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Abstract: A large class of nonlinear systems can be well approximated by Takagi-Sugeno fuzzy
models, for which methods and algorithms have been developed to analyze their stability and to
design observers and controllers. However, results obtained for Takagi-Sugeno fuzzy models are
in general not directly applicable to the original nonlinear system. In this paper, we investigate
what conclusions can be drawn and what guarantees can be expected when an observer or a state
feedback controller is designed based on an approximate fuzzy model and applied to the original
nonlinear system. We also investigate the case when an observer-based controller is designed
for an approximate model and then applied to the original nonlinear system. In particular, we
consider that the scheduling vector used in the membership functions of the observer depends
on the states that have to be estimated. The results are illustrated using simulation examples.
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1. INTRODUCTION

A large class of nonlinear functions can be exactly rep-
resented or accurately approximated by Takagi-Sugeno
(TS) fuzzy models (Takagi and Sugeno, 1985). The TS
fuzzy model consists of a rule base. The rule antecedents
partition a subset of the system’s variables into fuzzy
regions, while the consequent of each rule is a linear or
affine model, valid locally in the corresponding region.

A well-known method to obtain an exact TS fuzzy repre-
sentation of a nonlinear system is the sector nonlinearity
approach (Ohtake et al., 2001). However, when using this
method, the observability and controllability of the local
models is not guaranteed, even when the original nonlinear
system is observable and controllable. Although for fuzzy
models well-established methods exist to analyze their sta-
bility or to design observers and controllers, these cannot
be used if the local models are not stable, observable, or
controllable, respectively.

In this paper we consider fuzzy models that retain ob-
servability and controllability in their local models, even
though they only approximate the nonlinear system. Sev-
eral methods exist to construct TS models such that they
approximate a given nonlinear model to an arbitrary de-
gree of accuracy (Fantuzzi and Rovatti, 1996; Johansen
et al., 2000; Kiriakidis, 2007). In this case, since the fuzzy
model only approximates the original nonlinear system,
when the analysis or design concerns the fuzzy model, the
results may not directly hold true for the nonlinear system.
For instance, the observers or controllers designed for the
fuzzy model are in general not guaranteed to perform as
expected for the nonlinear system.
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For a class of nonlinear systems, when using control based
on TS fuzzy models, this shortcoming has been circum-
vented by the use of robust controllers. Robust fuzzy
control has attracted increased research interest in the
last decade. Results range from fuzzy control of nonlinear
systems in canonical forms (Ghalia, 1996; Boukezzoula
et al., 2001; Allamehzadeh and Cheung, 2003), through
control of fuzzy systems with parametric uncertainties
(Gong et al., 2004; Chen et al., 1999; Chadli and El Hajjaji,
2005; Bai and Zhang, 2008) to delay-dependent fuzzy sys-
tems (Huang and Ho, 2007; Haibo et al., 2007; Chen and
Liu, 2005). Applications include, among others, control of
robotic manipulators (Hsu and Fu, 1994, 1995; Ham et al.,
2000), magnetic bearing systems (Hong and Langari, 2000;
Du et al., 2009), and vehicle lateral dynamics (El Hajjaji
et al., 2006).

However, observer design and the contribution of the es-
timation error to stabilization using output feedback is
rarely discussed. In particular, the performance of the ob-
server designed for an approximate TS model and then ap-
plied to the original nonlinear system has not been studied
for the case when the scheduling variables themselves have
to be estimated. Therefore, in this paper, we investigate
whether and when conclusions can be drawn when the
design is based on an approximate fuzzy model and applied
to the original nonlinear system that is approximated by
the fuzzy model. To simplify the computations, a common
quadratic Lyapunov function is used. Similar, although
considerably more complex conditions can be derived if
other Lyapunov functions or more relaxed conditions than
those presented in this paper, are used.

The structure of the paper is as follows. Section 2 presents
the models used and reviews classic results for the sta-
bility analysis of autonomous fuzzy systems. Section 3
investigates when the stability of a TS system implies the
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stability of the nonlinear system. These results serve as
the basis for investigating the expected performance of the
observer designed for the fuzzy model and applied to the
nonlinear system in Section 4. We study the stabilization
of the nonlinear system using a fuzzy state feedback con-
troller in Section 5 and observer-based output feedback
controller in Section 6. The different cases are illustrated
using examples in the corresponding sections. Section 7
concludes the paper.

2. PRELIMINARIES

Consider the nonlinear system

ẋ = f(x,u)

y = h(x,u)
(1)

where x is the vector of the state variables, u is the
input vector, y is the measurement vector. We assume
that the variables are defined on a compact set Cxuy, i.e.,
(x,u,y) ∈ Cxuy. A TS fuzzy approximation of this system
can be obtained (e.g., by linearization) as:

ẋ = f�(x,u) =

m∑
i=1

wi(x,u)(Aix +Biu + ai)

y = h�(x,u) =

m∑
i=1

wi(x,u)(Cix +Diu + di)

(2)

so that the approximation errors f = f −f� and h = h−
h� satisfy

‖f(x,u)‖ ≤ σf + δf‖x‖ ∀(x, u) ∈ Cxu
‖h(x,u)‖ ≤ σh + δh‖x‖ ∀(x, u) ∈ Cxu

(3)

where σf , σh, δf , and δh are known nonnegative finite
constants, and Cxu = {(x, u)|∃y s.t. (x, u, y) ∈ Cxuy}.
In (2), Ai, Bi, Ci, Di, ai, and di, i = 1, 2, . . . , m represent
the matrices and biases of the ith local linear model and
wi, i = 1, 2, . . . , m are the corresponding normalized
membership functions, that depend on the scheduling
variables x, u.

