
Experimental application of Takagi-Sugeno
observers and controllers in a nonlinear

electromechanical system
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∗∗Universidad Politécnica de Valencia, 46020 Valencia, Spain.

{asala,pggil}@isa.upv.es
∗∗∗Universitat Jaume I, 12071 Castelló de la Plana, Spain.
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Abstract: In this paper, a systematic methodology to design fuzzy Takagi-Sugeno observers and
controllers will be used to estimate the angular positions and speeds, as well as to stabilise an
experimental mechanical system with 3 degrees of freedom (fixed quadrotor). Takagi-Sugeno observers
and controllers are compared to observers and controllers based on the linearized model, both designed
with the same optimization criteria and design parameters. Experimental results confirm that Takagi-
Sugeno models and observers behave similarly to linear ones around the linearization point, but have a
better performance over a larger operating range, as intuitively expected.

Keywords: Takagi-Sugeno (T-S) fuzzy model, Observer-based control, Linear matrix inequalities
(LMIs), Experimental application.

1. INTRODUCTION

Takagi-Sugeno (Takagi and Sugeno, 1985) fuzzy models are
able to exactly represent a complex dynamic system by inter-
polating the behaviour of several LTI (Linear Time Invariant)
submodels (Lee et al., 2001; Tanaka et al., 1998). Also, approxi-
mately, such models may be obtained by blending linearizations
in several operation points (Tanaka and Wang, 2001; Zhang
and Zeng, 2012). TS models are currently being used for a
large class of physical and industrial processes, in a wide range
of application areas (Abdelazim and Malik, 2005; Liu, 2007;
Marx et al., 2007; Lendek et al., 2010b; Hidayat et al., 2010).

The linear matrix inequality (LMI, (Boyd et al., 1994)) frame-
work allows designing controllers and observers for such TS
fuzzy systems (Tanaka and Wang, 2001; Lendek et al., 2010a;
Guelton et al., 2012), as well as static output feedback ones
(Dong and Yang, 2007). The reader is referred to (Feng, 2006;
Sala et al., 2005; Sala, 2009) for ample reference on the
achievements and perspectives of fuzzy control.

In particular, the design of state observers for non-linear sys-
tems using TS models has been actively considered during
the last decades (Benhadj and Rotella, 1995; Lendek et al.,
2010d). Observers for TS systems are easily developed in the
case of measurable premise variables: several types of ob-
servers have been developed for TS fuzzy systems, among
which: fuzzy Thau-Luenberger observers (Tanaka et al., 1998),
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reduced-order observers (Bergsten et al., 2002), and sliding-
mode observers (Palm and Bergsten, 2000). These observers are
designed such that the estimation error dynamics are asymp-
totically stable. In general, the design methods lead to an
LMI feasibility problem, for which efficient algorithms exist.
Unmeasurable premise variables present more difficulties and
limitations; some results in such a case are reported in (Guerra
et al., 2006; Lendek et al., 2010d,c; Tanaka et al., 2011).

This paper presents the design of a fuzzy TS observer and a
controller for an electromechanical system with 3 degrees of
freedom (a 3DoF fixed quadrotor from Quanser c©). Its first-
principle rigid-body model is nonlinear and nonlinearities also
arise in the propeller. The problem dealt with in this work is
related to rigid-body attitude control (Marcu, 2011), although
the fixed 3DoF setup makes it a different one to the full 6DoF
problem and allows for a different, more complete, instrumen-
tation (particularly encoders). Hence, the proposed system may
be a sensible benchmark for nonlinear control and observation
techniques. As nonlinearities around the equilibrium point are
smooth, modelling and control can be carried out by using
nonlinear Takagi-Sugeno (TS) models.

The resulting observer and controller are experimentally tested,
and their performance is compared with a linear observer and
controller designed in a similar manner (i.e., with the same
LMIs and performance criteria).

In order to accomplish the design goals, the techniques in
(Lendek et al., 2010b) (observers) and (Wu and Cai, 2006)
(guaranteed-cost control) have been refined and adapted to the
particular application problem in consideration.



The contributions of this paper are, first, formalising a discrete-
time disturbance-rejection LMI for observers with unmeasur-
able premises and proposing a simple improvement to the
methodology to obtain a bound on some uncertain term ap-
pearing in the error dynamics; second, exploring in detail its
adaptation to the 3DoF electromechanical quadrotor model and
experimentally assessing the possible advantages with respect
to a linearised output-feedback controller when closing the
loop with a robust guaranteed-cost controller. In (Lendek et al.,
2011), a preliminary conference version of part of the work
was outlined. Here, the procedure to compute the observer
mismatch term later denoted as µ and a closed-loop robust
fuzzy guaranteed-cost control have been developed, with the
experiments to illustrate its performance.

The paper is organized as follows: Section 2 presents the sec-
tor nonlinearity approach that will be used for obtaining the
TS representation of the quadrotor’s model and conditions for
observer and controller design. The platform and the mathemat-
ical model of the quadrotor are described in Section 3. The TS
modeling of the quadrotor is realized in Section 4, the observers
are designed in Section 5 and the controller design is shown in
Section 6. Section 7 presents experimental results and, finally,
Section 8 provides some conclusions.

2. PRELIMINARIES: TS MODELS, OBSERVERS AND
CONTROLLERS

Consider a non-linear system
x[k +1] = f (ρ[k])x[k]+g(ρ[k])u[k]

y[k] = Cx[k]
(1)

with f and g smooth non-linear matrix functions, x ∈ Rn the
state vector, u∈Rnu the input vector, y∈Rny the measurement
vector, ρ[k] some vector function of x, y, and u, denoted in
literature as “premise” or “scheduling” vector. All variables
are assumed to be bounded on a compact set Cxyu. In the
so-called Takagi-Sugeno systems and controllers, the premise
vector usually includes elements of the state x, as follows.

