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Abstract: This paper considers the stability analysis of periodic Takagi-Sugeno fuzzy models.
For this we use a switching Lyapunov function defined at the time instants when the subsystems
switch. Using the developed conditions we are able to prove the stability of periodic TS systems
where the local models or even the subsystems are unstable. The application of the conditions
is illustrated on numerical examples.
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1. INTRODUCTION

Takagi-Sugeno (TS) fuzzy systems (Takagi and Sugeno,
1985) are nonlinear, convex combinations of local linear
models, and have the property that they are able to exactly
represent a large class of nonlinear systems (Lendek et al.,
2010).

For the stability analysis and observer and controller
design of TS systems the direct Lyapunov approach has
been used. Stability conditions have been derived using
quadratic Lyapunov functions (Tanaka et al., 1998; Tanaka
and Wang, 2001; Sala et al., 2005), piecewise continuous
Lyapunov functions (Johansson et al., 1999; Feng, 2004a),
and more recently, to reduce the conservativeness of the
conditions, nonquadratic Lyapunov functions (Guerra and
Vermeiren, 2004; Kruszewski et al., 2008; Mozelli et al.,
2009). The stability or design conditions are generally
derived in the form of linear matrix inequalities (LMIs).

Non-quadratic Lyapunov functions have shown a real
improvement of the design conditions in the discrete-time
case (Guerra and Vermeiren, 2004; Ding et al., 2006; Dong
and Yang, 2009a; Lee et al., 2011). It has been proven
that the solutions obtained by non-quadratic Lyapunov
functions include and extend the set of solutions obtained
using the quadratic framework.

Non-quadratic Lyapunov functions have been extended to
double-sum Lyapunov functions by (Ding et al., 2006) and
later on to polynomial Lyapunov functions by (Sala and
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Ariño, 2007; Ding, 2010; Lee et al., 2010). A different type
of improvement in the discrete case has been developed
in (Kruszewski et al., 2008), conditions being obtained
by replacing the classical one sample variation of the
Lyapunov function by its variation over several samples
(α-sample variation).

Switched TS systems are a class of nonlinear systems often
described by continuous dynamics and discrete dynamics
as well as their interactions. In the last decade, they have
been investigated mainly in the continuous case where the
stability is based on the use of a quadratic Lyapunov
function (Tanaka et al., 2001; Lam et al., 2002, 2004;
Ohtake et al., 2006) or a piecewise one (Feng, 2003, 2004b).
Although results are available for discrete-time linear
switching systems (Daafouz et al., 2002), for discrete-time
TS models, few results exist (Doo et al., 2003; Dong and
Yang, 2009b).

In this paper, we propose a switching non-quadratic Lya-
punov function for the stability analysis of periodic TS
fuzzy models. This Lyapunov function is useful for proving
the stability of a periodic TS system having non-stable
local models and even unstable subsystems. For simplicity,
we present the results for a periodic system with two
subsystems, although they can be easily generalized for
a known number of subsystems.

The structure of the paper is as follows. Section 2 presents
the notations used in this paper and the general form
of the TS models. It also develops the proposed condi-
tions for stability analysis of systems that switch at each
sample time. The stability analysis of periodic systems
is presented in Section 3. Section 4 illustrates the use of
the conditions on a numerical example. Finally, Section 5
concludes the paper.



2. STABILITY OF CONTINUOUSLY SWITCHING
SYSTEMS

2.1 Preliminaries

In this paper we consider stability analysis of discrete-time
periodic TS systems. For the ease of notation, we only
consider two subsystems of the form

x(T + T1) =

r1∑

i=1

h1i(z1(T ))A1ix(T )

= A1zx(T )

(1)

and

x(T + T2) =

r2∑

i=1

h2i(z2(T ))A2ix(T )

= A2zx(T )

(2)

where x denotes the state vector, T is the current time,
T1 and T2 are the sampling periods of the subsystems
(i.e., the two subsystems may have different sampling
times), r1 and r2 are the number of rules, z1 and z2

are the scheduling vectors, h1i, i = 1, 2, . . . , r1 and h2i,
i = 1, 2, . . . , r2 normalized membership functions, and
A1i, i = 1, 2, . . . , r1 and A2i, i = 1, 2, . . . , r2 the local
models.

