplicity of an element
x in a multiset G, 1G(x) denotes the number of times this
element appears in the multiset G.

Definition 6. (Union) The union of two multisets GA and
GB is GC = GA ∪ GB such that ∀x ∈ GC , 1GC

(x) =
max{1GA

(x),1GB
(x)}.

Definition 7. (Intersection) The intersection of two multisets
GA and GB is GC = GA∩GB such that ∀x ∈ GC , 1GC (x) =
min{1GA(x),1GB (x)}.

Definition 8. (Sum) The sum of two multisets GA and GB

is GC = GA ⊕GB such that ∀x ∈ GC , 1GC
(x) = 1GA

(x) +
1GB

(x).

Definition 9. (Projection of an index) The projection of the
index i ∈ IGA , to the multiset of delays GB , priGB

is the part
of the index that corresponds to the delays in GA ∩GB .

Example 2. Consider the multiple sum

PGP
0

=
r∑

i1=1

hi1(z(k))
r∑

i2=1

hi2(z(k))
r∑

i3=1

hi3(z(k − 1))

r∑

i4=1

hi4(z(k − 2))Pi1i2i3i4

The multiset of the delays at sample k, GP
0 is given by GP

0 =
{0, 0, −1, −2}, while at sample k + α is GP

α = {α, α, α −
1, α− 2}.

The cardinality of GP
0 is |GP

0 | = 4, as PGP
0

contains 4 sums.
The multiplicity of the elements are 1GP

0
(0) = 2, 1GP

0
(−1) =

1, 1GP
0
(−2) = 1. The multiplicity of an element that is not in

GP
0 , e.g., 1 is 1GP

0
(1) = 0.

The index set IGP
0

of the multiple sum PGP
0

is IGP
0

=
{ij |ij = 1, 2, . . . , r, j = 1, 2, 3, 4} = {i1 =
1, 2, . . . , r, i2 = 1, 2, . . . , r, i3 = 1, 2, . . . , r, i4 =
1, 2, . . . , r}. An element of this set, e.g., i = 1234, corre-
sponding to i1 = 1, i2 = 2, i3 = 3, i4 = 4, is a multiindex.

To illustrate the operations on multisets, consider two
multisets GA = {0, 0, −1, −2}, and GB = {0, 0, −1, −1}.
The union of these is GA ∪ GB = {0, 0, −1, −1, −2}.
The intersection is GA ∩ GB = {0, 0, −1}. Their sum is
GA ⊕GB = {0, 0, 0, 0 − 1, −1, −1, −2}.

The projection of the multiindex i = 1234, i ∈ IGP
0

to the
multiset of delays GC = {−1, −2} is pri

GC
= 34. Note that

the projection of a multiindex is in general not unique. For
instance, the projection of the element i = 1234 ∈ IGP

0
to

GD = {0, −1} is either pri
GC

= 13, i.e., i1 = 1, i3 = 3 or
pri

GC
= 23, i.e., i2 = 2, i3 = 3.

Remark: With the notations defined above, the system (1)
can be written as

x(k + 1) =AGA
0
x(k) + BGB

0
u(k) (8)

with GA
0 = GB

0 = {0}. Moreover, one can easily use multiple
sums involving delays in the system matrices, thus delayed
systems can be easily handled. Although in what follows for
the ease of notation we use the notation (8), in this paper we
restrict ourselves to the classical TS system of the form (1).

III. TWO CONTROLLER DESIGN METHODS

In this paper we consider the problem of controller design
for the system (8). The controller used for the system is of
the form

u(k) = −FGF
0
H−1

GH
0

x(k) (9)

with FGF
0

and HGH
0

being multiple sums with delays given
by GF

0 , |GF
0 | = nF , and GH

0 , |GH
0 | = nH , respectively. Note

that GF
0 and GH

0 may not contain positive delays, since a
positive delay refers to future scheduling variables, that are not
available. At this point, the possible delays, i.e., the multisets
GF

0 and GH
0 are not necessarily determined. Possible delays

will be discussed in Section III-B. Note that this controller is
a generalization of those used in [23], [21], [15], [8].
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Using the controller (9) for the TS system (8), the closed-
loop system can be expressed as

x(k + 1) = AGA
0
x(k)− BGB

0
FGF

0
H−1

GH
0

x(k) (10)

A. Design conditions

To develop the design conditions, two different Lyapunov
functions will be considered:

• Case 1: V = x(k)TH−T
GH

0
PGP

0
H−1

GH
0

x(k), with Pi =
PT

i > 0, for i ∈ IGP
0

, |GP
0 | = nP , and HGH

0
being

the multisum used in the controller, and
• Case 2: V = x(k)TP−1

GP
0
x(k), with Pi = PT

i > 0, for
i ∈ IGP

0
, |GP

0 | = nP .

In the remainder of this paper, whenever referring to Case
1 and Case 2, we refer to the two Lyapunov functions above.

For Case 1, the following result can be stated:

Theorem 2. The closed-loop system (10) is asymptotically
stable, if there exist PiP

j
= PT

iP
j

, iP
j = pri

GP
j

, and HiH
j

, iH
j =

pri
GH

j
, i ∈ IGV , j = 0, 1, and FiF

0
, iF

0 = pri
GF

0
, where GV =

GP
0 ∪GP

1 ∪ (GF
0 ⊕GB

0 ) ∪ (GH
0 ⊕GA

0 ) ∪GH
1 so that

(
−PGP

0
(∗)

AGA
0
HGH

0
− BGB

0
FGF

0
−HGH

1
−HT

GH
1

+ PGP
1

)
< 0

(11)

Remark: GV above is simply the multiset containing all
the delays in the multiple sum in (11).