Throughout the paper it is assumed that the mem-
bership functions are normalized, i.e., wi(x,u) ≥ 0,∑m
i=1 wi(x,u) = 1, ∀(x, u) ∈ Cxu. The symbols I and

0, respectively, denote the identity and the zero matrices
of the appropriate dimensions, H(A) represents the Her-
mitian of the matrix A, i.e., H(A) = A + AT , and ‖.‖
denotes the Euclidean norm for vectors and the induced
norm for matrices.

The nonlinear system (1) is now expressed as an uncertain
TS system, given as:

ẋ =

m∑
i=1

wi(x,u)(Aix +Biu + ai) + f(x,u)

y =

m∑
i=1

wi(x,u)(Cix +Diu + di) + h(x,u)

(4)

where the uncertainties f and h satisfy (3).

Note that the approximation error on a compact set of
variables always satisfies

‖f(x,u)‖ ≤ σ′f
‖h(x,u)‖ ≤ σ′h

(5)

for some σ′f and σ′h. However, as will be shown in the

sequel, by using (3) whenever possible, less conservative
conditions can be obtained.

Remark 1: In the robust fuzzy control literature (Bai and
Zhang, 2008), for uncertain fuzzy systems in general the
form

ẋ =

m∑
i=1

wi(x)
[
(Ai + ∆Ai)x + (Bi + ∆Bi)u

]
is used. However, the model (2) is more general, and
therefore, (2) will be used in the sequel.

Our results are based on classic conditions (Wang et al.,
1996; Tanaka et al., 1998) for the stability of autonomous
fuzzy systems:

ẋ =

m∑
i=1

wi(z)Aix (6)

where Ai, i = 1, 2, . . . , m represent the ith local linear
model, wi is the corresponding normalized membership
function, and z the vector of the scheduling variables,
which may depend on the states, input, output, or other
measured exogenous variables.

Theorem 1. (Wang et al., 1996) System (6) is exponen-
tially stable if there exists P = PT > 0 so that

H(PAi) < 0 (7)

for i = 1, 2, . . . , m.

Controller and observer design for fuzzy systems of the
form (2) often leads to establishing the negative definite-
ness of double summations of the form

m∑
i=1

m∑
j=1

wi(z)wj(z)Υij

with Υij , i, j = 1, 2, . . .m matrices of appropriate dimen-
sions. In this paper we use the following relaxations for
such sums (Wang et al., 1996):

Theorem 2. Let Υij be matrices of proper dimensions.
Then,

m∑
i=1

m∑
j=1

wi(z)wj(z)Υij < 0 (8)

holds, if
Υii < 0 for

1

2
(Υij + Υji) < 0

(9)

for i = 1, 2, . . . , m, j = i+ 1, i+ 2, . . . , m.

Note that similar, although more complex results can also
be derived using other types of Lyapunov functions, as
long as the conditions ensure the exponential stability of
the TS system.

3. STABILITY ANALYSIS

Stability analysis of uncertain or perturbed nonlinear sys-
tems is in general investigated by using the Lyapunov
function that establishes exponential stability of the nom-
inal model for the uncertain system (Khalil, 2002). In
this paper, we use a similar approach, i.e., the Lyapunov
function that establishes stability of the fuzzy model is
further used for the original nonlinear system.
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For stability analysis, consider the autonomous nonlinear
system

ẋ = f(x) (10)

that is approximated by the TS system

ẋ = f�(x) =

m∑
i=1

wi(x)Aix (11)

such that each local matrix Ai, i = 1, 2, . . . , m is stable
and the approximation error f = f − f� satisfies

‖f(x)‖ ≤ σf + δf‖x‖ ∀x (12)

where σf and δf are nonnegative finite constants. Consider
the Lyapunov function V = xTPx. If there exist P =
PT > 0 and Q = QT > 0 so that the linear matrix
inequality (LMI)

H(PAi) < −2Q, i = 1, 2, . . . , m (13)

is satisfied, then, by applying the same Lyapunov function
to the original nonlinear system (10), we obtain:

V̇ = xTH
(
P
( m∑
i=1

wi(x)Aix + f(x)
))

= xT
m∑
i=1

wi(x)H(PAi)x + 2xTPf(x)

≤ −2λmin(Q)‖x‖2 + 2λmax(P )δf‖x‖2

+ 2λmax(P )σf‖x‖
≤ −2(λmin(Q)− λmax(P )δf )(1− θ)‖x‖2

− 2‖x‖(θ(λmin(Q)− λmax(P )δf )‖x‖ − λmax(P )σf )

with θ ∈ (0, 1) arbitrarily chosen, and where λmin(·)
and λmax(·) denote the eigenvalues with the smallest and
largest absolute magnitude.

By analyzing the expression of V̇ , the following cases can
be distinguished:

(1) (λmin(Q)−λmax(P )δf < 0) or (λmin(Q)−λmax(P )δf =
0 and σf > 0): no conclusion can be drawn;

(2) λmin(Q) − λmax(P )δf = 0 and σf = 0: if the
membership functions are sufficiently smooth, and
x = 0 is the only equilibrium point, based on
LaSalle’s invariance principle and Barbalat’s lemma
(see Theorem 4.4 and Lemma 8.2 of Khalil (2002)),
x = 0 is a globally asymptotically stable equilibrium
point of the nonlinear system (10). This result is in
general obtained when adaptive fuzzy controllers are
designed. In stability analysis of TS systems, this case
is rarely encountered.

(3) λmin(Q) − λmax(P )δf > 0 and σf = 0: the nonlinear
system (10) has a globally exponentially stable equi-
librium point in x = 0. This result is found only if
the approximation error is Lipschitz continuous in the
states.