Takagi-Sugeno Models. The sector-nonlinearity technique can
be applied to the above system in order to obtain a so-called TS
model. Basically, following (Tanaka and Wang, 2001; Ohtake
et al., 2001), let nl j(·) ∈ [nl j, nl j], j = 1, 2, . . . , p be the set of
bounded non-linearities in f and g, i.e., components of either f
or g. An exact TS fuzzy representation of (1) can be obtained
by constructing first the weighting functions

w j
0(·) =

nl j−nl j(·)
nl j−nl j

w j
1(·) = 1−w j

0(·) (2)

for each nonlinearity j = 1, 2, . . . , p, and defining the so-called
membership functions as

hi(ρ [k]) =
p

∏
j=1

w j
i j
(ρ j[k]) (3)

with i = 1, 2, · · · , 2p, i j ∈ {0,1}. These membership functions
are normal, i.e.,

r

∑
i=1

hi(ρ[k]) = 1 hi(ρ [k])≥ 0, i = 1, 2, . . . , r

and r = 2p, where r is the number of rules. For instance,
nl1(x) = sin(x) can be expressed in the interval [−2,2] as an
interpolation sin(x)≡ w1

0(x) · (1 · x)+w1
1(x) · (sin(2)/2 · x).

Using the membership functions defined in (3), an exact repre-
sentation of (1) is given as:

x[k +1] =
r

∑
i=1

hi(ρ[k])(Aix[k]+Biu[k])

y[k] =Cx[k]
(4)

with r the number of local linear models, Ai and Bi matrices of
proper dimensions, with i = 1, 2, . . . , r, and hi defined as in (3).
The reader is referred to (Tanaka and Wang, 2001) for ample
detail on TS modelling.

TS observers. In general, an observer designed for the model
(4) has the form

x̂[k +1] =
r

∑
i=1

hi(ρ̂ [k])
(

Aix̂[k]+Biu[k]+Li(y[k]− ŷ[k])
)

ŷ[k] = Cx̂[k]
(5)

where ρ̂ denotes the estimated scheduling vector and Li, i =
1, . . . ,r, are the observer gains. The observer design problem is
to calculate the values of Li such that the estimation error con-
verges to zero. Approaches to TS observer designs in literature
have been considered in (Lendek et al., 2010b, 2009, 2010e).

For the particular case in which all Bi are equal, the dynamics
of the estimation error, e[k] = x[k]− x̂[k], are given by (Lendek
et al., 2010d):

e[k +1] =
r

∑
i=1

hi(ρ̂[k])(Ai−LiC)e[k]

+
r

∑
i=1

(hi(ρ [k])−hi(ρ̂[k]))(Aix[k])
(6)

If the memberships derivatives are continuous, there exists a
µ > 0 so that for all k,

‖
r

∑
i=1

(hi(ρ[k])−hi(ρ̂ [k]))Aix[k]‖ ≤ µ‖e[k]‖ (7)

i.e., the last term in (6) tends to zero as ρ̂[k] approaches ρ[k].
The Appendix will discuss a variation in order to obtain the
smallest possible bound µ .

Inspired by the developments in (Lendek et al., 2010d) using
the above bound, the estimation error dynamics (6) is asymp-
totically stable if there exists a positive definite matrix P and
generic matrices Mi such that (Hidayat et al., 2010) the LMIs
below hold:


P−µ2I ∗ ∗

PAi−MiC P ∗
0 P I


 > 0 i = 1, . . . , r (8)

Once the solution is found, the observer gains are Li =
P−1Mi. Section 5 will present a more general result involving
disturbance-rejection bounds.

TS controller. As discussed in the introduction, in the liter-
ature many proposals exist for controlling TS systems. In the
present quadrotor application a guaranteed-cost (GC) control
strategy has been tested. Some GC proposals appear in (Wu
and Cai, 2004; Tanaka et al., 2009); in (Ariño et al., 2010) state
and input constraints are considered (resulting, however, in an
iterative non-LMI procedure).

The following discrete-time fuzzy model with parameter uncer-
tainties (9) has been considered (Wu and Cai, 2006) for control
design:



x[k +1] =
r

∑
i=1

hi(ρ[k])(Aix[k]+4Ai[k])

+(Bi +4Bi[k])u[k], x(0) = x0

z[k] =
r

∑
i=1

hi(ρ [k])Cix[k]+Diu[k]

(9)

where4Ai[k] and4Bi[k] represent the time-varying parametric
uncertainties of the system, having the following structure:

(4Ai[k] 4Bi[k]) = HF [k](E1i E2i) (10)
where F [k] is an unknown time-varying matrix that satisfies:

F [k]T F [k]≤ I (11)

The terms H, E1i, and E1i of (10) are known constant matrices
with appropiate dimensions that specify how the uncertain
parameters in F [k] affect the nominal matrices Ai and Bi, see
(Wu and Cai, 2006).

Define the performance index as follows:

J =
∞

∑
k=1

zT [k]z[k] (12)

The objective of the control design is to obtain the lowest-
possible guaranteed upper bound for J for an initial state
lying in a prescribed region (defined below with a quadratic
inequality). This strategy is denoted in literature as guaranteed-
cost (GC) control.

Consider now a so-called parallel-distributed compensator
(PDC) controller widely used in literature as:

u =
r

∑
i=1

hi(ρ[k])Kix[k] (13)

where Ki ∈ Rmxn, i = 1, . . . , r are feedback gain matrices to
be determined. The chosen control design technique in the
application in this paper is based on the result below:
Theorem 1. ((Wu and Cai, 2006)). If there exist a common ma-
trix X > 0, matrices Yj, j ∈ S and a scalar ε > 0 satisfying the
following LMIs:

Ψii < 0, i = 1, . . . , r
Ψi j +Ψ ji < 0, i < j, i, j = 1, . . . , r,[

Z ∗
U X

]
> 0

(14)

where Ψi j is given by

Ψi j ,




−X 0 0 AiX +BiYj εH
∗ −εI 0 E1iX +E2iYj 0
∗ ∗ −I CiX +DiYj 0
∗ ∗ ∗ −X 0
∗ ∗ ∗ ∗ −εI


 (15)

then there exists a fuzzy controller (13) such that the closed-
loop fuzzy system is quadratically stable and the performance
index satisfies

J 6 trace{Z} (16)
for all admissible parameter uncertainties if the initial state is in
the set

Ω0 = {x0 |x0 = Uv,vT v≤ 1}
The state feedback gain matrices are given by

K j = YjX−1

By minimising the trace of Z, the optimal bound and its associ-
ated controller gains are obtained via convex optimization with
well-known software tools.