Proof. Consider the Lyapunov function V =
x(k)TH−T

GH
0
PGP

0
H−1

GH
0

x(k), with Pi = PT
i > 0, for i ∈ IGP

0
,

|GP
0 | = nP . The difference is

∆V1 =V (k + 1)− V (k) =

=x(k + 1)TH−T

GH
1
PGP

1
H−1

GH
1

x(k + 1)

− x(k)TH−T

GH
0
PGP

0
H−1

GH
0

x(k)

=

„
x(k)

x(k + 1)

«T
 −H−T

GH
0
PGP

0
H−1

GH
0

0

0 H−T

GH
1
PGP

1
H−1

GH
1

!
(∗)

The closed-loop system dynamics are

(
AGA

0
− BGB

0
FGF

0
H−1

GH
0

−I
) (

x(k)
x(k + 1)

)
= 0 (12)

Using Lemma 1, ∆V1 < 0, if there exists M ∈ R2nx×nx so
that

(−H−T
GH

0
PGP

0
H−1

GH
0

0
0 H−T

GH
1
PGP

1
H−1

GH
1

)

+ M
(
AGA

0
− BGB

0
FGF

0
H−1

GH
0

−I
)

+ (∗) < 0

In order to obtain a problem with LMI constraints encompass-
ing the classical cases, a choice is:

M =

(
0

H−T
GH

1

)

which leads to
0
BB@

−H−T

GH
0
PGP

0
H−1

GH
0

(∗)

H−T

GH
1
AGA

0
−H−T

GH
1
BGB

0
FGF

0
H−1

GH
0

 −H−T

GH
1
−H−1

GH
1

+H−T

GH
1
PGP

1
H−1

GH
1

!
1
CCA < 0

(13)
Applying to (13) Property 1 with the full-rank matrix

(
HT

GH
0

0
0 HT

GH
1

)

gives directly the conditions (11). ¤

Case 2 leads to the conditions:

Theorem 3. The closed-loop system (10) is asymptotically
stable, if there exist PiP

j
= PT

iP
j

, iP
j = pri

GP
j

, j = 0, 1, FiF
0

,

iF
0 = pri

GF
0

, and HiH
0

, iH
0 = pri

GH
0

, i ∈ IGV , where GV =
GP

0 ∪GP
1 ∪ (GF

0 ⊕GB
0 ) ∪ (GH

0 ⊕GA
0 ) so that

(
−HGH

0
−HT

GH
0

+ PGP
0

(∗)
AGA

0
HGH

0
− BGB

0
FGF

0
−PGP

1

)
< 0 (14)

Proof. Consider the Lyapunov function V = x(k)TP−1
GP

0
x(k),

with Pi = PT
i > 0, for i ∈ IGP

0
, |GP

0 | = nP . The difference
is

∆V1 =
(

x(k)
x(k + 1)

)T
(−P−1

GP
0

0
0 P−1

GP
1

)(
x(k)

x(k + 1)

)

Using Lemma 1 with (12), ∆V1 < 0, if there exists M ∈
R2nx×nx so that

(−P−1
GP

0
0

0 P−1
GP

1

)

+ M
(
AGA

0
− BGB

0
FGF

0
H−1

GH
0

−I
)

+ (∗) < 0

Choosing M =

(
0
P−1

GP
1

)
and congruence with

(
HGH

0
0

0 PGP
1

)

leads to
(

−HT
GH

0
P−1

GP
0
HGH

0
(∗)

AGA
0
HGH

0
− BGB

0
FGF

0
−PGP

1

)
< 0

Using Property 2, we obtain directly (14). ¤

B. Discussion

First, we illustrate the use of the conditions (11) and (14),
respectively, on the following example. Consider a two-rule
fuzzy system

x(k + 1) =
2∑

i=1

hi(z(k))(Aix(k) + Biu(k))

= AGA
0
x(k) + BGB

0
u(k)

with GA
0 = GB

0 = {0} for which a controller has to be
designed and let GH

0 = {0, −1}, GF
0 = {0, −1}, GP

0 =
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{−1, −1}, i.e.,

P{−1,−1} =
2∑

i=1

2∑

j=1

hi(z(k − 1))hj(z(k − 1))Pij

H{0,−1} =
2∑

i=1

2∑

j=1

hi(z(k))hj(z(k − 1))Hij

F{0,−1} =
2∑

i=1

2∑

j=1

hi(z(k))hj(z(k − 1))Fij

Then, the conditions (11) of Theorem 2 correspond to there
exist Pij , Fij , Hij , i, j = 1, 2 so that
„ −P{−1,−1} (∗)
A{0}H{0,−1} − B{0}F{0,−1} −H{0,1} −HT

{0,1} + P{0,0}

«
< 0

or
2∑

i1=1

2∑

i2=1

2∑

i3=1

2∑

i4=1

2∑

i5=1

hi1(z(k))hi2(z(k))hi3(z(k − 1))

· hi4(z(k − 1))hi5(z(k + 1))·
·
( −Pi3i4 (∗)