(4) λmin(Q) − λmax(P )δf > 0 and σf > 0: the states of
the nonlinear system (10) are uniformly ultimately
bounded by

γ =

√
λmax(P )

λmin(P )

λmax(P )

λmin(Q)− λmax(P )δf

σf
θ

(14)

or

γ <

√
λmax(P )

λmin(P )

λmax(P )

λmin(Q)− λmax(P )δf
σf (15)

This result is obtained as soon as the nonlinear system
is approximated to a constant accuracy by the fuzzy
model, i.e., the approximation error is bounded by
a constant. Moreover, since in most cases only a
constant upper bound on the approximation error
can be determined, this is the most frequently found
result.

The above cases are illustrated on the following example.

Example 1. Consider the nonlinear system

ẋ =

(
−1.1 x21 − x2
2x2 −4.1 + x22

)
x (16)

with the state variables x1, x2 ∈ [−1, 1].

The system has one equilibrium point, x = 0. This
equilibrium point is asymptotically stable on the domain
defined by x1, x2 ∈ [−1, 1]. The stability is provable
with the Lyapunov function V = xTx. Note that if the
sector nonlinearity approach is used to obtain an exact
TS representation of this system, one of the local matrices

is

(
−1.1 2

2 −3.1

)
, which has a positive eigenvalue 0.1361.

Therefore, the stability of the TS model so obtained cannot
be established.

A TS approximation of the system (16) can be obtained
using the approach of Kiriakidis (2007). Normalized trian-
gular membership functions are chosen, that attain their
maximum in the points defined by {(x1, x2)|x1, x2 ∈
{−1, 0, 1}}. Therefore, 9 local models are obtained, and
each one is asymptotically stable. Moreover, with this
approximation we have the approximation error bounded
by either ‖f‖ ≤ 0.58‖x‖, or ‖f‖ ≤ 0.53 (computed
numerically).

If the bound ‖f‖ ≤ 0.58‖x‖ is used, with P and

Q computed 1 as P =

(
14.4874 0.0211
0.0211 7.2243

)
, and Q =(

9.7100 −2.9048
−2.9048 10.4225

)
the exponential stability of the non-

linear system is proven (case 3).

If the approximation error bound ‖f‖ ≤ 0.53 is used, with

P =

(
0.4945 0.0379
0.0379 0.2188

)
, Q = 0.3920 I the ultimate bound

γ = 1.0469 is obtained (case 4), i.e., the states converge
within a ball with radius 1.04. 2

4. STATE ESTIMATION

Besides their use in monitoring and control, the design of
estimators in the presence of model uncertainties is one of
the most important issues in fault detection and identi-
fication. However, observer design as such for nonlinear
systems using TS fuzzy models when the TS model is
only an approximation, and the guarantees that can be
expected for the original nonlinear system are rarely dis-
cussed in the literature. It is important to note that in the
context of robust output feedback fuzzy control, observers
are used. However, it is then generally assumed that the
1 To solve the LMI problems in this paper, the SeDuMi solver within
the Yalmip toolbox (Löfberg, 2004) has been used.
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controller compensates for or attenuates the estimation
error resulting from the observer model–true system mis-
match, without actually analyzing how this error affects
the stability of the closed-loop system.

In this section, we consider that an observer is designed
based on a TS approximation of a given nonlinear system.
This observer is afterwards applied to the original non-
linear system. We investigate the guarantees that can be
expected on the convergence of the estimation error, in
particular, when the scheduling vector of the TS model
depends on unmeasured states.

Therefore, consider the nonlinear system (1), with the
approximation (4), so that the approximation errors f =
f − f� and h = h− h� satisfy 2

‖f(x,u)‖ ≤ σf ∀x, u
‖h(x,u)‖ ≤ σh ∀x, u

(17)

where σf and σh are nonnegative finite constants. Recall
that such a bound can always be obtained on a compact
set, and therefore (17) is a valid assumption.

The observer considered in this section is of the form

˙̂x =

m∑
i=1

wi(x̂,u)(Aix̂ +Biu + ai + Li(y − ŷ))

ŷ =

m∑
i=1

wi(x̂,u)(Cix̂ +Diu + di)

(18)

If the observer (18) is now used for the nonlinear sys-
tem (1), the error dynamics can be expressed as:

ė = f(x,u)− f�(x̂,u)

=

m∑
i=1

wi(x,u)(Aix +Biu + ai) + f(x,u)

−
m∑
i=1

wi(x̂,u)(Aix̂ +Biu + ai + Li(y − ŷ))

=

m∑
i=1

wi(x̂,u)(Aie− Li(y − ŷ)) + f(x,u)

+

m∑
i=1

(wi(x,u)− wi(x̂,u))(Aix +Biu + ai)

=

m∑
i=1

wi(x̂,u)
(
Aie− Li

·
( m∑
j=1

wj(x,u)(Cjx +Dju + dj) + h(x,u)

+ f(x,u)−
m∑
j=1

wj(x̂,u)(Cjx̂ +Dju + dj)
))

+ ∆wf + f(x,u)

2 See Remark 2 for the explanation why a Lipschitz condition like
(3) is not used.

=

m∑
i=1

wi(x̂,u)
(
Aie− Li

( m∑
j=1

wj(x̂,u)Cje

+

m∑
j=1

(wj(x,u)− wj(x̂,u))(Cjx +Dju + dj)

+ h(x,u)
))