Note that in the case of common B, which is true in our quadro-
tor model, only a single-sum expression has to be evaluated, as
AiX +BiYj will be replaced by AiX +BYi, and E1iX +E2iYj will
change to E1iX +E2Yi (details omitted for brevity).

Of course, apart from the robust guaranteed-cost choice above,
other possible controller design strategies from literature might
also be used (H∞, L1, decay-rate or even combining several
LMIs to set up a multicriteria approach (Zhang and Zeng,
2012)).

Note that, when implemented, the estimated state feedback

u =
r

∑
i=1

hi(ρ̂ [k])Kix̂[k]

will actually be used. If the initial conditions are close enough
to the origin (so that, in the transient, the state does not exit
the region in which the bound µ has been computed in (7))
the observer LMIs ensure x̂ → x and ρ̂ → ρ and input-to-
state argumentations would ensure stability (see also (Bergsten,
2001; Tanaka et al., 2011)). Theoretical determination of such
initial domain of attraction with low conservativeness is a
matter of current research, but the methodologies in this section
have proved successful in the practical application this paper
describes.

3. DESCRIPTION OF EXPERIMENTAL PLATFORM

This section describes the physical plant to be controlled, the
computing platform and the nonlinear model.

Controlled process. The experimental platform chosen to
evaluate the performance of the designed fuzzy control is a
three degrees of freedom (3DOF) system (Quanser, 2011). The
hardware platform, shown in Figure 1, consists in a quadrotor
mounted on a 3 DOF pivot joint, such that the body can freely
move in roll, pitch, and yaw. The sensors of the platform are
encoders that measure the position of the three orientation-axes
of the quadrotor φ , θ , and ψ . With the available sensors, the
angular velocities cannot be measured. The control inputs are
the voltages V1, V2, V3, and V4 applied to the 4 propellers of the
quadrotor.

Computing platform. A PC running Linux-RT, a soft RTOS
distributed with a GNU GPLv2 license is provided to imple-
ment the control algorithms, on top of an Ubuntu installation.
The communications between the PC and the quadrotor plat-
form were made with a PMC I/O target. Linux RT is a Linux
O.S. with a patch whose objective is to minimize the amount of
kernel code that is nonpreemptible. In this way, faster sampling
periods with more reliable real-time guarantees (reduced sam-
pling period jitter) can be implemented. The controller has been
implemented in C++, using the newmat matrix library available
in Ubuntu repositories. With the above operating system and an
Intel I3 processor at 3.3 GHz, the computing power was ample
enough to execute the fuzzy observation and control loop with
a sampling period of 5 ms.

Nonlinear model. The non-linear model of the platform is
presented in the following equations, as given in (Bouabdallah,
2007) from approximating the Euler equations of motion:



Figure 1. The Quanser c© quad-rotor 3DoF system.

φ̈ =
Jrθ̇
Ixx

Kv(V1 +V3−V2−V4)+
Iyy− Izz

Ixx
θ̇ ψ̇ +u1

θ̈ =
Jrφ̇
Ixx

Kv(−V1−V3 +V2 +V4)+
Izz− Ixx

Iyy
ψ̇φ̇ +u2

ψ̈ =
Ixx− Iyy

Izz
θ̇ φ̇ +u3

(17)

where each acceleration input (u1, u2, u3) depends on the
applied voltages as follows:

u1 =
blK2

v (V 2
2 −V 2

4 )
Ixx

u2 =
blK2

v (V 2
3 −V 2

1 )
Iyy

u3 =
dK2

v (V 2
1 −V 2

2 +V 2
3 −V 2

4 )
Izz

(18)

from the nonlinear propellers’ actuation 1 approximately pro-
portional to the square of the rotor speed (in turn, to the input
voltage). The symbols used and their values in physical units,
where applicable, are given in Table 1 (extracted from the man-
ufacturer’s documentation in (Quanser, 2011)).

For observer design purposes, in what follows, the input signals
will be considered to be the transformed signals ui. A suitable
inversion will be made to compute the actual voltages in closed-
loop control (see later).

The input voltages Vi, i = 1, 2, 3, 4, are limited by the drivers,
Vi ∈ [Vmin, Vmax], with Vmin = −10V and Vmax = 10V. We
considered that the angular velocities φ̇ , θ̇ , ψ̇ are bounded,
φ̇ , θ̇ , ψ̇ ∈ [dαmin, dαmax], with dαmin =−π/4 rad/s and dαmax =
π/4 rad/s. The maximum pitch and roll angles are assumed to
be π/2 rad, while the maximum yaw angle is also π rad.

4. DISCRETE TS MODELING OF THE 3DOF
QUADROTOR

In this section an exact TS representation of the discretized
3DOF model is developed. The TS model will be used later
to design the non-linear observer and state-feedback controller
for the quadrotor system.
1 The square is shorthand for sign(Vi)V 2

i to account for upwards and down-
wards thrust.

Table 1. Quadrotor variables and parameters

Symbol Meaning Type Units
φ Roll angle Measured rad
φ̇ Roll angular velocity Estimated rad/s
θ Pitch angle Measured rad
θ̇ Pitch angular velocity Estimated rad/s
ψ Yaw angle Measured rad
ψ̇ Yaw angular velocity Estimated rad/s
Vi Voltage applied to propeller i Known input V
Kv Transformation constant 54.945 rad s/V
Jr Rotators inertia 6 ·10−5 kgm2

Ixx Inertia X-axis 0.0552 kgm2

Iyy Inertia Y-axis 0.0552 kgm2

Izz Inertia Z-axis 0.1104 kgm2

b Thrust coefficient 3.935139∗10−6 N/Volt
d Drag coefficient 1.192464∗10−7 Nm/Volt
l Distance from pivot to motor 0.1969 m
m Mass 2.85 kg
g Acceleration due to gravity 9.81 m/s2

Ts Sampling time 0.005 s

The gyroscopic effects in the roll and pitch dynamics contain
the term Kv(V1 +V3−V2−V4), which is the sum of the (known)
inputs. This term is denoted by

ug = Kv(V1 +V3−V2−V4)
Furthermore, to simplify the notations, the terms containing
the moments of inertia of the 3DOF quadrotor are denoted as
Ixyz = Ixx−Iyy

Izz
, Iyzx = Iyy−Izz

Ixx
, and Izxy = Izz−Ixx

Iyy
.