Ai1Hi2i3 −Bi1Fi2i3 −Hi1i5 −HT
i1i5

+ Pi1i2

)
< 0

while the conditions (14) of Theorem 3 correspond to there
exist Pij , Fij , Hij , i, j = 1, 2 so that

(
P{−1,−1} −H{0,−1} −HT

{0,−1} (∗)
A{0}H{0,−1} − B{0}F{0,−1} −P{0,0}

)
< 0

or
2X

i1=1

2X
i2=1

2X
i3=1

2X
i4=1

hi1(z(k))hi2(z(k))hi3(z(k − 1))hi4(z(k − 1))·

·
„
−Hi2i3 −HT

i2i3 + Pi3i4 (∗)
Ai1Hi2i3 −Bi1Fi2i3 −Pi1i2

«
< 0

In what follows, we discuss how the multisets of delays
should be chosen for a fixed number of sums such that
relaxations (conservatism reduction approaches) can be used
and the computational complexity, and implicitly the number
of LMIs to be solved is reduced.

Let us see first some classical results. A quadratic Lyapunov
functions and a PDC control law corresponds to GP

0 = ∅,
GH

0 = ∅ and GF
0 = {0}. A nonquadratic approach such as

the one in [15] corresponds to GP
0 = {0, 0}, GP

1 = {1, 1},
GH

0 = GF
0 = {0}. Recall that GA

0 = GB
0 = {0}. Thus, an

important remark is that GP
0 ∪ (GH

0 ⊕ GA
0 ) ∪ (GF

0 ⊕ GB
0 ) ∪

GP
1 = GV (Case 2) includes {0, 0} in order to apply known

relaxations [19], [27]. Naturally, not every choice is adequate.
For instance choosing GP

0 = ∅ and GF
0 = GH

0 = {−1,−1}
remains equivalent to a linear control, as the corresponding
condition (Case 2) is(−Hz−z− −HT

z−z− + P (∗)
AzHz−z− −BzFz−z− −P

)
< 0

which has to be solved for every index and therefore each
vertex becomes a solution.

Summarizing, GV should include {0, 0} and more generally
speaking the choice of the index sets has to favor in GV

multiple sums (at least 2) at the same samples. In this case
the relaxations, for instance [27], [19], apply.

It can also be seen that the terms AGA
0
HGH

0
and BGB

0
FGF

0
,

which appear in both cases, play a similar role. A convenient
choice, without lack of generality, is GF

0 = GH
0 .

To illustrate the choice of the delays, consider now the
simplest case, when |GP

0 | = 1, i.e., only one sum is used in P .
Recall that in order to use relaxations, we choose GF

0 and GH
0

such that they contain {0}.
For Case 1, we have the inequality
( −PGP

0
(∗)

A{0}H{0} − B{0}F{0} −H{1} −HT
{1} + PGP

1

)
< 0

which, independent of |GP
0 | already contains 3 sums. By

adding another index in GH
0 , the number of sums increases.

Moreover, in order to keep this number of sums, |GP
0 | has to

be chosen as |GP
0 | = {0}. For an arbitrary cardinality of the

multisets GP
0 and GH

0 , this generalizes to GP
0 = {0, 0, . . . , 0}

and GF
0 = GH

0 = {0, 0, . . . , 0}. Furthermore, if |GP
0 | =

|GH
0 | = nP , this choice reduces the number of sums in (11)

to 2nP + 1 and the number of LMIs to be solved (before
relaxations) to r2np+1. This can also be seen from |GV |, which
for this case is reduced to GV = {0, 0, 0, . . . , 0︸ ︷︷ ︸

nP

, 1, 1, . . . , 1︸ ︷︷ ︸
nP

}.

For Case 2, we have the inequality
(−H{0} −HT

{0} + PGP
0

(∗)
A{0}H{0} − B{0}F{0} −PGP

1

)
< 0

which contains two sums. In order to have the same number
of sums as in Case 1, GP

0 can be chosen either {0} or {−1},
which would lead to(−H{0} −HT

{0} + P{0} (∗)
A{0}H{0} − B{0}F{0} −P{1}

)
< 0

for GP
0 = {0} or

(−H{0} −HT
{0} + P{−1} (∗)

A{0}H{0} − B{0}F{0} −P{0}

)
< 0

for GP
0 = {−1}, respectively. It can be easily seen that in

the second case, i.e., when GP
0 = {−1}, we can also add1

another dimension to H and F , that provides more freedom,
but without altering the number of sums in the condition. This
choice will lead to the conditions(−H{0,−1} −HT

{0,−1} + P{−1} (∗)
A{0}H{0,−1} − B{0}F{0,−1} −P{0}

)
< 0

For an arbitrary cardinality of the multisets GP
0 and GH

0 ,
this choice generalizes to GP

0 = {−1, −1, . . . , −1} and
GF

0 = GH
0 = {0, 0, . . . , 0, −1, . . . , −1}. Moreover, if

|GP
0 | = |GH

0 | = 2nP , this choice reduces the number
of sums in (11) to 2nP + 1 and the number of LMIs to
be solved (before relaxations) to r2np+1. This can also be
seen from |GV |, which, similarly to Case 1, is reduced to
GV = {0, 0, 0, . . . , 0︸ ︷︷ ︸

nP

, −1, −1, . . . , −1︸ ︷︷ ︸
nP

}.