+ ∆wf + f(x,u)

or, simply as

ė =

m∑
i=1

m∑
j=1

wi(x̂,u)wj(x̂,u)(Ai − LiCj)e

−
m∑
i=1

wi(x̂,u)Li(∆wh + h(x,u)) + ∆wf + f(x,u)

(19)
with

∆wf =

m∑
i=1

(wi(x,u)− wi(x̂,u))(Aix +Biu + ai)

∆wh =

m∑
j=1

(wj(x,u)− wj(x̂,u))(Cjx +Dju + dj)

For the observer–TS fuzzy model mismatch, bounds simi-
lar to (3) are assumed:

‖∆wf‖ ≤ σwf + δwf‖e‖
‖∆wh‖ ≤ σwh + δwh‖e‖

(20)

Using these bounds, in the worst case, we have∥∥∥− m∑
i=1

wi(x̂,u)Li(∆wh + h(x,u)) + ∆wf + f(x,u)
∥∥∥

≤ max
i
‖Li‖(σwh + δwh‖e‖+ σh)

+ σf + σwf + δwf‖e‖
= σ + δ‖e‖

(21)
with

σ = max
i
‖Li‖(σwh + σh) + σf + σwf

δ = max
i
‖Li‖δwh + δwf

(22)

To summarize, the error dynamics are:

ė =

m∑
i=1

m∑
j=1

wi(x̂,u)wj(x̂,u)(Ai − LiCj)e + ∆ (23)

with ‖∆‖ ≤ σ + δ‖e‖, where δ and σ are given by (22).
Note however, that σ depends on Li, i = 1, 2, . . . , m, the
gains that have to be designed, and that in order to obtain
the smallest possible bound on the estimation error, σ, and
consequently ‖Li‖, i = 1, 2, . . . , m should be minimized.

Using the Lyapunov function V = eTPe, similarly to
Section 3, and assuming that there exist P = PT > 0
and Q = QT > 0 so that

H(P (Ai − LiCi)) < −2Q

H(P (Ai − LiCj) + P (Aj − LjCi)) < −4Q
(24)

for i = 1, 2, . . . , m, j = i+ 1, i+ 2, . . . , m, we get
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V̇ = eTH
(
P

m∑
i=1

m∑
j=1

wi(x̂,u)wj(x̂,u)(Ai − LiCj)e
)

+ 2eTP∆

≤ −2(λmin(Q)− λmax(P )δ)(1− θ)‖x‖2

− 2‖x‖(θ(λmin(Q)− λmax(P )δ)‖x‖ − λmax(P )σ)

with θ ∈ (0, 1). Based on the results presented in Section 3,

by analyzing the expression of V̇ , when the observer (18)
is applied to the nonlinear system (1), one of the following
conclusions can be drawn regarding the estimation error:

(1) (λmin(Q)−λmax(P )δ < 0) or (λmin(Q)−λmax(P )δ =
0 and σ > 0): no conclusion can be drawn;

(2) λmin(Q)−λmax(P )δ = 0 and σ = 0: under conditions
similar to those in Section 3, the estimation error
dynamics are asymptotically stable;

(3) λmin(Q) − λmax(P )δ > 0 and σ = 0: the nonlinear
system (19) has a globally exponentially stable equi-
librium point in x = 0; However, this case can only be
obtained if the fuzzy system is an exact representation
of the nonlinear system, i.e., in (17) σf , σh = 0;

(4) λmin(Q) − λmax(P )δ > 0 and σ > 0: the estimation
error is uniformly ultimately bounded by

γ =

√
λmax(P )

λmin(P )

λmax(P )

λmin(Q)− λmax(P )δ

σ

θ
(25)

This is the result obtained in general.

The following example illustrates the computation of the
bounds during observer design:

Example 2. Consider the nonlinear system

ẋ =

(
1.1 x21 + 0.1

−x1 − 1 −3 + x22

)
x

y = [1 0]x

(26)

with x1, x2 ∈ [−1, 1]. This system is unstable.

A TS approximation of the system (26) is obtained using
the approach of Kiriakidis (2007). Normalized triangu-
lar membership functions are chosen, that attain their
maximum in the points defined by {(x1, x2)|x1, x2 ∈
{−1, 0, 1}}, and 9 local models are obtained. The TS
system can be written as:

ẋ =

m∑
i=1

wi(x)Aix

y = [1 0]x

(27)

The approximation errors are ‖f‖ ≤ σf = 0.407 and

‖h‖ = σh = 0. With these membership functions, we
have ‖

∑m
i=1(wi(x)−x(x̂))Aix‖ ≤ 6.3 and ‖

∑m
i=1(wi(x)−

wi(x̂))Aix‖ ≤ 6.3‖e‖. Combining the two bounds, we can
actually use ‖

∑m
i=1(wi(x)−wi(x̂))Aix‖ ≤ α·6.3+(1−α)·

6.3‖e‖, with α arbitrarily chosen in [0, 1]. Consequently,
δ = (1− α) · 6.3, and σ = α · 6.3 + 0.407.

Solving (37) such that simultaneously λmax(P ) is min-
imized and λmin(P ) and λmin(Q) are maximized, one
obtains: λmin(P ) = 0.33, λmax(P ) = 0.33 and Q = I.
Consequently, δ = (1 − α) · 6.3, and σ = α · 6.3 + 0.407.
With these values, the cases presented above become:

• for α < 20
21 , i.e., (1−α) · 6.3 > 0.3 we have λmin(Q)−

λmax(P )δ < 0 and no conclusion can be drawn

• since σf > 0, the conclusion of asymptotic stability
(Cases 2) and 3) above) using the observer (18) is
excluded.