We consider periodic systems, i.e., the two subsystems
defined above are activated is a sequence 1, 1, . . . , 1

︸ ︷︷ ︸

p1

,

2, 2, . . . , 2
︸ ︷︷ ︸

p2

, 1, 1, . . . , 1
︸ ︷︷ ︸

p1

, etc., where p1 and p2 denote the

periods of the subsystems.

In what follows, 0 and I denote the zero and identity
matrices of appropriate dimensions, and a (∗) denotes
the term induced by symmetry. The subscript z + 1 (as
in A1z+1) stands for the scheduling vector evaluated at
the next sampling time. Note that depending on the
subsystem, the next sampling instant may be T + T1 or
T + T2.

To derive stability conditions for periodic systems, we will
make use of the following result:

Lemma 1. (Skelton et al., 1998) Consider a vector x ∈
R

nx and two matrices Q = QT ∈ R
nx×nx and R ∈ R

m×nx

such that rank(R) < nx. The two following expressions are
equivalent:

(1) x
T Qx < 0, x ∈ {x ∈ R

nx ,x 6= 0, Rx = 0}
(2) ∃H ∈ R

m×nx such that Q + HR + RT HT < 0

2.2 Stability analysis

In this section, we consider the simplest case when the two
subsystems defined in Section 2.1 are switched at every
sampling time, i.e., p1 = p2 = 1. For such systems, the
following results can be stated:

Theorem 1. The periodic TS system composed of the
subsystems (1) and (2), with periods p1 = p2 = 1 is
asymptotically stable, if there exist P1i = PT

1i > 0, M1i,
i = 1, 2, . . . , r1, P2i = PT

2i > 0, M2i, i = 1, 2, . . . , r2, so
that the following conditions are satisfied:

(
−P1z (∗)

M2zA2z −M2z − MT
2z + P2z+1

)

< 0

(
−P2z (∗)

M1zA1z −M1z − MT
1z + P1z+1

)

< 0

(3)

Proof: Consider the switching Lyapunov function, similar
to the one used by Daafouz et al. (2002),

V (x(T ), T ) =

{
x(T )T P1zx(T ) active subsystem was 1

x(T )T P2zx(T ) otherwise

Then the difference in the Lyapunov function is either

V (x(T + T2), T + T2) − V (x(T ), T ) =
(

x(T )
x(T + T2)

)T (
−P1z 0

0 P2z+1

)(
x(T )

x(T + T2)

)

if the switching is from the first subsystem to the second
one (Case 1), or

V (x(T + T1), T + T1) − V (x(T ), T ) =
(

x(T )
x(T + T1)

)T (
−P2z 0

0 P1z+1

)(
x(T )

x(T + T1)

)

if the switching is from the second subsystem to the first
one (Case 2).

Consider first Case 1. We have

∆V =

(
x(T )

x(T + T2)

)T (
−P1z 0

0 P2z+1

)(
x(T )

x(T + T2)

)

together with the system dynamics, which is

(A2z −I)

(
x(T )

x(T + T2)

)

= 0

since during the time [T, T + T2], the second subsystem
is active. Using Lemma 1, the difference in the Lyapunov
function is negative definite, if there exists H such that

(
−P1z 0

0 P2z+1

)

+ H (A2z −I) + (∗) < 0

Choosing H =

(
0

M2z

)

leads directly to

(
−P1z (∗)

M2zA2z −M2z − MT
2z + P2z+1

)

< 0

For Case 2, we have

∆V =

(
x(T )

x(T + T1)

)T (
−P2z 0

0 P1z+1

)(
x(T )

x(T + T1)

)

and the dynamics

(A1z −I)

(
x(T )

x(T + T1)

)

= 0

which, by choosing H =

(
0

M1z

)

leads to

(
−P2z (∗)

M1zA1z −M1z − MT
1z + P1z+1

)

< 0 2

3. STABILITY ANALYSIS OF PERIODIC SYSTEMS

In the previous section, we considered the special case
when the subsystems are switching at each sample time.
Consider now the case when the subsystems switch after
p1, respectively p2 samples. Then, the following result can
be stated.