Taking in account these remarks, theoretically the more GV

grows, the best the results are. Of course a complexity issue

1Note that H{0,1} cannot be used, as the premise variables are not known
in advance.
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due to the solvers limitation will constraint the growth of GV

and has to be discussed. The number of decision variables
depends only on the number of sums used and for both
cases is given by rnP nx(nx + 1)/2 (the number of decision
variables in PGP

0
) +rnH n2

x (the number of decision variables
in HGH

0
) +rnF nxnu (the number of decision variables in

FGF
0

). However, the number of sums and consequently the
number of LMI conditions to be solved differs.

The maximum number of sums in (11) (Case 1) is given
by |GV | ≤ 2nP + nF + 2nH + 1, which corresponds to the
maximum2 of |GP

0 ∪GP
1 ∪ (GF

0 ⊕GB
0 )∪ (GH

0 ⊕GA
0 )∪GH

1 | or
pairwise non-overlapping sets of indices GP

0 , GP
1 , GF

0 , GH
0 ,

GH
1 , and {0}. For Case 2, the number of sums in (14) is given

by |GV | ≤ 2nP +nF +nH +1, which in this case corresponds
to the maximum of |GP

0 ∪GP
1 ∪ (GF

0 ⊕GB
0 ) ∪ (GH

0 ⊕GA
0 )|.

The maximum number of sums indicates that for fixed GH
0 ,

GF
0 , and GP

0 , in general the conditions of Case 2 will lead
to a smaller number of sums and consequently the number of
LMIs to be solved.

In the analysis above, our aim was to reduce the compu-
tational complexity of the conditions. However, by increasing
the number of sums in the terms (and implicitly the compu-
tational complexity), extra degrees of freedom are introduced
and the obtained conditions become less conservative.

It should be noted that the conditions of Theorems 2 and 3,
as they are stated, are nonlinear. Depending on how the LMIs
are obtained, which relaxations are used, is Polya’s theorem
used, are slack variables introduced, etc., the computational
complexity may quickly increase up to the point of numerical
intractability. Moreover, depending on the relaxations used, the
resulting LMIs for a specific application may be feasible or
not. This is why we discuss the proposed conditions mainly in
their nonlinear form, instead of the final LMI conditions that
are usually reported in the literature.

Theorem 2 is a generalization of existing results and in
a sense, a way to write them in a convenient general form.
Theorem 3, by using delayed control, represents a new result
that allows bringing new control laws that are not possible to
use with the previous conditions. To show this, let us look to
several results in the literature.

The results of [8] are recovered by using the Lyapunov
function from Case 2 with GP

0 = {0}, GH
0 = GF

0 = {0} and
choosing HGH = PGP . Theorem 3 of [15] is obtained from
Case 2, by choosing GP

0 = {0, 0}, and GH
0 = GF

0 = {0}. The
controller design of [16] can be recovered from Theorem 2.
The results in [29] (without the delay) are again a special
case of Theorem 2. Theorem 1 of [30] is Theorem 4 for
the choice GP

0 = {0, . . . , 0}, GH
0 = GF

0 = {0, . . . , 0}.
Theorem 1 of [23] is obtained from Theorem 2 of this paper
by choosing GP

0 = {−1}, and GH
0 = GF

0 = {0, −1}.
The results of [17] (without the relaxations used on the
sums) correspond to Theorem 2 applied for the special case
of consecutive delays GP

0 = {−N + 1, −N, . . . , 0, 1},
GH

0 = GF
0 = {−Nf + 1, −Nf , . . . , 0}.

Note that the conditions of Theorems 2 and 3 are not
equivalent, and although they generalize several conditions

2Assuming classical TS models, for which GA
0 = GB

0 = {0}.

from the literature, they do not include each other. This will be
illustrated on two examples. In order to obtain a fair compar-
ison, the delays used are selected as GF

0 = GH
0 = GP

0 = {0}
for Case 1, and GF

0 = GH
0 = {0, −1} and GP

0 = {−1} for
Case 2. This selection results in 3 sums both for (11) and (14).
On the sums, the relaxation of [26] is used, and for solving
the LMIs, the SeDuMi solver within the Yalmip [31] toolbox
has been used.

Example 3. Consider the two-rule fuzzy system

x(k + 1) =
2∑

i=1

hi(z(k))(Aix(k) + Biu(k))

with

A1 =
(−0.62 1.26

1.44 −0.35

)
A2 =

(−1.04 −0.26
−0.66 0.45

)

B1 =
(−0.73

1.5

)
B1 =

(
1
0

)

For this system, the conditions of Theorem 3 are unfeasible,
while a result can be obtained using Theorem 2.

Example 4. On the other hand, consider the two-rule fuzzy
system

x(k + 1) =
2∑

i=1

hi(z(k))(Aix(k) + Biu(k))

with

A1 =
(

1.5 2.7
−1.1 1.8

)
A2 =

(−0.4 −0.8
0.5 −0.8

)

B1 =
(−0.55

0.9

)
B1 =

(
1
0

)

For this system, the conditions of Theorem 2 are unfeasible,
but a result can be obtained using Theorem 3.