• for α ≥ 20
21 , we obtain that the estimation error is

uniformly ultimately bounded by

γ =

√
λmax(P )

λmin(P )

λmax(P )

λmin(Q)− λmax(P )δ

σ

θ

=
0.33 · (6.3α+ 0.407)

(1− 2.08(1− α))θ

< 2.2

with θ ∈ (0, 1) and α ∈ [ 2021 , 1].

A large part of the value of the bound is due to observer–
TS model mismatch, i.e., the dependency of the scheduling
vector on the non-measured states. For instance, if the
considered system is

ẋ =

(
1.1 x21 + 0.1

−x1 − 1 −3 + x21

)
x

y = [1 0]x

(28)

instead of (26), the scheduling variable is x1 only, which is
measured, and consequently can be used in the observer.
The difference with respect to system (26) is that the (2,2)
element of the matrix depends on x1 (that is measured)
instead of x2. Then, we have ‖

∑m
i=1(wi(z)−wi(ẑ))Aix‖ =

‖
∑m
i=1(wi(x)− wi(x))Aix‖ = 0, ∆wf = 0, ∆wh = 0, and

the bound on the estimation error is

γ =

√
λmax(P )

λmin(P )

λmax(P )

λmin(Q)

σ

θ
=

0.13

θ
< 0.13

with θ ∈ (0, 1). 2

Note that in Example 2 a common measurement matrix
has been considered. If the measurement matrix is not
common for all the rules, σ depends on the Li, i =
1, 2, . . . , m to be designed. In such a case, to facilitate
the design, one can solve the multi-objective optimization
problem:

maximize λmin(Q), λmin(P ),

minimize λmax(P ), ‖Li‖, i = 1, 2, . . . , m

subject to

P = PT > 0

Q = QT > 0

H(P (Ai − LiCi)) ≤ −2Q

H(P (Ai − LiCj) + P (Aj − LjCi)) ≤ −4Q

for i = 1, 2, . . . , m, j = i+ 1, i+ 2, . . . , m.

Remark 2: Recall that instead of using the bound (3), for
the observer (18), the constant bound on the approxima-
tion error has been used. This is because, if the bounds on
f and h for observer design are not constants, but linear
in x, then, with the observer (18), the state itself has to be
treated as a disturbance that affects the error dynamics.
This would lead to a much larger bound on the estimation
error.

A possible approach to still attain asymptotic stability
is when the approximation error functions f and h are
known, and Lipschitz continuous in the states, i.e., there
exist γf , γh ≥ 0 such that ‖f(x,u) − f(x̂,u)‖ ≤ γf‖x −
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x̂‖, and ‖h(x,u) − h(x̂,u)‖ ≤ γh‖x − x̂‖. In this case,
instead of the observer (18), the observer

˙̂x =

m∑
i=1

wi(x̂,u)(Aix̂ +Biu + ai + Li(y − ŷ)) + f(x̂,u)

ŷ =

m∑
i=1

wi(x̂,u)(Cix̂ +Diu + di) + h(x̂,u)

(29)
can be used.

Then, similarly to linear observer design for nonlinear
systems with Lipschitz nonlinearities (Pertew et al., 2005,
2006), with γf and γh incorporated into δ, asymptotic
stability of the estimation error can be obtained.

Example 3. Consider the nonlinear system

ẋ =

(
0.33x21 + x1 1

1 −1

)
x

y = [1 0]x

(30)

with x1, x2 ∈ [−1, 1].

A TS approximation of the system (30) can be obtained
as the two-rule fuzzy system:

ẋ =

2∑
i=1

wi(y)Aix

y = [1 0]x

(31)

with A1 =

(
−1 1
1 −1

)
, A2 =

(
1 1
1 −1

)
, w1(y) = 1−y

2 ,

w2(y) = 1+y
2 . The approximation error function is f =(

0.33x21 0
0 0

)
x. For this function, we have ‖f(x)−f(x̂)‖ ≤

‖x − x̂‖, i.e., δ = 1, and σ = 0. Note that since the
membership functions depend on a measured variable,
there is no observer-model mismatch.

Solving (37), one obtains L1 = L2 =

(
15.1
7.3

)
, P =(

0.2109 −0.3183
−0.3183 0.8475

)
, Q = I, λmin(P ) = 0.08, and

λmax(P ) = 0.97. Then, using the observer

˙̂x =

2∑
i=1

wi(y)(Aix̂ + Li(y − ŷ)) + f(x̂)

ŷ = [1 0]x̂

for the original nonlinear system (30), with a common
quadratic Lyapunov function we obtain that there exist
P = PT > 0 and Q = QT > 0 such that λmin(Q) −
λmax(P )δ > 0 and σ = 0 (i.e., case 3), and the estimation
error is asymptotically stable. 2

5. STABILIZATION USING FULL STATE FEEDBACK

Development of sufficient conditions for the stabilization
using full state feedback of uncertain TS fuzzy systems
has received increasing interest in the last years (Gong
et al., 2004; Du et al., 2009; Chen et al., 1999; Chadli and
El Hajjaji, 2005), in particular for discrete-time systems.
In this paper, we consider continuous-time TS systems.
Instead of developing conditions to design controllers that

asymptotically stabilize the system, we investigate what
conclusions regarding the original nonlinear system can be
drawn if a controller has already been designed for its fuzzy
approximation. Therefore, consider the nonlinear system

ẋ = f(x,u) (32)

that is approximated by the TS system

ẋ = f�(x,u) =

m∑
i=1

wi(x)(Aix +Biu) (33)

so that the approximation error f = f − f� satisfies

‖f(x, u)‖ ≤ σf + δf‖x‖ ∀(x, u) ∈ Cxu (34)

with σf and δf being nonnegative finite constants.

