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Abstract— This paper presents an unknown inputs observer 

for nonlinear descriptor systems. The approach uses the 

Takagi-Sugeno representation of the nonlinear model. In order 

to obtain strict linear matrix inequalities a novel observer 

structure is given. Thus the conditions can be efficiently solved 

via convex optimization techniques. A numerical example is 

provided to illustrate the performance of the proposed 

approach. 

I. INTRODUCTION 

Systems are subject to known inputs (designed control 
input) and unknown inputs (disturbances, measurement noise, 
modeling uncertainties, etc.). Designing observers for both 
the states of the system and unknown inputs (UIs) is an 
important task in robust control, monitoring and fault-tolerant 
control [1]–[5].  Estimating UIs also reduces the number of 
sensors to be used. For instance, in biomechanics, the 
estimation of an UIs such as the joint torques and angular 
velocities avoids the use of sensors on the person under study 
[6].  

A  proportional-integral (PI) observer for the estimation 
of both the state and the UIs has been developed in [7], where 

it is assumed that 0d   ( d  is the unknown input); later a 

proportional multi-integral (PMI) observer has been proposed 
in [4], [8]. This observer allows estimating polynomial 
inputs. There exist several results on the estimation of UI for 
standard linear systems or linear descriptor systems [2], [4], 
[9]–[11]. Generally, the conditions are given in terms of 
linear matrix inequality (LMI) conditions together with 
equality constraints. 

On the other hand, the number of results on the analysis 
and synthesis of nonlinear models via Takagi-Sugeno (TS) 
models have increased during the last twenty years. A TS 
model is a convex combination of linear models using 
nonlinear membership functions (MFs) [12]. The Lyapunov’s 
direct method is employed for analysis and design. In 
general, the conditions can be formulated as LMIs, which can 
be efficiently solved via convex optimization techniques [13], 
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[14]. The main results in this field have been collected in 
[15], [16].  In addition, using the sector nonlinearity approach 
guarantees that the obtained TS model is an exact 
representation of the nonlinear one in a compact set of the 
state space [17]. Nonetheless, when employing the sector 
nonlinearity methodology, the p non-linear terms in the 

nonlinear model generate 2 p  local models (vertices), i.e., for 
a large number of non-constant terms the number of vertices 
rapidly increases.  

The TS descriptor model has been introduced n [18] for 
those systems whose equations naturally appear as nonlinear 
descriptor models [19]. A TS descriptor model may help to 
alleviate the high number of vertices in the TS representation 
[20]. In addition, the final TS representation keeps the 
original structure of the given nonlinear model [21]–[23]. 

Under the TS-LMI framework, UI observers have been 
presented in [6], [24]–[27]. An observer that estimates the 
state and minimizes the influence of the UIs has been 
proposed in [28]. An application of PI observers for TS 
descriptor models has been addressed [6], under the 

assumption 0d  ; however the conditions are in terms of 

bilinear matrix inequalities (BMIs). In [24], conditions for a 
PMI observer of standard TS models have been given, where 
polynomial UIs can be estimated at the cost of enlarging the 
LMI problem to be solved. 

This paper provides a new observer structure for the 
estimation of  UIs; this novel structure is achieved by 
introducing an auxiliary variable in the estimated state vector 
[29]. This procedure leads to strict LMI conditions, thus 
overcoming the results in [6]. In addition, a large family of 
inputs is taken into account. 

The rest of the paper is organized as follows: Section II 
provides the notation used throughout the work, states the 
problem under study and motivates this research; Section III 
presents the design of an unknown input observer via strict 
LMI conditions; Section IV illustrates the proposed approach 
via a numerical example; Section V concludes the paper. 

II. NOTATION AND PROBLEM STATEMENT 

A. Notation 

When dealing with convex sums of matrices 
i , ij , 

 , 1, ,2,i j r   the following shorthand notation will be 

employed:  
1

r

h i ii
h


   ,   

1
1

1

r

h i ii
h





   , and 

   
1 1

r r

hh i iji j jh h
 

    . Subscripts may change 
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according to the associated MF. An asterisk    will be used 

in matrix expressions to denote the transpose of the 
symmetric element; for in-line expressions it will denote the 
transpose of the terms on its left side: 

 
 , .