Example 5. Let us now revisit Example 1. Recall that we
consider the two-rule TS model having the local matrices

A1 =
(

2 0.04a + 6.9
−1 0.03b− 2.9

)
B1 =

(
0.03b− 2.9

1

)

A2 =
(

1 0.04a + 6.9
−1 0.03b− 2.9

)
B2 =

(
1
5

)

where a and b are real-valued parameters. For this case, we
consider a ∈ [−4, 4] and b ∈ [−15, 5]. We have already
compared the conditions in [8], and those of Theorem 1, which
both involved 3 sums. Generalizing the conditions to 4 sums,
we have GP

0 = {0, 0} and GF
0 = GH

0 = {0} for Theorem 2
and GP

0 = {−1, −1} and GF
0 = GH

0 = {0, −1, −1} for
Theorem 3. The values of a and b for which we obtain solutions
are presented in Figures 2(a) and 2(b).

Let us now compare the conditions proposed in this paper
to those in the literature. To consider the simplest case, the
relaxation of [26] is used on all the possible sums, but slack
(auxiliary) variables are not used.



8
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(a) Results using Theorem 2.

−5 0 5

−15

−10

−5

0

5

a

b

(b) Results using Theorem 3.

Fig. 2. Feasible solutions when using 4 sums for Example 1.

Example 6. Consider the two-rule TS model [8], [15], [21],
[22] having the local matrices

A1 =
(

1 −b
−1 −0.5

)
B1 =

(
5 + b
2b

)

A2 =
(

1 b
−1 −0.5

)
B2 =

(
5− b
−2b

) (15)

where b is a real-valued parameter. This system has been used
for illustrating the results in the literature. The goal is to be
able to stabilize the system for the parameter b having a value
as large as possible. In the literature the following values have
been reported: [15], b = 1.7669, [21], b = 1.82, [30], b =
1.82, [22], b = 1.8106. According to [22], to obtain b =
1.8106 it took 3 1

3min or 14
5h, depending on which theorem

and relaxation they used. No value greater than b = 1.83 has
been reported in the literature.

To illustrate the advantage of using delayed Lyapunov
function and delayed controllers, we use Theorem 3 and
the following delays: GP

0 = {−1, −1, −1}, GH
0 = GF

0 =
{0, 0, −1, −1, −1}. This means that the Lyapunov “matrix”
is a triple sum, with each depending on the past scheduling
instead of the current one, while the control gains consist of
five sums, out of which three depend on the past scheduling

and two on the current one, i.e., we use

P{−1,−1−1} =
r∑

i1=1

(z(k − 1))
r∑

i2=1

(z(k − 1))

r∑

i3=1

(z(k − 1))Pi1i2i3

H{0, 0,−1,−1−1} =
r∑

i1=1

(z(k))
r∑

i2=1

(z(k))
r∑

i3=1

(z(k − 1))

r∑

i4=1

(z(k − 1))
r∑

i5=1

(z(k − 1))Hi1i2i3i4i5

F{0, 0,−1,−1−1} =
r∑

i1=1

(z(k))
r∑

i2=1

(z(k))
r∑

i3=1

(z(k − 1))

r∑

i4=1

(z(k − 1))
r∑

i5=1

(z(k − 1))Fi1i2i3i4i5

With these delays, the conditions of Theorem 3, using Lemma 2
to obtain the LMIs result in 16 LMIs to be solved. Solving
the LMIs takes 0.61sec3. With these parameters, the system
(15) can be controlled when b = 1.95. For the choice
x(0) = [1.95, 10]T , the closed-loop system trajectories and
the control input are given in Figures 3(a) and 3(b). This is a
major improvement wrt. the results reported in the literature.

2 4 6 8 10 12 14
−2

0

2

4

6

8

10

Sample

S
ta

te
s

 

 
x

1

x
2

(a) Closed-loop system states.

2 4 6 8 10 12 14
−0.5

0

0.5

1

1.5

2

2.5

Sample

C
on

tr
ol

 in
pu

t

(b) Control input.

Fig. 3. Closed-loop system trajectories for b = 1.95 for Example 6.

Let us now compare our results to those in the literature
based on the number of sums in the conditions and the largest

3For solving LMIs a laptop with processor Intel Core i5 @ 2.6GHz and
with 8 GB RAM has been used.
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value of b being reported. This – not taking into account
what relaxation is used – gives a measure of complexity of
the conditions.

The conditions of Theorem 3 in [15] can be written a special
case of Theorem 3, with GP

0 = {0, 0} and GF
0 = GH

0 = {0}.
The number of sums is 4, and the maximum value of b for
which the LMIs are feasible is b = 1.547. The conditions
presented in [8] (special case of Theorem 2, with GP

0 =
GF

0 = GH
0 = {0}) are feasible up to b = 1.539, although

they only involve 3 sums. Applying Theorem 2 of [17] with
GP

0 = {−1, 0, 1} and GH
0 = GF

0 = {−1, 0} using the
relaxation of [26] and without slack variables, b = 1.565
is obtained, but the conditions involve 5 sums. For the choice
GP

0 = {0, 1} and GH
0 = GF

0 = {0}, which involves only 4
sums, the maximum b is b = 1.54.

Consider now the conditions proposed in this paper. For
Theorem 2, to obtain 4 sums, one can choose e.g., GP

0 =
{0, 0} and GF

0 = GH
0 = {0}. With this choice, the maximum b

obtained is b = 1.547, i.e., the same as in [15]. For Theorem 3,
by choosing GP

0 = {−1} and GF
0 = GH

0 = {0, 0, −1}, we
obtain b = 1.589. Moreover, by choosing GP

0 = {−1} and
GF

0 = GH
0 = {0, −1} – only 3 sums – we get b = 1.553. The

results are summarized in Table I.