With the notations presented above, the model (17) is rewritten
as

φ̈ =
Jrθ̇
Ixx

ug + Iyzxθ̇ ψ̇ +u1

θ̈ =−Jrφ̇
Ixx

ug + Izxyψ̇φ̇ +u2

ψ̈ = Ixyzθ̇ φ̇ +u3

(19)

The state vector x is defined as x = (φ , φ̇ , θ , θ̇ , ψ, ψ̇)T . Then,
one possible 2 representation of (19) is

ẋ = Acont(x)x+Bcu
y = Cx

with model matrices

Acont(x) =




0 1 0 0 0 0
0 0 0 Jr

Ixx
ug 0 Iyzxx4

0 0 0 1 0 0
0 − Jr

Ixx
ug 0 0 0 Izxyx2

0 0 0 0 0 1
0 Ixyzx4 0 0 0 0




Bc =




0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1




; C =

(1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

)

where xi denotes the ith variable of the state vector x.

Since the variables are measured in discrete time, with a sam-
pling period of 5 ms, a discrete-time observer will be designed.
It is assumed that the sampling period is small enough such
2 Due to the multiplication of the angular velocities, the matrix Acont(x) can
be defined in several ways. This is a well-known fact, i.e., TS models are not
unique and, sometimes, ones may be better than others (Sala, 2009).



that an Euler discretization can be effectively used for the
model (19). Consequently, the non-linear discrete-time model
is

x[k +1] = Ad(x[k])x[k]+Bdu[k]
y[k] = Cx[k]

(20)

with discrete-time model matrices given by

Ad(x[k]) =




1 Ts 0 0 0 0
0 1 0 Ts

Jr
Ixx

ug[k] 0 TsIyzxx4[k]
0 0 1 Ts 0 0
0 −Ts

Jr
Ixx

ug[k] 0 1 0 TsIzxyx2[k]
0 0 0 0 1 Ts
0 TsIxyzx4[k] 0 0 0 1




Bd = TsBc

(21)

To obtain an exact fuzzy representation of the non-linear model
(20), the sector non-linearity approach (Ohtake et al., 2001) is
used.

The non-constant terms in the matrix Ad(x[k]) are ug[k], x4[k],
and x2[k], therefore z[k] = (ug[k], x2[k], x4[k])T . Each of these
terms are bounded and their weighting functions are con-
structed as follows:

(1) The bounds on the term ug[k] can be computed based on
the bounds of the voltage input and are ug,min = 4KvVmin
and ug,max = 4KvVmax. The weighting functions are w0

1 =
ug,max−ug[k]
ug,max−ug,min

and w1
1 = 1−w0

1. The term ug[k] is expressed

as ug[k] = ug,minw0
1 +ug,maxw1

1.
(2) The bounds of x4[k] are the bounds of the angular veloc-

ity, dαmin and dαmax. The weighting functions are w0
2 =

dαmax−x4[k]
dαmax−dαmin

and w1
2 = 1−w0

2. The term x4[k] is expressed
as x4[k] = dαminw0

2 +dαmaxw1
2.

(3) x2[k] is also angular velocity, and its bounds and weighting
functions are the same as for x4[k]. Thus, the weighting
functions are w0

3 = dαmax−x2[k]
dαmax−dαmin

and w1
3 = 1−w0

3. The term
x2[k] is expressed as x2[k] = dαminw0

3 +dαmaxw1
3.

As shown above, there are three non-linearities. For each of
these nonlinearities we have 2 weighting functions, and there-
fore the fuzzy model will have 23 = 8 rules. The membership
functions are computed as (3), and the corresponding local
linear models are obtained by substituting the corresponding
values into the Ad matrix. For instance, the first membership
function and the corresponding consequent matrix are

h1(z[k]) = w0
1w0

2w0
3

A1 =




1 Ts 0 0 0 0
0 1 0 Ts

Jr
Ixx

ug,min 0 TsIyzxdαmin
0 0 1 Ts 0 0
0 −Ts

Jr
Ixx

ug,min 0 1 0 TsIzxydαmin
0 0 0 0 1 Ts
0 TsIxyzdαmin 0 0 0 1




Remark: Note that one of the premise variables in the fuzzy
model depends on the control action (ug depends on the pro-
pellers’ speed). It is not a problem in the observer design, as it
will assume u as known, but it will induce an algebraic loop
in the controller implementation. In order to approximately
solve it, ug may be computed with the control action applied
in the last sample. This is a reasonable solution as long as the
sampling period and the difference between consecutive inputs
is small enough and it has been the chosen option in this paper.

5. OBSERVER DESIGN

5.1 TS observer

In practice both the states and the measurements are corrupted
by noise, i.e., the system equations will now be written as

x[k +1] =
r

∑
i=1

hi(ρ[k])(Aix[k])+Bu+Qυ [k]

y[k] =Cx[k]+Rη [k]
(22)

where υ [k] and η [k] are the state transition noise (process noise)
and measurement noise, respectively.

The fuzzy observer is defined as

x̂[k +1] =
r

∑
i=1

hi(ρ̂ [k])(Aix̂[k]+Li(y[k]− ŷ[k]))+Bu

ŷ[k] =Cx̂[k]
(23)

and, hence, the error dynamics – taking into account the distur-
bances – is given by:

e[k +1] =
r

∑
i=1

hi(ρ̂[k])
(
(Ai−LiC)e[k]+ (Q −LiR)

(
υ [k]
η [k]

))

+
r

∑
i=1

(hi(ρ [k])−hi(ρ̂[k]))Aix[k]

(24)
with the observer-model mismatch assumed satisfying a Lips-
chitz condition:

‖
r

∑
i=1

(hi(ρ[k])−hi(ρ̂ [k]))Aix[k]‖ ≤ µ‖e[k]‖ (25)

Lemma 1. Consider the model (22). If, given β > 0 the LMI
optimization problem below is feasible for some P > 0 and Mi
decision variables:



β 2P−µ2I ∗ ∗ ∗ ∗
0 γI ∗ ∗ ∗
0 0 I ∗ ∗

PAi−MiC PQ −MiR P P ∗
D 0 0 0 γI


 > 0

∀ i = 1, . . . , r

(26)

Then:

(1) the obtained γ is a bound for the disturbance rejection
performance, in induced 2-norm (H∞ in a linear case),
i.e.:

‖De‖2 ≤ γ‖Iω‖2 (27)
where D is an arbitrary user-defined weigthing matrix,

(2) a decay rate β – i.e., there exists a bound ζ (e[0]) such
that ‖e[k]‖ ≤ ζ (e[0])β k – would be achieved in the
disturbance-free case.