T

T TAA B
A B A B A B

B CB C

   
          
  

  

The following relaxation lemma is employed to drop off 
the MFs from expressions in order to obtain an LMI 
formulation. 

Relaxation Lemma [30]: Let k

ij ,  , 1,2, ,i j r , 

 1,2, , ek r  be matrices of appropriate dimensions. Then 

     
1 1 1

0
er r rv

hh i j ki j k

k

ijh z h z v z
  

       holds if 

 

0, , ,

2
0,

1
, .

k

ii

k k k

ii ij ij

i k

i
r

j k

  

      


  (1) 

B. Problem statement 

Consider the following continuous-time nonlinear model 
in the descriptor form [19]: 

 
               

          ,

x t t u t ME x A x x B x x

y C x

d t

t x G txt d





 


 (2)  

where nx  represents the state, mu  stands for the 

control input, qd   is the unknown input vector, oy  is 

the output of the system. Matrices  A x ,   B x ,  C x , 

 M x ,  G x , and  E x  are assumed to be smooth in a 

compact set 
x  of the state space including the origin. 

Moreover, in this work the matrix  E x  is assumed to be 

regular in 
x ; this is motivated by mechanical systems 

where  E x  the inertia matrix, and therefore it is 

nonsingular [31]. Arguments will be omitted when their 
meaning is clear. 

In this work, we use the sector nonlinearity methodology  
[17], since it allows obtaining a convex representation of (2) 
that exactly represents the original nonlinear model. 
Therefore, the p  non-constant terms in right-hand side 

matrices           , , , ,A x B x C x M x G x  are captured by 

the membership functions (MFs)   ih z ,  1,2, ,2pi  .  

The same applies for 
ep  nonlinear terms in  E x :  kv z , 

 1,2, ,2 ep
k  . The MFs hold the convex sum property, 

i.e.,  
1

1
r

ii
h z


 ,   0ih z  ,  

1
1

er

kk
v z


 , and 

  0kv z  , with 2pr   and 2 ep

er  . The vector 

  ep p
z t


  is called the premise vector and it is assumed to 

be known.  

Thus via the sector nonlinearity approach, the nonlinear 
model (2) gives the following Takagi-Sugeno descriptor form 
[21]: 

 

    

  

1 1

1

,

e rr

k k i i

i

r

i

k

i i i

i

iv x u M dz E h z A x B

y h x G dz C







 



 



 (3)  

where matrices  ,, , ,i i i i iA B M C G  and 
kE  represent the i-th 

linear right-side model and the k-th linear left-side model of 
the TS descriptor model. The linear models are blended 

together via the MFs  ih z ,  1,2, ,i r  ,  kv z , 

 1,2, , erk   [15]. Using the shorthand notation, (3) is 

expressed as: 

  , .v h h h h hx A x B u M d G dy xE C     

The goal of this paper is to design an observer capable of 

estimating both the state  x t  and the UI  d t . To that end, 

consider that the UIs are given by an exo-system, with the 

dynamics d Sd , where q qS   is a known matrix. Using 

an extended state vector 
T

e T T n qx x d       the TS 

descriptor model (3) is rewritten as follows: 

 
,

e e e e

v h

e e

e

h

h

E A x B u

y

x

C x

 


  (4) 

with    
0

0

v n q n q

q

e

v

E
E

I

   
 





, 
 

0

ne

h

q mhB
B

  
  

 
, 

   

0

n q n qh

h

he
A M

A
S

   
 





, and    o n q

h

e

h hC C G
 

 .   

C. Motivation 

 In this paper the descriptor matrix  

   
1

er

v k kk
v z EE x E


   is assumed to be regular in 

x . 

Of course, classical tools could be used in the sense that (3) 
can be written as: 

 
     

     

1 1 1

,

v h v h v hx A x B u M d

A x x B x u M

E

d

E

x

E
  

  

  
 (5)  

where   1

v hx AEA  ,   1

v hx E BB  ,  and   1

v hx E MM  . 