TABLE I
COMPARISON OF RESULTS

Method Nr. of sums Maximum b
[8] 3 1.539
Theorem 3, this paper 3 1.553
Theorem 3 in [15] 4 1.547
Theorem 2 of [17] 4 1.54
Theorem 2, this paper 4 1.56
Theorem 3, this paper 4 1.69
Theorem 2 of [17] 5 1.565
Theorem 2, this paper 5 1.69
Theorem 3, this paper 5 1.78
Theorem 3, this paper 6 1.95

Let us also compare the results from the literature from
the point of view of number of LMIs to be solved and the
largest b reported. According to [21], for p = 2, d = 1,
d+ = 1, (20 LMIs to solve) the result obtained is b = 1.68;
for p = d = d+ = 2, 30 LMIs, b = 1.71; p = d = d+ = 3, 56
LMIs, b = 1.74. The results of our Theorem 2 are comparable
to these results, as the controllers are similar. However, using
Theorem 3 with 4 sums – actually solving 8 LMIs by applying
the relaxation of [26] –, results in b = 1.69; 5 sums, 12 LMIs
to solve, b = 1.78; 6 sums, 16 LMIs to solve, b = 1.95.
Consequently, in our approach the number of LMIs is much
reduced.

IV. EXTENSIONS

In what follows, the results presented in Section III-A are
extended to robust controllers, α-sample variation and H∞
control. Since these extensions are quite classical given the
framework we propose, they are presented without proofs.

A. Robust controllers
First, let us extend the conditions of Section III-A for the

case when the system is described by

x(k + 1) =(AGA
0

+ ∆A)x(k) + (BGB
0

+ ∆B)u(k) (16)

i.e., the local matrices are uncertain. The uncertainties con-
sidered are of the form ∆A = DGD

0,a
∆aEGE

0,a
and ∆B =

DGD
0,b

∆bEGE
0,b

, with ∆T
a ∆a < I , and ∆T

b ∆b < I .
The controller is of the form

u(k) = −FGF
0
H−1

GH
0

x(k)

and the closed-loop system can be expressed as

x(k + 1) =(AGA
0

+ ∆A− BGB
0
FGF

0
H−1

GH
0
−∆BFGF

0
H−1

GH
0

)x(k)
(17)

Then, the following results can be stated:

Theorem 4. The closed-loop system (17) is asymptotically
stable, if there exist PiP

j
= PT

iP
j

, iP
j = pri

GP
j

, and HiH
j

, iH
j =

pri
GH

j
, i ∈ IGV

, j = 0, 1, FiF
0

, iF
0 = pri

GF
0

, SiS
0,a

= ST
iS
0,a

> 0,

iS
0,a = pri

GS
0,a

, and SiS
0,b

= ST
iS
0,b

> 0, iSb
0 = pri

GS
0,b

, where

GV = GP
0 ∪ GP

1 ∪ (GF
0 ⊕ (GB

0 ∪ GE
0,b)) ∪ (GH

0 ⊕ (GA
0 ∪

GE
0,a)) ∪GH

1 ∪ (GS
0,a ⊕GD

0,a ⊕GD
0,a) ∪ (GS

0,b ⊕GD
0,b ⊕GD

0,b)
so that (18) holds.

Theorem 5. The closed-loop system (17) is asymptotically
stable, if there exist PiP

j
= PT

iP
j

, iP
j = pri

GP
j

, and HiH
0

, iH
0 =

pri
GH

0
, i ∈ IGV , j = 0, 1, FiF

0
, iF

0 = pri
GF

0
, SiS

0,a
= ST

iS
0,a

> 0,

iS
0,a = pri

GS
0,a

, and SiS
0,b

= ST
iS
0,b

> 0, iSb
0 = pri

GS
0,b

, where

GV = GP
0 ∪ GP

1 ∪ (GF
0 ⊕ (GB

0 ∪ GE
0,b)) ∪ (GH

0 ⊕ (GA
0 ∪

GE
0,a))∪ (GS

0,a ⊕GD
0,a ⊕GD

0,a)∪ (GS
0,b ⊕GD

0,b ⊕GD
0,b) so that

(19) holds.

In what follows, we illustrate Theorems 4 and 5 on an
example.

Example 7. Consider the uncertain two-rule fuzzy system

x(k + 1) =
2∑

i=1

hi(z(k))((Ai + ∆A)x(k) + Biu(k))

with
∆A = Da∆aEa ∆T

a ∆a ≤ I

A1 =
(

1 −1.65
−1 −0.5

)
A2 =

(
1 1.65
−1 −0.5

)

B1 =
(

6.65
3.3

)
B2 =

(
3.35
−3.3

)

Da =
(−0.0465 0.07

0.0371 0.21

)
Ea =

(−0.1357 0.10
−0.1 −0.039

)

Using Theorem 4, with a single sum both in the Lyapunov
function and the controller gains, i.e., GP

0 = GH
0 = GF

0 =
{0}, we obtain the matrices

H1 =
(

0.21 −0.008
0.044 0.74

)
H2 =

(
0.29 −0.008
−0.027 0.51

)