Although for observer design the state transition model
may contain affine terms, for stabilization, the nonlinear
system has to be approximated by a fuzzy model of the
form (33), i.e., the local models may not be affine and
the membership functions may not depend on the control
input u. This is firstly because stabilization to zero of
affine fuzzy systems using a classical fuzzy state feedback
can only be performed if the affine term is compensated for
in each rule. Secondly, if the membership functions depend
on the control input, when actually computing the input,
an implicit equation has to be solved, which, depending
on the membership functions, may be cumbersome.

Using a classical fuzzy state feedback control

u =

m∑
i=1

wi(x)Kix

we have the closed-loop fuzzy system:

ẋ =

m∑
i=1

m∑
j=1

wi(x)wj(x)(Ai +BiKj)x (35)

and the dynamics of the closed-loop nonlinear system can
be described as

ẋ =

m∑
i=1

m∑
j=1

wi(x)wj(x)(Ai +BiKj)x + f(x,u) (36)

With a common quadratic Lyapunov function, the TS
system (35) is globally exponentially stable, according to
Theorem 2, if there exist P = PT > 0 and Q = QT > 0 so
that

H(P (Ai +BiKi)) < −2Q

H(P (Ai +BiKj) + P (Aj +BjKi)) < −4Q
(37)

for i = 1, 2, . . . , m, j = i + 1, i + 2, . . . , m. With the
same Lyapunov function applied to the original nonlinear
system (1), we obtain:

V̇ = xTH
(
P
( m∑
i=1

m∑
j=1

wi(x)wj(x)Gijx + f(x)
))

≤ −2(λmin(Q)− λmax(P )δf )(1− θ)‖x‖2

− 2‖x‖(θ(λmin(Q)− λmax(P )δf )‖x‖ − λmax(P )σf )

with θ ∈ (0, 1) arbitrarily chosen and Gij = Ai +BiKj .

By analyzing the expression of V̇ , the following cases can
be distinguished:

(1) (λmin(Q)−λmax(P )δf < 0) or (λmin(Q)−λmax(P )δf =
0 and σf > 0): no conclusion can be drawn;
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(2) λmin(Q)−λmax(P )δf = 0 and σf = 0: if the member-
ship functions are sufficiently smooth, and x = 0 is
the only equilibrium point, under conditions similar
to those in Section 3, x = 0 is a globally asymptot-
ically stable equilibrium point of the nonlinear sys-
tem (36). Such results are in general obtained when
adaptive fuzzy controllers are designed.

(3) λmin(Q) − λmax(P )δf > 0 and σf = 0: the nonlinear
system (36) has a globally exponentially stable equi-
librium point in x = 0. Note that this result can only
be obtained if the approximation error is Lipschitz
continuous in the states.

(4) λmin(Q) − λmax(P )δf > 0 and σf > 0: the states of
the nonlinear system (36) are uniformly ultimately
bounded by

γ =

√
λmax(P )

λmin(P )

λmax(P )

λmin(Q)− λmax(P )δf

σf
θ
. (38)

with θ ∈ (0, 1).

It is important to note that in robust fuzzy control the
affine term in (34) is in general considered to be an
external disturbance affecting the system, and not a model
mismatch, i.e, the uncertainty is presumed to affect only
the matrices Ai and Bi, i = 1, 2, . . . , m. Nevertheless,
even if the disturbance is due to model mismatch, robust
controllers that are able to attenuate its effect can be
designed.

If the controller has already been designed using (37),
only the above conditions can be verified. However, if
the controller is to be designed, then, in order to obtain
a bound as small as possible one can also solve the
multiobjective optimization problem:

maximize λmin(Q), λmin(P ),

minimize λmax(P ),

subject to

P = PT > 0

Q = QT > 0

H(P (Ai +BiKi)) < −2Q, i = 1, 2, . . . , m

H(P (Ai +BiKj) + P (Aj +BjKi)) ≤ −4Q

(39)

for i = 1, 2, . . . , m, j = i+ 1, i+ 2, . . . , m.

The controller design is illustrated using the following
example.

Example 4. Consider the nonlinear system

ẋ =

(
1.1 x21 + 0.1

−x1 − 1 −3− x22

)
x +

(
1
0

)
u (40)

with x1, x2 ∈ [−1, 1]. The autonomous system is unstable.

A TS approximation of the system (40) is obtained using
the approach of Kiriakidis (2007). Normalized triangu-
lar membership functions are chosen, that attain their
maximum in the points defined by {(x1, x2)|x1, x2 ∈
{−1, 0, 1}}. The TS system can be written as:

ẋ =
9∑
i=1

wi(x)(Aix +Bu) (41)

The approximation errors can be written as ‖f‖ ≤ σf +
δf‖x‖ = 0.407α+0.48(1−α)‖x‖, with α arbitrarily chosen

in [0, 1], and ‖h‖ = σh + δh‖x‖ = 0.

By simply solving the LMI feasibility problem

Find P = PT > 0, Q = QT > 0, Ki, i = 1, 2, . . . , m so
that (37) is satisfied

one obtains P =

(
6.5 0.33
0.33 0.38

)
, λmin(P ) = 0.36, λmax(P ) =

6.52, Q = I. With these results, the following cases can be
distinguished:

(1) if α is chosen such that α < 0.69, then we have
λmin(Q)−λmax(P )δf > 0 and therefore no conclusion
can be drawn

(2) for α > 0.69, we have Case 4, i.e., the states of the
controlled nonlinear system (40), using the controller
designed for the fuzzy system (41) are ultimately
uniformly bounded by

γ =

√
λmax(P )

λmin(P )

λmax(P )

λmin(Q)− λmax(P )δ

σ

θ

=
11.3α

(1− 3.13(1− α))θ
< 11.3

with α ∈ [0.69, 1] and θ ∈ (0, 1).