The same reasoning applies for the extended system (4). 
Nevertheless, coming back to a standard structure (5) is 
generally accompanied by an increase of nonlinear terms and 
therefore with possibly unfeasible or computationally 
intractable LMI constraints [15], [16].  

Example 1. Consider a nonlinear descriptor model (2), 
with the following matrices: 



  

 

 
 

 

 
 

 
 

 
 

 
 

1 1

1

1

0.87 0.33 0

0.53 0.95 1

0.81 0.83 2 1

0.74

0.5 1 2

1 2

cos cos

0.5 cos

0

0.57 1 0.5

1 0.51.5 0

0.2 0.40 0.1 .5 cos

, ,

, ,

, ,

E x B

x x
A x M x

x
C x G x

x



 

 






 



  
 

 


 

 

   
   

  

   
   
   

  
  

   

  

with  2

11 1 x   ,    is a real-valued parameter known a 

priori. Using the sector nonlinearity approach, a TS 
descriptor model can be constructed with 2r   due to the 

term  1cos x ; 2er   due to  2

11 1 x   . In total 4 

vertices are needed to exactly represent the original nonlinear 
system. On the other hand, obtaining a standard state space 

requires  1E x , which is possible since  E x  is not 

singular. Then, (5) is computed with 

 

   

 

   

1

2

1

1

2

1

1

2

1

0.95 0.33

0.53 0.87

0.95 0.33

0.53 0.87

0.95 0.33
,

0.53 0.8

0.5

0 5

.

7

.

0 5

z
A x

z

z
B x z

z

z

z A x

B

MM x z
z

x







  
 
  

  
 
 




 

  
 
  



  

where  2 1

1
2

1 10.6516 0.33 0.26 0.50 5z zz z 


    and 

   2 2

1 1 11 1z x x   . Note that all the nonlinear terms are 

in the right-hand side of (5). Since there are three non-

constant terms — 
1z  and 

2z  from  1E x  and  3 1cosz x  

from         , , ,A x M x C x G x  —, using the sector 

nonlinearity approach 32 8r    vertices are obtained. 

Moreover for this example the input matrix moves from 
constant in (3) to state-dependent in (5). Both facts increase 
the number of LMI conditions to be verified and generally 
reduce the set of possible solutions. This example is 
continued in section IV.   

Several works [6], [21], [23] have shown that keeping the 
structure of the observer close to the nonlinear model can 
significantly improve the quality of the results.  

In order to work with the initial structure (3), a classical 
approach is to use an extended descriptor structure 
embedding equation (4) as a differential algebraic equation 

(DAE). Then, define    2 2 2 2
e

n q n q

e

x
x

x

   
  
 

 and the model 

writes directly: 

 , ,v hhh BEx A x y Cu x    (6)  

with, 
0

0 0n q

n qI
E





 
  
 

, 
0 n q

hv e e

h v

I
A

A E

 
  

 
, 

0
h e

h

B
B

 
  
 

, and 

0e

h hC C    . 

III. MAIN RESULTS 

A. Parameterized LMI conditions 

Following the procedure in [21], the observer can be 
written as  

 
 ˆ ˆ

ˆˆ ,

ˆ
hv h hv

h

Ex A x B u L

C

y y

y x





  
  (7) 

where    2 2 2 2ˆ
ˆ

ˆe

e

n q n q
x

x
x

  
 

  
  

 is the estimated state vector 

and 0
T

T

hv hvL L    ,  n q o

hvL
 

  is the observer gain to be 

designed such that ˆe ex x  when t  ; to this end an 

extended estimation error is defined: 

 
   2 2 2 2

ˆ
ˆ .

ˆ

e e

n q n

e

q

e
e

x

x x
x x

x

  
 

   
  

   (8) 

Therefore 

   .hv hv hEe A L eC    (9) 

Then, consider the Lyapunov function candidate: 

   ; 0,TT TTV E P Ee e e P P E    (10) 

with    2 2 2 21

3 4

0 n q n qP
P

P P

   
  





, 
11 0TP P  , 

4P  being a 

regular matrix.  