Proof. Introducing the notation:

ξ [k] =
r

∑
i=1

(hi(ρ[k])−hi(ρ̂ [k]))(Aix[k])

Gρ̂ =
r

∑
i=1

(hi(ρ̂[k])(Ai−LiC)

ω[k] =
(

υ [k]
η [k]

)

Mρ̂ =
r

∑
i=1

(hi(ρ̂[k])(Q−LiR)

(28)



the closed-loop error dynamics can be expressed as:
e[k +1] = Gρ̂ e[k]+Mρ̂ ω[k]+ξ [k] (29)

and we have, by (25):
‖ξ [k]‖ ≤ µ‖e[k]‖ (30)

The disturbance rejection (27), multiplied by any arbitrary τ >
0, can be equivalently expressed as:

∞

∑
k=0

(
e[k]
ω[k]

)T (
γ−1τDT D 0

0 −γτI

)(
e[k]
ω[k]

)
≤ 0 (31)

Also, proposing a Lyapunov function V [k] = e[k]T Pe[k]:

V [k +1] =(Gρ̂ e[k]+Mρ̂ ω[k]+ Iξ [k])T

P(Gρ̂ +Mρ̂ ω[k]+ Iξ [k])
(32)

the well-known dissipation inequality may be stated:

V [k +1]−V [k]+ eT [k]γ−1τDT De[k]− γτω [k]T ω[k] < 0 (33)
so, if V (0) = 0, for any final instant N we have:

N

∑
k=0

eT [k]γ−1τDT De[k]− γτω[k]T ω [k] < 0 (34)

and, hence, taking N → ∞, we have (27).

Then, to take into account the bounding of the observer model
mismatch (30), as S-procedure Lagrange multiplier τ is intro-
duced and the Lyapunov decrease V [k +1]−V [k] is changed to
a decay-rate condition V [k+1]−V [k]≤V [k+1]−β 2V [k] < 0,
resulting in:

V [k +1]−β 2V [k]+ τ ∗ ((e[k])T µ2I(e[k])−ξ [k]T Iξ [k])

+
(

e[k]
ω[k]

)T (
γ−1τDT D 0

0 −γτI

)(
e[k]
ω[k]

)
< 0

(35)

Defining now κT =
(
e[k]T ω [k]T ξ [k]T

)
, we have:

κT




GT
ρ̂

GT
ρ̂

I


PP−1P

(
Gρ̂ Mρ̂ I

)
κ+

+κT



−β 2P+ µ2τI + γ−1τDT D 0 0

0 −γτI 0
0 0 −τI


κ < 0 (36)

Assuming τ = 1, with no loss of generality as P can be scaled
also by τ , and using Schur complement twice, we get:



−β 2P+ µ2I 0 0 GT
ρ̂ P DT

0 −γI 0 MT
ρ̂ P 0

0 0 −I P 0
PGρ̂ PMρ̂ P −P 0

D 0 0 0 −γI




< 0 (37)

and, replacing Mi = PLi the LMI (26) in the lemma is readily
obtained.

Note that the first condition would describe the “stationary”
performance whereas the second one would bound the conver-
gence rate in the initial instants of the observer operation where
errors would be likely larger due to initial condition mismatch.
Both performance measures are important in practice.

Summary of observer design parameters. The design param-
eters are:

• The process- and measurement-noise variances, Q and R,
which are analogous to those in standard linear observer

design (such as those designed with H2 –Kalman filter–
or H∞ criteria).

• A multicriteria performance objective (γ: disturbance at-
tenuation; β : decay rate). The most basic choice is β = 1
and minimizing gamma.

• A “scaling” matrix D: as different state variables have
different units, they must be scaled in order to be suitably
compared. These scalings are widely used in multivariable
control (Skogestad and Postlethwaite, 2007). Scaling D
also allows focusing the desired error performance on a
particular subset of the variables.

The rest of the elements are either model matrices or LMI
decision variables found by the optimization software. Note
that the Lipschitz constant µ is obtained from the model (see
Appendix).

In summary, the design parameters are not that different to what
an ordinary linear observer design would need (disturbance
sizes, scaling of the variables – diagonal weights –, optimiza-
tion of the attenuation factor/pole region).

For this platform the process noise affects mainly the accelera-
tion equations. Based on the properties of the platform, and on
different experimental trials, the design parameters are:

Q = diag(0.0001,1,0.0001,1,0.0001,1)

R = diag(8 ·10−4,8 ·10−4,8 ·10−4)
D = diag(10,0.038,10,0.038,10,0.038)
β = 1
µ = 0.03

The selected β = 1 indicates that only disturbance-rejection
performance is actually desired.

The methodology for the calculation of µ is given in Appendix.
The result, with the values of the platform, and bounding
the angular velocity of the quadrotor to 28 degree/s, give
a minimum µ = 0.03. As it will be seen in Section 7.1,
even though the theory does not assure higher velocities, in
the experiment, the results show a better performance of the
TS observer in a range of angular velocities exceeding the
theoretically proved one.

In total 8 observer gains have been obtained by solving (26).
For instance, the gain matrix for the first rule is:

LT S,1 =




1.1799 0.0000 −0.0000
35.9791 −0.4295 0.1508
−0.0000 1.1799 0.0000
0.4299 35.9791 −0.1509
0.0000 −0.0000 1.1918
0.0001 −0.0002 38.3548




The numerical values of the other seven gains obtained by the
LMI solver have been omitted for brevity.

5.2 Linear observer

In order to compare with a standard non-fuzzy design, a linear
observer is designed on the same criteria as the TS one.