Theorem 2. The periodic TS system composed of the
subsystems (1) and (2), with periods p1 ≥ 1 and p2 ≥ 1
is asymptotically stable, if there exist P1i = PT

1i > 0, M1i,
i = 1, 2, . . . , r1, P2i = PT

2i > 0, M2i, i = 1, 2, . . . , r2, so
that the following conditions are satisfied:







−P1z (∗) . . . (∗)

M2zA2z −M2z − M
T
2z . . . (∗)

.

.

.
.
.
.

.

.

.
.
.
.

0 0 M2z+p2−1A2z+p2−1 Ω2z+p2







< 0







−P2z (∗) . . . (∗)

M1zA1z −M1z − M
T
1z . . . (∗)

.

.

.
.
.
.

.

.

.
.
.
.

0 0 M1z+p1−1A1z+p1−1 Ω1z+p1







< 0

(4)

where Ω1z+p1
= −M1z+p1−1 − MT

1z+p1−1 + P1z+p1
, and

Ω2z+p2
= −M2z+p2−1 − MT

2z+p2−1 + P2z+p2
, and the sub-

script z +α denotes the scheduling vector being evaluated
at time T +αT1 or T +αT2, depending on which subsystem
is active.

Proof: Consider again the switching Lyapunov function

V (x(T ), T ) =

{
x(T )T P1zx(T ) active subsystem was 1

x(T )T P2zx(T ) otherwise

defined only in the time instants when the system dynam-
ics switches from one subsystem to another.

Then the difference in the Lyapunov function is either

V (x(T + p2T2), T + p2T2) − V (x(T ), T ) =
(

x(T )
x(T + p2T2)

)T (
−P1z 0

0 P2z+p2

) (
x(T )

x(T + p2T2)

)

if the switching is from the first subsystem to the second
one (Case 1), or

V (x(T + p1T1), T + p1T1) − V (x(T ), T ) =
(

x(T )
x(T + p1T1)

)T (
−P2z 0

0 P1z+p1

) (
x(T )

x(T + p1T1)

)

if the switching is from the second subsystem to the first
one (Case 2).

Consider first Case 1. We have

∆V =

(
x(T )

x(T + p2T2)

)T (
−P1z 0

0 P2z+p2

)(
x(T )

x(T + p2T2)

)

together with the system dynamics, which is






A2z −I 0 . . . 0
0 A2z+1 −I . . . 0
...

...
...

...
...

0 0 0 . . . −I












x(T )
...

x(T + p2T2)




 = 0

since during the time [T, T + p2T2], the second subsystem
is active. Using Lemma 1, the difference in the Lyapunov
function is negative definite, if there exists H such that







−P1z 0 . . . 0
0 0 . . . 0
...

...
...

...
0 0 . . . P2z+p2







+ H







A2z −I 0 . . . 0
0 A2z+1 −I . . . 0
...

...
...

...
...

0 0 0 . . . −I







+ (∗) < 0

Choosing

H =









0 0 . . . 0
M2z 0 . . . 0
0 M2z+1 . . . 0
...

...
...

...
0 0 . . . M2z+p2−1









leads directly to







−P1z (∗) . . . (∗)

M2zA2z −M2z − M
T
2z . . . (∗)

.

..
.
..

.

..
.
..

0 0 M2z+p2−1A2z+p2−1 Ω2z+p2







< 0

For Case 2, we have the dynamics







A1z −I 0 . . . 0
0 A1z+1 −I . . . 0
...