The time-derivative of the Lyapunov function gives: 

 
 

   * .

TT T T

T T

hv hv h

V e e Pe e P eE E

A Ce P eL

 

  
  (11) 

Thus       00 hv hv h

T TV A CP P Le       or 

 
   

   

3 3

4 4 3 41

0.

T e T e

h h

T
T e T e e T

hv

hv v v

e

h h

A P L C

A P L C P E P P E

P

P

    
  
      
 

 (12) 

Remark 1. From (12) it is not possible to obtain strict 

LMI conditions due to the terms 
3

T

hvP L  and 
4

T

hvP L . Several 

choices are possible that will generate suboptimal solutions. 
For example, it is possible to obtain parameterized LMI 

problems by choosing 
4 3P P  with   a scalar and then use 

a logarithmically spaced search grid [32]–[34]. To get a strict 

LMI problem following [6] a choice is 
4 3P P . In this latter 

case, with the change of variables: 
3

T

hv hvF P L , (12) renders: 

 
   

   

3

31 33

0.

T e e

h h

T
T e e e T e

h h

hv

hv v v

A F C

A F C P P

P

E P EP

    
  
      
 

  (13) 

The following theorem summarizes this result. 

Theorem 1. Consider the system (6) together with the 

observer (7). If there exist matrices 
1 1 0TP P  , 

3P ,  and 



  

jkF ,  1,2, ,j r  ,  1,2, , ek r   such that (1) holds 

with: 

 
   

   

3

3 1 3 3

* *
,

*

T e e

i jk i
k

Tij T e e e T e

i jk i k k

P A F C

P A F C P E P P E

  
 
     
 

  (14) 

then the estimation error e  is asymptotically stable. The 

observer gains are obtained as 
3

T

hv hvL P F  and the observer 

structure is: 

 
 ˆ ˆ ˆ

ˆ ˆ .

e e e e e

v h h hv

e e

h

E x A x B u L y y

y C x

   


  (15) 

Proof.  Based on the developments above, by applying 

the Relaxation Lemma on (13) gives the desired result. ■  

B. Strict LMI conditions 

The main result presented hereafter eliminates the 
drawback that (12) is BMI and does not require choosing 

3 4P P . In order to achieve this goal, a new full observer 

gain needs to be implemented. This is attained by using a 

new estimated state vector: 
   2 2 2 2ˆ

ˆ .
e

n q n q

e

x
x



   
  
 

 

 Then, an observer for (6) writes 

  ˆ ˆ ˆˆ ,ˆ ;T

hv h hv hP yEx A x B u L Cy y x     (16) 

with 1 2

T
T T

hv hv hvL LL     ,  
1 2,

n q o

hv hvL L
 

 . Define the 

estimation error ˆe ee x x  . The goal is to ensure 0e  

when t  . As previously, we define an extended vector 

where e  plays a role equivalent to ˆex : 

 

1

2

ˆ

ˆˆ
ˆ .

e e

e e e

e

x x

d dx x
e x x

x x

d

 



 
 

  
      

    
 

 

  (17) 

Therefore its dynamic is given by 

   .T

hv hv hCPEe A L e    (18) 

Consider the Lyapunov function candidate: 

   ; 0,TT T TV e e E Pe E P P E    (19) 

with 
   2 2 2 21

3 4

0 n q n qP
P

P P

   
  





, 11 0TP P  , 
4P  being a 

regular matrix. Then, the following result can be stated. 

Theorem 2. Consider the system (6) together with the 

observer (16). If there exist matrices 
1 1 0TP P  , 

3P , 
4P , 

1 jkL ,  and 2 jkL ,  1,2, ,j r  ,  1,2, , ek r   such that (1) 

holds with 

   

   

3 1

4 2 1 3 4

* *
,

*

T e e

i jk i
k

Tij T e e e T e

i jk i k k

P A L C

P A L C P E P P E

  
 
     
 

   (20) 

then the estimation error e  is asymptotically stable and, the 

observer structure is 

 
   11

2

ˆ ˆ ˆ

ˆ ˆ .