To design this observer, first the non-linear model, presented in
(21), is linearised around x = 0, obtaining

x[k +1] = A0x[k]+Bdu[k]+ν [k]
y[k +1] = Cx[k +1]+η [k]

(38)



where A0 is the state matrix linearised at x = 0, Bd is the input
matrix, C is the measurement matrix, and ν [k] and η [k] have the
same interpretation as in (22).

A deterministic linear observer is considered. The resulting
equation is:

x̂[k +1] = A0x̂[k]+Bdu[k]+LL(y[k]−Cx̂[k])

where LL denotes the observer gain. This gain is computed by
solving the matrix inequality (26), similarly to the TS observer
design (considering µ = 0).

The obtained single linear gain is:

LL =




1.0509 −0.0000 −0.0000
10.1863 −0.0000 −0.0000
−0.0000 1.0509 0.0000
−0.0000 10.1863 0.0000
−0.0000 0.0000 1.0509
−0.0000 0.0000 10.1863




Hence, the linear observer uses only one observer gain and one
model whereas the TS one interpolates between eight gains and
eight models.

The difference in the values of the observer gains can be
explained by the effect that µ has on the LMI of the TS: as
expected, a more uncertain “state equation” results in higher
sensor-to-state gains to compensate for uncertainty with higher-
gain feedback.

The obtained values for γ are 124.1009 for the TS observer
and 107.7917 for the linear observer. As expected, the linear
observer (one model) obtains a better bound in the vicinity
of the origin than the TS observer which takes into account
nonlinearities: it is easier to observe a single process than a
nonlinear combination of eight of them. Note, however, that as
the linear process is subject to a substantially larger modelling
error, experimental performance away from the linearization
point will not be better than the TS one even if the ideal γ might
make think that (see experiment section).

6. CONTROLLER DESIGN

In general, for TS systems with unmeasured premise variables,
the separation principle at the large does not hold. However,
as long as the initial conditions are sufficiently close to the
origin, and the trajectories do not exceed the largest Lyapunov
level set, stability is ensured (see (Bergsten, 2001; Tanaka et al.,
2011)). In this paper, to specifically account for the mismatch
introduced by the observer, we use a robust controller. Thus, the
design of the state feedback gain has incorporated modelling
errors, in order to approximately take into account both the un-
modelled plant dynamics regarding control and the difference
x− x̂ from the observer.

In particular, the matrices E and H are set up to incorporate
uncertainty in the equations governing the angular speed com-
putations. Hence, the proposed output equation of the con-
trolled variable z, with different state and intput weights, and
the uncertainty matrices are, in Matlab-like notation:

C =[blkdiag(3,0.65,3,0.65,6,1.3); zeros(3,6)]
D =[zeros(6,3); blkdiag(0.03,0.03,0.03)]

H =

[ 0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

]T

E1i =Ts · [H ·η1;zeros(3,6)]
E2i =Ts · [zeros(3,3); η2 · I]

(39)

where η1 = 0.2 and η2 = 0.2 are the magnitude of the un-
certainties in the angular speed and actuators, respectively, ob-
tained based on the values from Table 1, multiplying a matrix
F [k] of size 3× 6 in (11). In this way the uncertainty structure
yields:

∆Ai =




0 0 0 0 0 0
0 f11 0 f12 0 f13
0 0 0 0 0 0
0 f21 0 f22 0 f23
0 0 0 0 0 0
0 f31 0 f32 0 f33




∆B =




0 0 0
f14 f15 f16
0 0 0
f24 f25 f26
0 0 0
f34 f35 f36




(40)

which is reasonable as it matches the model structure (20).

The initial condition zone matrix U has been set as a block-
diagonal matrix with π/6 rad in the angular position entries
and π rad/s in the speed ones.

6.1 Robust linear controller

Solving (14), in total 8 controller gains have been obtained,
yielding what it would be a standard PDC TS controller. How-
ever, the gains were virtually identical, indicating that a robust
linear controller, instead of a robust PDC controller, can be
used.

The fact that a TS controller does not improve over a robust
linear one in most mechanical systems can be explained based
on passivity ideas and the spring-damper analogy of feeding
back position and speed: indeed, in a collocated mechanical
system with linear actuator a high-gain PD controller will al-
ways dissipate mechanical energy (J.-J.E. Slotine, 1991; Pe-
tersen and Lanzon, 2010) and, hence, stabilise the system. So,
unsurprisingly, the TS-PDC LMIs found that gain changes for
each of the models did not improve the obtained worst-case cost
bound.

From the above considerations, solving (14) again, considering
Yj = Y , i.e. reducing the PDC gains to a single shared linear
one, the non-fuzzy robust linear controller in (41) is obtained:

KRL =

(108.88 30.06 0 0 0 0
0 0 108.88 30.06 0 0
0 0 0 0 181.12 45.92

)
(41)

Note that the resulting controller is decoupled because the orig-
inal model (19) is also decoupled, i.e., there is no nominal
cross-talk between actuator channels (the chosen uncertainty
structure (40) allows for a limited amount of unmodelled cou-
pling, anyway). Actuator decoupling and linearisation was done
by solving (18) because inverting a known nonlinearity in the
actuator side reduces the complexity of the resulting controller
and, furthermore, avoided multiplying by 16 the number of
rules (indeed, introducing a TS model of V 2

1 , V 2
2 , V 2

3 , V 2
4 would

have led to a 128-rule model... which is rather involved and
impractical).



6.2 Linear controller (linearised model)

This gain is computed by solving the matrix inequality (14),
similarly to the TS controller design, but using only one model:
the linearisation at the origin. Hence, the linear controller
uses only one controller gain and one model whereas the
TS/robust linear ones use eight eight models. The resulting
linear controller gain matrix, with the same design parameters
and uncertainty description, is given in (42).

KLC =

(94.79 25.91 0 0 0 0
0 0 94.79 25.91 0 0
0 0 0 0 181.46 45.17

)
(42)

The obtained guaranteed-cost performance bounds are 1057 for
the linear robust controller and 1006 for the linear controller. As
in the observer case, the linearised model obtains a theoretically
slightly better performance, because there is no nonlinearity
to compensate for so controlling seems “easier”. However,
experiments in next section show that the linearised controller’s
performance is actually worse than the robust/TS one when
faced with the actual nonlinearities.