F1 =
(
0.0123 −0.19

)
F2 =

(
0.068 0.21

)

P1 =
(

0.29 0.029
0.028 0.68

)
P2 =

(
0.34 −0.04
−0.04 0.44

)
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−PGP
0

(∗) (∗) (∗)
EGE

0,a
HGH

0
−SGS

0,a
(∗) (∗)

EGE
0,b
FGF

0
0 −SGS

0,b
(∗)

AGA
0
HGH

0
− BGB

0
FGF

0
0 0

( −HGH
1
−HT

GH
1

+ PGP
1

+DT
GD

0,a
SGS

0,a
DGD

0,a
+ DT

GD
0,b
SGS

0,b
DGD

0,b

)




< 0 (18)




−HGH
0
−HT

GH
0

+ PGP
0

(∗) (∗) (∗)
EGE

0,a
HGH

0
−SGS

0,a
(∗) (∗)

EGE
0,b
FGF

0
0 −SGS

0,b
(∗)

AGA
0
HGH

0
− BGB

0
FGF

0
0 0

(−PGP
1

+ DT
GD

0,a
SGS

0,a
DGD

0,a

+DT
GD

0,b
SGS

0,b
DGD

0,b

)




< 0 (19)




−PGP
0

(∗) . . . 0
AGA

0
HGH

0
− BGB

0
FGF

0
−HGH

1
−HT

GH
1

. . . 0
0 AGA

1
HGH

1
− BGB

1
FGF

1
. . . 0

...
... . . .

...
0 0 . . . PGP

α
−HT

GH
α
−HGH

α




< 0 (20)




−HGH
0
−HT

GH
0

+ PGP
0

(∗) . . . 0 0
AGA

0
HGH

0
− BGB

0
FGF

0
−HGH

1
−HT

GH
1

. . . 0 0
0 AGA

1
HGH

1
− BGB

1
FGF

1
. . . 0

...
... . . .

...
...

0 0 . . . −HGH
α−1

−HT
GH

α−1
0

0 0 . . . AGA
α−1
HGH

α−1
− BGB

α−1
FGF

α−1
−PGP

α




< 0 (21)

The conditions of Theorem 4 involved 3 sums, and to write
LMI conditions, Lemma 3 has been used.

The delays for Theorem 5 are chosen such that also 3 sums
are obtained, i.e., GP

0 = {−1}, GH
0 = GF

0 = {0, −1}, and
to write LMI conditions, Lemma 3 has been used. We obtain

H11 =
(

0.26 0.03
−0.087 0.68

)
H12 =

(
0.25 0.025
0.12 0.70

)

H21 =
(

0.29 −0.11
−0.069 0.56

)
H22 =

(
0.23 0.06
0.018 0.52

)

F11 =
(
0.04 −0.17

)
F12 =

(−0.01 −0.18
)

F21 =
(
0.05 0.18

)
F22 =

(
0.07 0.22

)

P1 =
(

0.20 −0.10
−0.10 0.67

)
P2 =

(
0.19 0.09
0.09 0.63

)

B. α-sample variation

In this section, we extend the results obtained in Sec-
tion III-A using α-sample variation of the Lyapunov func-
tion [9].

Recall that by using the controller (repeated here for con-
venience)

u(k) = −FGF
0
H−1

GH
0

x(k)

the closed-loop system is given by

x(k + 1) = AGA
0
x(k)− BGB

0
FGF

0
H−1

GH
0

x(k)

For Case 1, the following result can be stated:

Theorem 6. The closed-loop system (10) is asymptotically
stable, if there exist PiP

j
= PT

iP
j

, iP
j = pri

GP
j

, FiF
j

, iF
j = pri

GF
j

,

and HiH
j

, iH
j = pri

GH
j

, i ∈ IGV
, j = 0, 1, 2, . . . , α, where

GV = GP
0 ∪GP

α ∪
⋃α−1

i=0 (GF
i ⊕GB

i )∪⋃α−1
i=0 (GH

i ⊕GA
i )∪GH

α

so that (20) holds.

Remark: Note that again, GV denotes the multiset of all the
delays that appear in the sum in (20). The terms

⋃α−1
i=0 (GH

i ⊕
GA

i ) and
⋃α−1

i=0 (GF
i ⊕GB

i ) are actually the delays that appear
in the terms AGA

i
HGH

i
and BGB

i
FGF

i
, i = 1, 2, . . . , α− 1.

For Case 2, we have the following conditions.

Theorem 7. The closed-loop system (10) is asymptotically
stable, if there exist PiP

j
= PT

iP
j

, iP
j = pri

GP
j

, FiF
j

, iF
j = pri

GF
j

,

and HiH
j

, iH
j = pri

GH
j

, i ∈ IGV
, j = 0, 1, 2, . . . , α, where

GV = GP
0 ∪GP

α ∪
⋃α−1

i=0 (GF
i ⊕GB

i )∪⋃α−1
i=0 (GH

i ⊕GA
i )∪GH

α

so that (21) holds.

Remark: Similarly to Section III-A, depending on the exact
sets of indices used, GP

0 , GF
0 , and GH

0 , relaxations such
as [26], [3], [27], [19] can be used.