T hve e e e e e

v h h v

e e

h

hv

L
E x A x B u E I P y y

L

y C x

  
      

 



  (21) 

Proof. The derivative of the Lyapunov function writes: 

       1 * .
T

h

T

h

T

hv vV P Pe e A L C e     (22) 

Then 

    0 0* .hv h

T

v he A LV P C      (23) 

Developing (23) gives  

 
   

   

1

2 1 3

3

4 4

0,

T e e

h h

T
T e e

hv

hv

e T e

h h v v

A L C

A L C P E P PP E

P    
  
      
 

  (24) 

which leads to the desired result via the Relaxation Lemma. 
The final observer form (21) is obtained as follows: recall 
(16) and define 

 
 1

1 1 3 4 21

2 4 2

.

T T

hv hvhv T

hv T
hv hv

P LK
P

K P

P P L
L

L

 





  
   
 



 

   (25) 

Thus 

 1

2

ˆˆ0 0

0 0

0
,ˆ

n q n q

e e

h v

e

ee

ee
n q

e ehv

hv

h

e e
h h

xI I

A E

K C
x

B

x

u x
K C



    
   

  

  
   

   

   
   

  
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  (26) 

developing it: 

 
 

 

1

2

ˆ

.

ˆ

ˆ ˆ

e

h

e e e e

v h h h

e e e e

hv

e e e e

hv

K Cx x

x uA B x x

x

E K C





  

  
  (27) 

By defining  1
ˆ ,ˆe e e e

h

e

hx C xK x    (27) produces: 

     1 2 ,ˆ ˆ ˆ ˆe ee e

hv hv v

e

h hE K y A B K yx y x u y        

which after grouping the terms yields 

 

  

 

1 2

1

2

ˆ ˆ ˆ

ˆ ˆ .

e e e e

v h h v

e e e

h

e e

hv hv

hv

hv

h v

e

E A B E K K y

K
A B E I y

K

x x u y

x u y

   

 
    

 



  

  (28) 

Substituting (25) into (28), the proof is concluded. ■  

Note that from (24), one can see that it is possible to add 
extra degrees of freedom by incorporating convex MFs in 



  

matrices 
3P  and 

4P ; thus  3 1 3j j

r

h j
P h z P


  and 

 4 1 4j j

r

h j
P h z P


 , relaxes the conditions in Theorem 2 

without augmenting the number of LMIs. This fact is 
summarized in the next corollary. 

Corollary 1. Consider the system (6) together with the 

observer (16). If there exist matrices 
1 1 0TP P  , 

3 jP , 
4 jP , 

1 jkL ,  and 
2 jkL ,  1,2, ,j r  ,  1,2, , ek r   such that (1) 

holds with 

   

   

3 1

4 2 1 3 4

* *

*

T e e

j i jk i
k

Tij T e e e T e

j i jk i k j j k

P A L C

P A L C P E P P E

  
 
    
 




  (29) 

Then, the estimation error e  is asymptotically stable. The 

observer structure is: 

 
 1

2

ˆ ˆ ˆ

ˆ ˆ .

e e e e e e

v h h v

hvT

h

h

e e

h
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L
E x A x B u E I P y y

L

y C x

  
      

 



  (30) 

 At last, the strict LMI result in Theorem 1 always 

encompasses the previous results as stated by the next 

corollary. 

 Corollary 2. If the conditions in Theorem 1 are feasible 

conditions or to the parameterized problem from BMI 

conditions (12), then there exists a solution to Theorem 2. 

Proof. In Theorem 2, expression (20) with 
4 3P P  and 

1 2jk jk jkL L F   renders directly expression (14). For 

parameterized LMI problems, consider 
4 3P P   and 

1 2jk jk jkL L F   in (20).  

Remark 2. The results given in Theorem 1, Theorem 2, 

and Corollary 1 can be extended directly to the PI and PMI 

observers. For a PI observer, set 0S  , while for the PMI 

observer consider 
 

0d

 , where  -derivative of the UI. 