...
...

...
...

0 0 0 . . . −I












x(T )
...

x(T + p1T1)




 = 0

and by choosing

H =









0 0 . . . 0
M1z 0 . . . 0
0 M1z+1 . . . 0
...

...
...

...
0 0 . . . M1z+p1−1









we obtain






−P2z (∗) . . . (∗)
M1zA1z −M1z − MT

1z . . . (∗)
...

...
...

...
0 0 M1z+p1−1A1z+p1−1 Ω1z+p1







< 0

2

Remarks:

(1) The conditions of Theorems 1 and 2 can easily be
transformed into LMIs, and the relaxations of (Wang
et al., 1996) or (Tuan et al., 2001) can be used.

(2) When developing the conditions we exploited the
fact that the subsystems switch in finite time. If the
system can remain in one mode (i.e., one of the sub-
systems can be continuously active), the developed
conditions are not sufficient to guarantee stability of
the whole system. However, similar conditions can be
derived.

(3) Also due to the fact that the subsystems switch in
finite time, it is not necessary that the local models of
the TS subsystems or even the subsystems themselves
to be stable, as it will be illustrated in the next
section. Indeed, neither the conditions of Theorem 1,
nor those of Theorem 2 require the subsystems to be
stable.

(4) Although the conditions of Theorems 1 and 2 concern
only two subsystems, they can be easily extended to a
fixed number of subsystems, leading to the conditions:
the periodic system with n subsystems, each having
period pi is asymptotically stable, if there exist Pij =
PT

ij > 0, Mij, i = 1, 2, . . . , n, j = 1, 2, . . . , ri so that
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Fig. 1. Trajectories of the second subsystem – example 1.






−Piz (∗) . . . (∗)
Γi0 −Mi+1z − MT

i+1z . . . (∗)
...

...
...

...
0 0 Γi,pi+1

Ωi+1z+pi+1







< 0

(5)
with Γij = Mi+1z+j−1Ai+1z+j−1, i = 1, 2, . . . , n,
j = 0, 1, . . . , pi+1, Ωi+1z+pi+1

= −M1z+pi+1−1 −

MT
1z+pi+1−1 + P1z+pi+1

and the n + 1th subsystem by
definition being the first one.

4. EXAMPLES

In this section we illustrate the use of the developed
conditions on numerical examples.

Consider the switching fuzzy system with two subsystems
as follows:

x(T + T1) =

2∑

i=1

h1i(z1(T ))A1ix(T )

with

A11 =

(
−0.16 −0.1
0.4 0.7

)

A12 =

(
−1.1 −0.15
−0.67 0.24

)

with T1 = 1, h11 randomly generated in [0, 1], h12 = 1−h11

and

x(T + T2) =

2∑

i=1

h2i(z1(T ))A2ix(T )

with

A21 =

(
0.5 0.6
0.5 0.67

)

A22 =

(
0.4 −0.4
0.16 0.36

)

with T2 = 3, h21 = cos(x1)
2, h22 = 1 − h21.

Note that both A12 and A21 are unstable, their eigenvalues
being (−1.1712 0.3112) and (0.0307 1.1393), respectively.
The stability of the first subsystem depends on the exact
values of the membership functions, while the second
subsystem is locally stable, but not locally asymptotically
stable (see Figure 1). Moreover, since the local models
are unstable, this means that existing methods from the
literature cannot be applied to prove the stability of this
switching system.

However, by switching between the two subsystems at
every time step, the whole system is asymptotically stable,
as illustrated in Figure 2.
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Fig. 2. Trajectories of the switching system – example 1.

Note that for this switching system it is not possible to find
either a quadratic or a nonquadratic Lyapunov function,
as the corresponding LMIs become unfeasible.

According to the proposed approach, we consider the
switching Lyapunov function

V (x(T ), T ) =

{
x(T )T P1zx(T ) active subsystem was 1

x(T )T P2zx(T ) otherwise

with P1z = h11(T )P11 + h12(T )P12, P2z = h21(T )P21 +
h22(T )P22.