Note also that the gain in the yaw coordinates are the same in
the TS/Robust controller and in the linearised one because the
yaw dynamics is linear due to the quadrotor symmetry Ixyz = 0.

6.3 Propeller feedforward linearization

The designed controllers provide the transformed inputs in (18),
thus, there are four squared voltages to be computed from three
torque commands. As (18) in matrix form is:

(u1
u2
u3

)
=




0 blK2
v

Ixx
0 − blK2

v
Ixx

− blK2
v

Iyy
0 blK2

v
Iyy

0
dK2

v
Izz

− dK2
v

Izz

dK2
v

Izz
− dK2

v
Izz







V 2
1

V 2
2

V 2
3

V 2
4


 (43)

the pseudo-inverse of the matrix is used to obtain the voltages
that minimise ∑4

i=1 V 4
i . Note that there is no problem in ob-

taining a negative solution for any V 2
i (see footnote 1). Such

pseudo-inverse actually obtains the intuitively expected actions:
to increase u1, increase V2 and decrease V4 in the same amount;
to increase u2 increase V3 and decrease V1 in the same amount;
to increase u3 increase V1 and V3 and decrease V2 and V4, all in
the same amount (note that the yaw action u3 is the only one
that will produce a variation in the gyroscopic effect ug).

7. EXPERIMENTAL RESULTS

In this section, an experimental comparison of the linear and
fuzzy observers and controllers discussed in previous sections
is performed in order to assess the suitability of the TS approach
in the control of these types of electromechanical systems.

The discussion is divided in two subsections: the first one
will discuss only observer performance, with a preliminary
stabilising standard LQR controller; the second one will discuss
the performance obtained when closing the loop with the TS
controller and observer. The experiment setups in each case will
be different:

• The experiments with only the observer design show the
capacity of the observer to estimate the states, being, at
first, near the linearisation point and, then, far away from
the linearisation point.
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Figure 2. Experiment 1. Input data of the platform

• The experiments with the observer and the controller
design show the performance of the system trying to
reach the designed operating point from a nonzero initial
condition.

7.1 Observer-only Experiments

As the open-loop system is (marginally) unstable, an LQR
controller, designed on the linearised system, was implemented
to stabilise the closed-loop. Inputs to the controller were the
angular position (roll, pitch, yaw) and computed velocities.
Note that controller details and performance are not relevant,
as the system will actually be intentionally excited to leave the
operating point.

Input-output data have been generated by inserting sinusoidal
and step reference signals to this basic stabilizing loop.

As there is no direct access to the actual quadrotor state vari-
ables, a noncausal zero-phase filter (using command filtfilt

in Matlabr with 0.5/(1−0.5z−1) in forward and reverse time,
plus numerical differentiation with the zero-phase filter (z−
z−1)/(2Ts) in the speed coordinates) has been used to compute
(off-line) a reference “real” value of speeds from the actual
position measurements. The results given by the Takagi-Sugeno
and linear observers have been compared to the results of this
non-causal filter to compute the (approximate) error.

During the initial five seconds of excitation, the system reaches
roughly a constant position (no input excitation applied) close
to the linearization point.

Later, with the objective of validating the TS observer, the
system has been subjected to an excitation achieving large
enough angular speeds for the nonlinear terms to be significant.
Hence, a sinusoidal excitation was introduced in ψ from second
5 till 40 and a reference in θ and φ changes every 5 seconds
from 10 to −10 degrees.

The input-output data collected appear in Figures 3 and 2. This
data confirms that the system states satisfy the bounds from
Section 3.

Note that the position estimates are actually very precise as a
direct low-noise encoder output is available, so they are not
shown in the figures. As intuitively expected, speed estimation
is less precise and the differences between the observer alterna-
tives in the speed case will be discussed below. The estimation
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Figure 3. Experiment 1. Measurement (output) data of the
platform
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Figure 4. Experiment 1. Zoom in the time space [1 5]s

results for the noncausal filter and the Takagi-Sugeno and linear
observers are detailed below.

Low-excitation performance. Figure 4 shows four seconds in
the initial phase of the experiment, when there is no yaw
excitation. It can be seen that the three observers estimate the
velocity in a similar way, possibly because the linearized model
is reasonably valid. In fact, the TS observer seems slightly
noisier.

High-excitation performance. Figure 5, a zoom in of the exper-
iment in a zone where there was a ψ excitation and reference
change in φ and θ (from 33 to 38 seconds), shows a clear
difference between the estimations of the different observers.

To have a better understanding of the estimation accuracy,
the Integral Squared Error (ISE) of the estimation error (as
compared to the non causal filter output) has been computed,
and the result is presented in Figure 6.

Figure 6 shows that although in the first seconds the linear
observer has slightly less error than the TS, when the non-linear
terms (exciting with sinusoidal ψ and reference changes) affect
the system, the linear observer error increases significantly. The
ISE of the attitude of the quadrotor is shown in Table 2. It is
clear that the error of the linear observer is larger than the error
in the TS when the operating range is wider.
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Figure 6. Experiment 1. ISE of φ̇ coordinate: linear observer
(solid) and TS observer (dashed)

Table 2. Exp. 1: Final ISE of attitude estimation

error ISE TS obs. ISE Linear obs.
pitch speed φ̇ 148.6471 360.7385
roll speed θ̇ 533.3477 858.5370
yaw speed ψ̇ 535.5539 1175.7

In summary, the experiment confirms that a TS observer can
significantly improve estimations over an equivalent design on
the linearized model when the nonlinearities in the quadrotor
model have a relevant effect (i.e., when moving at high angular
speeds), even if performance is roughly similar close to the lin-
earization point at low speed (initial phase of the experiment).

7.2 Closed-loop TS control experiments

This section presents the results of three closed-loop experi-
ments. The three of them start in the same position, far away
of the linearization point; all of them try to drive the system to
the linearization point optimizing a bound on the quadratic cost
index, as discussed in previous sections.

These three experiments are set as follows:

(1) Linear controller & linear observer, designed for the lin-
earized model.