Remark 3. The convergence rate of the estimation error 

can be directly carried out under the TS-LMI framework. In 

our case, the condition is given by    2V e V e  , 0   

[15], [16].  

IV. EXAMPLE 

Example 2. Recall the system in Example 1. Considering 

the compact set  2

x x   , the sector nonlinearity 

approach gives the following TS descriptor model:  

 

    

  

2

1

2

1

2

1

,

k k i i i

k

i i i

i

i

x u M d

x G d

v z E h z A x B

y h z C







 



 


  (31) 

where 1

0.87 0.17

0.53 0.95
E





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 
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, 2

0.87 0.83

0.53 0.95
E
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
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
 
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, 

1

0.81 0.83

0.74 0.57
A

  
 
 

 , 2

0.81 0.83

0.74 0.57
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2 1

1 0.5
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 
  
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2 1

1 0.5
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 
  
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1

2 0

0 0.1
C

 
  
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, 

2

1 0

0 0.1
C

 
  

 
, 

1

1 0.5

0.7 0.4
G

 
  

 
 and 

2
0.3

1 0.5

0.4
G

 
  

  
. 

The scalar parameter is 0  . Consider that 
1x  is available. 

The MFs are   1 10.5 cos 1h x  , 
2 11h h  , 

 2

1 11 1v x , and 
2 11v v  . The dynamics of the 

unknown input are given by the exo-system 

0 0.5

0.5 0
d d

 
  

 
, which generates sinusoidal signals. Note 

that in [6], [24], 0d   is considered or that there exists   so 

that  
0d


 . In order to show the performance of the 

proposed approaches, two comparisons are done: 

1) Comparing with conditions in [24]: In order to use the 
methodology given in [24], a standard TS representation is 
needed, thus a TS model with 8 vertices should be obtained 

after the inversion of the matrix  E x (see Example 1, 

Section II.B). By choosing common matrices as follows: 

1C C , 
1G G , and 0S   ( 0d  ), the following results 

were obtained: conditions given by Theorem 1 in [24] were 
feasible until 0.53  ; while conditions in Theorem 1, 

Theorem 2, and Corollary 1 of this work were feasible up to 
the value 0.91  (the larger   is the more relaxed the 

approach is). Therefore, keeping the descriptor structure 
allows obtaining more relaxed results. 
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Figure 1.  States in (black lines) and their estimates (blue-dashed lines) for 

Example 1 for δ=1.55. 
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Figure 2.  Unknown inputs (black lines) and their estimates (blue-dashed 
lines) for Example 1 for δ=1.55. 



  

2) Comparing the approaches given in Theorems 1 and 2 
as well as Corollary 1. The aim is to design an UI observer 
for the TS descriptor model (31), considering the exo-system. 
For Theorem 1, the maximum value of   for which feasible 

solutions were found is 1.16  ; in case of Theorem 2, the 

maximum value of   for which the conditions were found 

feasible is 1.66  ; while for Corollary 1 the maximum   

is 1.84  . Thus, Corollary 1 is more relaxed than 

Theorems 1 and 2. 

When considering the exo-system as well as the real 
parameter 1.55  , conditions in Theorem 2 were found 

feasible. Figures 1 and 2 illustrate the result via simulation 

with initial conditions    0 0.4 0.5 0.1 0.1e T
x    . 

Some matrices of the solution are given as example: 
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0.01 0.02 0.21 0.29 0.62 4.04
, ,

1.54 0.21 20.96 2.79 2.17 4.17

0.33 0.29 2.79 22.44 1.92 2.21

0.43 5.99

0.64 3.89
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1.93 3.74

1.88 2.06

P L
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 
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 
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

 

V. CONCLUSION 

A novel observer for the estimation of unknown inputs 

has been presented. The approach is based on the Takagi-

Sugeno representation of a nonlinear descriptor model. Via 

an auxiliary state variable, a new observer structure can be 

designed by means of strict LMI conditions.  
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