The LMIs corresponding to the conditions of Theorem 1,
when using the relaxation of Wang et al. (1996) are

Γiik < 0

Γijk + Γjik < 0
(6)

where

Γijk =

(
−P1i (∗)

M2iA2j −M2i − MT
2i + P2k

)

or

Γijk =

(
−P2i (∗)

M1iA1j −M1i − MT
1i + P1k

)

By solving 1 the conditions (6), we obtain

P11 =

(
4.4614 2.3067
2.3067 7.1567

)

P12 =

(
5.0813 −0.6803
−0.6803 6.0733

)

M11 =

(
6.6673 −0.7481
1.2718 6.9281

)

M12 =

(
6.6673 −0.7481
1.2718 6.9281

)

P21 =

(
8.0167 −1.8734
−1.8734 6.5859

)

P22 =

(
13.3010 −2.7835
−2.7835 4.3840

)

M21 =

(
9.8200 −3.7586
−0.6206 6.9846

)

M22 =

(
10.86 −1.744
−1.993 6.46

)

and thereby prove the stability of the switching system.

To illustrate the conditions of Theorem 2, consider the
periodic fuzzy system with two subsystems as follows:

x(T + T1) =

2∑

i=1

h1i(z1(T ))A1ix(T )

with

A11 =

(
−0.44 −0.26
−0.65 0.62

)

A12 =

(
1.1 −0.2
0.53 −0.27

)

1 For solving LMIs, the feasp function of Matlab has been used, with
the default options.
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Fig. 3. Trajectories of the switching system – example 2.

with T1 = 1, h11 randomly generated in [0, 1], h12 = 1−h11

and

x(T + T2) =

2∑

i=1

h2i(z1(T ))A2ix(T )

with

A21 =

(
0.02 0.6
−0.22 −0.44

)

A22 =

(
0.32 −0.15
−1 0.8

)

with T2 = 3, h21 = cos(x1)
2, h22 = 1 − h21.

The local models A12 and A22 are unstable, their eigenval-
ues being (1.0177 −0.1877) and (0.1044 1.0156), respec-
tively. Again, this means that existing results from the
literature cannot be applied. By switching between the
two subsystems with a period p1 = 2 for the first subsys-
tem and p2 = 3 for the second subsystem, the resulting
switching system is asymptotically stable, as illustrated in
Figure 3.

For this switching system it is not possible to find either
a quadratic or a nonquadratic Lyapunov function, as the
corresponding LMIs become unfeasible.

The conditions of Theorem 2 concerning the first subsys-
tem are (the LMIs are obtained similarly for the second
subsystem)





−P2z (∗) (∗)
M1zA1z −M1z − MT

1z (∗)
0 M1z+1A1z+1 −M1z+1 − MT

1z+1 + P2z+2



 < 0

that is,

2∑

i,j,k,l,m=1




−P2i (∗) (∗)
M1iA1j −M1i − MT

1i (∗)
0 M1jA1k −M1j − MT

1k + P2m



 < 0

for which relaxations such as those in (Wang et al., 1996)
or (Tuan et al., 2001) can be used. In this paper, we used
the relaxations of (Wang et al., 1996), and obtained

P11 = P12 =

(
0.1984 −0.0815
−0.0815 0.2034

)

M11 = M12 =

(
0.1973 −0.0711
−0.0537 0.1662

)

P21 = P22 =

(
0.2395 0.0035
0.0035 0.0867

)

M21 = M22 =

(
0.2215 0.0139
−0.0153 0.1214

)

Consequently, the periodic TS model is asymptotically
stable.

5. CONCLUSIONS

In this paper we have developed conditions for the stability
of periodic TS systems. For this, we used a switching
Lyapunov function, defined in the points where the sub-
systems themselves switch. The conditions can guarantee
the stability of periodic systems even if the local models
or even the subsystems are unstable.
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