C. H∞-control
In this section, we consider H∞ control using the con-

troller (10). Consider then the system expressed as:

x(k + 1) = AGA
0
x(k) + BGB

0
u(k) + EGE

0
w(k)

y(k) = CGC
0
x(k) + DGD

0
u(k) +KGK

0
w(k)

(22)
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−PGP
0

(∗) (∗) (∗)
0 −γI (∗) (∗)

AGA
0
HGH

0
− BGB

0
FGF

0
EGE

0
−HGH

1
−HT

GH
1

+ PGP
1

(∗)
CGC

0
HGH

0
− DGD

0
FGF

0
KGK

0
0 −γI


 < 0 (25)

The closed-loop system is given by

x(k + 1) = AGA
0
x(k)− BGB

0
FGF

0
H−1

GH
0

x(k) + EGE
0
w(k)

y(k) = CGC
0
x(k)− DGD

0
FGF

0
H−1

GH
0

x(k) +KGK
0

w(k)
(23)

For Case 1, the following result can be stated:

Theorem 8. The closed-loop system (23) is asymptotically
stable, and the attenuation is at least γ if there exist γ > 0,
PiP

j
= PT

iP
j

, iP
j = pri

GP
j

, j = 0, 1, FiF
0

, iF
0 = pri

GF
0

, and HiH
0

,

iH
0 = pri

GH
0

, i ∈ IGV
, where GV = GP

0 ∪GP
1 ∪ (GF

0 ⊕GB
0 )∪

(GH
0 ⊕GA

0 ) ∪GK
0 ∪GE

0 so that (25) holds.

For Case 2, we have

Theorem 9. The closed-loop system (23) is asymptotically
stable, and the attenuation is at least γ if there exist γ > 0,
PiP

j
= PT

iP
j

, iP
j = pri

GP
j

, j = 0, 1, FiF
0

, iF
0 = pri

GF
0

, and HiH
0

,

iH
0 = pri

GH
0

, i ∈ IGV , where GV = GP
0 ∪GP

1 ∪ (GF
0 ⊕GB

0 )∪
(GH

0 ⊕GA
0 ) ∪GK

0 ∪GE
0 so that




−HGH
0
−HT

GH
0

+ PGP
0

(∗) (∗) (∗)
0 −γI (∗) (∗)

AGA
0
HGH

0
− BGB

0
FGF

0
EGE

0
−PGP

1
(∗)

CGC
0
HGH

0
− DGD

0
FGF

0
KGK

0
0 −γI


 < 0

(24)

In what follows, we illustrate Theorems 8 and 9 on an
example.

Example 8. Consider the two-rule fuzzy system

x(k + 1) =
2∑

i=1

hi(z(k))(Aix(k) + Biu(k) + Ew(k))

y(k) = x(k)

with

A1 =
(

1 −1.65
−1 −0.5

)
A2 =

(
1 1.65
−1 −0.5

)

B1 =
(

6.65
3.3

)
B2 =

(
3.35
−3.3

)

Ea =
(−0.1357 0.10

−0.1 −0.039

)

Using Theorem 8, with a single sum both in the Lyapunov
function and the controller gains, i.e., GP

0 = GH
0 = GF

0 =
{0}, we obtain an attenuation γ = 1.71 and the matrices

H1 =
(

0.06 −0.01
−0.005 0.32

)
H2 =

(
0.02 0.037
−0.01 0.17

)

F1 =
(
0.014 −0.07

)
F2 =

(
0.002 0.08

)

P1 =
(

0.08 −0.03
−0.03 0.42

)
P2 =

(
0.001 −0.008
−0.01 0.18

)

The conditions of Theorem 8 involved 3 sums, and to write
LMI conditions, Lemma 3 has been used.

The delays for Theorem 9 have been chosen such that also 3
sums are obtained, i.e., GP

0 = {−1}, GH
0 = GF

0 = {0, −1},
and to write LMI conditions, Lemma 3 has been used. We
obtain an attenuation γ = 1.37 – better than that obtained
using Theorem 8 – and the matrices:

H11 =
(

0.07 −0.006
−0.02 0.27

)
H12 =

(
0.08 −0.04
−0.007 0.32

)

H21 =
(

0.17 −0.04
−0.04 0.17

)
H22 =

(
0.01 0.04
0.003 0.17

)

F11 =
(
0.01 −0.07

)
F12 =

(
0.005 −0.08

)

F21 =
(
0.03 0.06

)
F22 =

(
0.006 0.09

)

P1 =
(

0.06 −0.05
−0.05 0.17

)
P2 =

(
0.03 0.05
0.05 0.17

)

V. CONCLUSIONS

This paper presented a general framework for the design of
nonquadratic controllers for TS fuzzy models. Two methods
have been proposed, depending on the Lyapunov function
used. It has been shown that the proposed controllers include
controllers reported in the recent literature. In our future re-
search we will analyze which method should be used for what
type of problems. The design methods have also been extended
to robust control, α-sample variation, and H∞ control.

In our future research we will develop controller design
methods for delayed systems, which in this framework can
easily be addressed. We also aim to develop asymptotically
necessary and sufficient conditions for controller design.

ACKNOWLEDGMENT

This work was supported by a grant of the Romanian National
Authority for Scientific Research, CNCS – UEFISCDI, project num-
ber PN-II-RU-TE-2011-3-0043, contract number 74/05.10.2011, by
International Campus on Safety and Intermodality in Transportation
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