Solving (39), i.e., minimizing 3 λmax(P ) and maximizing

λmin(Q) and λmin(P ), one obtains: P =

(
0.20 0.002
0.002 0.17

)
,

λmin(P ) = 0.17, λmax(P ) = 0.20, and Q = I.

With these values, depending on the choice of α, we have
the following cases:

(1) for α = 0 we have σf = 0 and λmin(Q)− λmax(P )δ >
0 and therefore the states of the nonlinear system
converge exponentially to 0

(2) for α = 1, i.e., when a constant approximation error
is considered, the states of the nonlinear system (40)
are uniformly ultimately bounded by γ = 0.088

θ , with
θ ∈ (0, 1), i.e., γ < 0.088.

(3) otherwise, we obtain that the states are uniformly
ultimately bounded by

γ =

√
λmax(P )

λmin(P )

λmax(P )

λmin(Q)− λmax(P )δ

σ

θ

=
0.088α

(1− 0.48(1− α))θ

with θ ∈ (0, 1) and α ∈ (0, 1).

As illustrated above, by solving the optimization problem
together with the design problem, not only a lower bound,
but even exponential convergence of the nonlinear system
can be obtained. 2

6. STABILIZATION USING OBSERVER-BASED
CONTROL

Although output feedback control is often considered in
robust fuzzy control, it is in general assumed that the
controller is able to compensate for or attenuate the
disturbance resulting from the mismatch between the
model used by the observer and the true system, without

3 To solve this problem, a single objective function λmax(P ) −
λmin(P ) − λmin(Q) has been minimized.
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explicitly analyzing this model mismatch. In this section,
although we do not design robust controllers, we analyze
the disturbance due to the mismatch and investigate what
guarantees can be given.

Note that also in this case, the membership function can-
not depend on the control input, and the state transition
function cannot have an affine term, i.e., the same restric-
tions as in Section 5 apply. Therefore, the approximation
considered is (2), with the approximation errors bounded
as (3).

The observer is of the form

˙̂x =

m∑
i=1

wi(x̂)(Aix̂ +Biu + Li(y − ŷ))

ŷ =

m∑
i=1

wi(x̂)(Cix̂ +Diu + di)

(42)

and the controller used is

u =

m∑
i=1

wi(x̂)Kix̂ (43)

The estimation error for the nonlinear system can be
derived as:

ė = f(x,u)− f�(x̂,u)

=

m∑
i=1

wi(x)(Aix +Biu) + f(x,u)

−
m∑
i=1

wi(x̂)(Aix̂ +Biu + Li(y − ŷ))

=

m∑
i=1

wi(x̂)(Aie− Li(y − ŷ))

+

m∑
i=1

(wi(x)− wi(x̂))(Aix +Biu) + f(x,u)

=

m∑
i=1

wi(x̂)
(
Aie− Li

·
( m∑
j=1

wj(x)(Cjx +Dju + dj) + h(x,u)

−
m∑
j=1

wj(x̂)(Cjx̂ +Dju + dj)
))

+ ∆wf + f(x,u)

=

m∑
i=1

wi(x̂)
(
Aie− Li

( m∑
j=1

wj(x̂)Cje

+

m∑
j=1

(wj(x)− wj(x̂))(Cjx +Dju + dj)

+ h(x,u)
))

+ ∆wf + f(x,u)

so

ė =

m∑
i=1

m∑
j=1

wi(x̂)wj(x̂)(Ai − LiCj)e

−
m∑
i=1

wi(x̂)Li(∆wh + h(x,u)) + ∆wf + f(x,u)

(44)

with

∆wf =

m∑
i=1

(wi(x)− wi(x̂))(Aix +Biu)

∆wh =

m∑
j=1

(wj(x)− wj(x̂))(Cjx +Dju + dj)

Since the goal is also to stabilize the system, in this case the
bounds on f and h can contain a term that is Lipschitz in
x. Moreover, one could also use bounds on ∆wf and ∆wh

such as
‖∆wf‖ ≤ σwf + δwf‖e‖+ ηwf‖x‖
‖∆wh‖ ≤ σwh + δwh‖e‖+ ηwh‖x‖

(45)

For the simplicity of the computations, the following
bounds are assumed:

‖∆wf‖ ≤ σwf + δwf‖e‖
‖∆wh‖ ≤ σwh + δwh‖e‖

(46)

Then, in the worst case, the bound on the observer-system
mismatch can be derived as:∥∥∥− m∑

i=1

wi(x̂)Li(∆wh + h(x,u)) + ∆wf + f(x,u)
∥∥∥

≤ max
i
‖Li‖(σwh + δwh‖e‖+ σh + δh‖x‖)

+ σf + δf‖x‖+ σwf + δwf‖e‖
≤ σe + δe‖e‖+ ηe‖x‖

(47)
with

σe = max
i
‖Li‖(σwh + σh) + σf + σwf

δe = max
i
‖Li‖δwh + δwf

ηe = max
i
‖Li‖δh + δf

(48)

In fact:

ė =

m∑
i=1

m∑
j=1

wi(x̂)wj(x̂)(Ai − LiCj)e + ∆e (49)

with ‖∆e‖ ≤ σe + δe‖e‖+ ηe‖x‖.