(2) Linearised controller & TS observer.
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Figure 7. Closed-loop experiments. Results of the three experi-
ments in roll
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Figure 8. Closed-loop experiments. Results of the three experi-
ments in pitch
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Figure 9. Closed-loop experiments. Results of the three experi-
ments in yaw

(3) TS (actually robust linear) controller + TS observer

The three experiments start with their 3 degrees of freedom
situated at −18◦ in roll, 17◦ in pitch and 60◦ in yaw. Their
objective is to return to the equilibrium position given by x = 0.
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Figure 10. Closed-loop experiments. Instantaneous perfor-
mance index in the experiments (total cost in Table 3 is
the integral)

The time responses are shown in Figures 7, 8, and 9 for the
three angular coordinates.

The actually achieved values of the objective performance
index, see (12), is shown in Figure 10 (at each time instant)
and Table 3 (final sum).

Table 3. Performance Index (integral)

Controller Observer Quadratic cost Jt

Linearised Linearised 3.8797e+003
Linearised Takagi-Sugeno 3.5264e+003
Robust Linear Takagi-Sugeno 3.2948e+003

As Table 3 shows, the experimentally achieved transient per-
formance index improvement with the robust+TS strategy is
approximately 15% better than the linear design, and 7% better
than the linearised state feedback with TS observer.

8. CONCLUSIONS

In this work, an LMI-based Takagi-Sugeno nonlinear observer
for attitude and rotational speed estimation and a controller
have been designed for an uncertain fuzzy TS model of a 3DoF
quadrotor. The paper has presented a systematic methodology
in order to accomplish such designs in an application frame-
work.

The experimental results presented show that a more accurate
state estimation is obtained with the TS observer (when the
operating range is far away from the point of linearization)
than with a similarly-designed classical linear observer. Also,
a better performance is obtained when the loop is closed with
such an observer and a controller designed for the TS plant
model, in terms of a user-defined quadratic cost index. The
controller, however, is actually a robust linear one, intuitively
expected from passivity considerations: nonlinearly changing
gains are not of any advantage in the worst-case guaranteed cost
setting here discussed.

In this way, a realistic application of fuzzy theory has been
developed in detail. The advantages of the proposed fuzzy TS
modeling, observer and controller design framework over alter-
native (classical linearized models) strategies are experimen-
tally confirmed in a nonlinear mechanical process.
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Appendix A. OBTAINING THE BOUND OF THE
OBSERVER MODEL MISMATCH

In this appendix, the process to compute µ in expressions (25)
and (26) is developed. First of all, a decomposition of the vertex
matrices Ai is considered:

Ai = Ac +Aiρ (A.1)
with Aiρ being understood as the “non-linear part” of the ∑hiAi
matrix, and Ac being a possibly arbitrary constant matrix which
can be understood as the “linear part”. Considering now (24),
the error term can be rewritten as:

r

∑
i=1

(hi(ρ [k])−hi(ρ̂[k]))Aix[k] =
r

∑
i=1

(hi(ρ[k])−hi(ρ̂ [k]))Aiρ x[k]

(A.2)
because ∑r

i=1(hi(ρ[k])−hi(ρ̂ [k]))Ac = 0.

Hence, in order to prove (25)

‖
r

∑
i=1

(hi(ρ [k])−hi(ρ̂ [k]))Aiρ x[k]‖ ≤ µ‖e[k]‖ (A.3)

Applying the submultiplicative norm inequality, the last expres-
sion can be rewritten as:

r

∑
i=1
‖(hi(ρ [k])−hi(ρ̂[k]))‖ · ‖Aiρ x[k]‖ ≤ µ‖e[k]‖ (A.4)

In the observer problems in consideration, ρ ≡ x. Also ‖(hi(x[k])−
hi(x̂[k]))‖ ≤ maxx∈Ω(‖ δhi(x[k])

δx ‖)‖x[k]− ˆx[k]‖, where Ω is the
region of interest where the TS system is equivalent to the
nonlinear system. Hence, as ‖x[k]− ˆx[k]‖= ‖e[k]‖,

(A.4) can be rewritten as:(
r

∑
i=1

maxx∈Ω‖δhi(x[k])
δx

‖ · ‖Aiρ x[k]‖
)
‖e[k]‖ ≤ µ‖e[k]‖

(A.5)

which is fulfilled for any µ such that:
r

∑
i=1

maxx∈Ω‖δhi(x[k])
δx

‖ · ‖Aiρ x[k]‖ ≤ µ (A.6)

being the left-hand side computable from the knowledge of Ω,
h and Ai.

Quadrotor case: Knowing that, for the particular quadrotor
model:

‖maxx∈Ω(
δhi(x[k])

δx
)‖= ‖(0,

1
2φ̇max

,0,
1

2θ̇max
,0,0)‖=

=

√( 1
2φ̇max

)2
+

( 1
2θ̇max

)2
(A.7)

the expression of µ becomes:√( 1
2φ̇max

)2
+

( 1
2θ̇max

)2 r

∑
i=1

(‖Aiρ x[k]‖)≤ µ (A.8)

To obtain a bound for ‖Aiρ x[k]‖, for x[k] ranging in a known
hypercube by assumption, an LMI problem can be developed
via S-procedure by minimizing γ subject to

γ− xT AT
iρ Aiρ x > 0 (A.9)

where the above inequality is required to hold for those x for
which the n conditions below are true:

xT DT
i Dix < 1 i = 1, . . . , n (A.10)

being n the number of states of the model, and the (rank 1)
matrices Di being:

D1 = blkdiag(1/(φmax),0,0,0,0,0);
D2 = blkdiag(0,1/(φ̇max),0,0,0,0);
D3 = blkdiag(0,0,1/(θmax),0,0,0);
D4 = blkdiag(0,0,0,1/(θ̇max),0,0);
D5 = blkdiag(0,0,0,0,1/(ψmax),0);
D6 = blkdiag(0,0,0,0,0,1/(ψ̇max));

(A.11)

The result is the LMI problem presented in (A.12) below, where
γ should be minimized and τi are the KKT multipliers arising
from S-procedure:

γ−
n

∑
i=1

τi > 0;

−AT
iρ Aiρ +

n

∑
i=1

τiDT
i Di > 0;

(A.12)

Substituting the result of (A.12) in (A.8), the final expression of
µ is:

µ =

√( 1
2φ̇max

)2
+

( 1
2θ̇max

)2√
γ (A.13)