Second, the closed-loop dynamics using the estimate-based
control law is:

ẋ =

m∑
i=1

wi(x)(Aix +Bi

m∑
j=1

wj(x̂)Kjx̂)

+ f(x,u)

=

m∑
i=1

m∑
j=1

wi(x)wj(x̂)((Ai +BiKj)x +BiKje)

+ f(x,u)

(50)

with
‖f(x,u)‖ ≤ σf + δf‖x‖ (51)

Combining the dynamics of the estimation error and the
state, we get(

ė
ẋ

)
=

m∑
i=1

m∑
j=1

m∑
k=1

wi(x̂)wj(x)wk(x̂)

·
(
Ai − LiCk 0

Kk Aj +BjKk

)(
e
x

)
+ ∆

(52)
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with

∆ =

(
∆e

f(x,u)

)
(53)

Knowing that ‖∆e‖ ≤ σe+δe‖e‖+ηe‖x‖ and ‖f(x,u)‖ ≤
σf + δf‖x‖, we have

‖∆‖ ≤‖∆e‖+ ‖f(x,u)‖
≤σe + σf + δe‖e‖+ (ηe + δf )‖x‖

≤σ + δ

∥∥∥∥ex
∥∥∥∥

where σ = σe + σf and δ =
√

2 max{δe, ηe + δf}.
For the above bounds, the same cases can be distinguished
as in the previous section. However, it has to be noted that
firstly, Case 2) and Case 3) (see Section 3) in practice will
only be obtained if the fuzzy model is an exact represen-
tation of the nonlinear system and the membership func-
tions do not depend on unmeasured variables. Secondly,
the bound obtained in Case 4) is very conservative, and
therefore in practical cases the applied output feedback
obtains better results than those that can be concluded
based on this bound. Moreover, also due to the conserva-
tiveness of the result, the design of the output feedback
control such that some desired bounds are satisfied is not
practical. However, the bounds can also be computed after
designing the observer and controller, and therefore be
used to establish guarantees for the closed-loop system.

The following example illustrates the computation of the
bounds for output feedback control:

Example 5. Consider the nonlinear system

ẋ =

(
1.1 x21 + 0.1

−x1 − 1 −3 + x22

)
x +

(
1
0

)
u

y = [1 0]x

(54)

with x1, x2 ∈ [−1, 1].

A TS approximation of this system is obtained as in
Example 2, where the approximation errors are ‖f‖ ≤ σf+

δf‖x‖ = 0.407α+ 0.48(1−α)‖x‖, α ∈ [0, 1] and ‖h‖ = 0.
With the same membership functions as in Example 2, we
also have ∆wf ≤ σwf + δwf‖e‖ = β · 6.3 + (1− β) · 6.3‖e‖,
with β ∈ [0, 1]. Since the measurement matrix is common
for all the rules, the equations can be simplified, and we
have ‖∆wh‖ = 0. Consequently, σe = 0.407α + 6.3β,
δe = 6.3(1 − β), and ηe = 0.48(1 − α), and σ = 0.814α +

6.3β, and δ =
√

2 max{6.3(1− β), 0.96(1− α)}.
Solving the problem

Find P = PT > 0, Q = QT > 0 such that

H
(
P

(
Ai − LiCk 0

Kk Aj +BjKk

))
< −2Q

for i = 1, 2, . . . , m, j = 1, 2, . . . , m, k = 1, 2, . . . , m

we obtain P =

12.53 0 0 0
0 12.53 0 0
0 0 9.06 2.90
0 0 2.90 1.03

 and Q = I,

λmin(P ) = 0.09, and λmax(P ) = 12.53. With these values,
we have the bound on the state and estimation error

γ =
147.8(0.814α+ 6.3β)

θ(1−
√

2 max{6.3(1− β), 0.96(1− α)}
(55)

under the condition that

1−
√

2 max{6.3(1− β), 0.96(1− α)} > 0

and α, β, θ ∈ (0, 1). It can be easily seen that this bound is
very large, irrespective of the values chosen for α, β, such
that (55) is satisfied. However, a large part of this bound
is due to the observer-model error. For instance, consider
the system

ẋ =

(
1.1 x21 + 0.1

−x1 − 1 −3 + x21

)
x +

(
1
0

)
u

y = [1 0]x

(56)

with x1, x2 ∈ [−1, 1]. The difference with respect to
the system (54) is that the (2, 2) element of the ma-
trix depends on x1, instead of x2. For this system, the
membership functions will only depend on x1 = y, i.e.,
on the measured variable. Therefore, in the membership
functions of the observer, we can use its true value, and
consequently ∆wf = ∆wh = 0. Moreover, a solution such
that λmax(P ) = 1.05, λmin(P ) = 0.73, and λmin(Q) = 1
can also be obtained. With these values, the bound on the
estimation error becomes

γ =

√
λmax(P )

λmin(P )

λmax(P )

λmin(Q)− λmax(P )δ

σ

θ

=
0.512α

(1− 0.5(1− α))θ

with θ ∈ (0, 1) and α ∈ [0, 1]. It can easily be seen that
for α = 0, this bound is actually 0, and therefore both the
states of the nonlinear system and the estimation error
converge to 0. 2

7. CONCLUSIONS

In this paper we have investigated whether and when
stability guarantees can be obtained when an observer
and a controller are designed for a fuzzy approximation of
a nonlinear system and applied to the original nonlinear
system. If the nonlinear system can be exactly represented
or approximated up to a term that is Lipschitz continuous,
under certain conditions, the dynamics of closed-loop
system are globally asymptotically stable. Otherwise, the
variables of the system are in general bounded. An upper
bound can be computed based on the approximation error
and the Lyapunov function used. We have also studied
how the guarantees depend on the approximation error
and on the mismatch between the observer–TS model and
the true system. In our future research we will investigate
whether the results can be improved.
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