
Adaptive Fuzzy and Sliding-Mode Control of a Robot Manipulator with
Varying Payload
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Abstract— In this paper, we compare indirect adaptive fuzzy
control and sliding-mode control in a robot manipulator app-
lication. The manipulator performs pick-and-place tasks with
unknown and variable payloads. The change of payload causes
large variations in the dynamics of the robot. The sliding-mode
controller deals with the payload change through its inherent
robustness, while the adaptive fuzzy control algorithm adjusts
the controller’s parameters on-line. The control methods are
compared both in numerical simulations and in real-time expe-
riments. The sliding mode controller obtains a very good steady
performance. However, thanks to the continuing adaptation, the
adaptive fuzzy controller eventually yields smaller steady-state
error.

I. INTRODUCTION

Robot manipulators are essential for current industrial

automation systems and will become even more important in

the future when robots will be adopted for various service-

oriented tasks. Once robots leave the well-structured envi-

ronments of factory floors to assist us in our homes, offices

and hospitals, their control algorithms will have to deal

with a large degree of uncertainty and possibly unexpected

disturbances. Due to the inherent uncertainty, it will be

difficult to construct an accurate mathematical model of the

robotic system. Therefore, the primary necessity is to design

robust or model-free control methods.

In this paper, we investigate and compare two different

methods: sliding-mode control and indirect adaptive fuzzy

control on an example of a robotic arm for pick-and-

place work with an unknown and variable payload. First,

a continuous-time indirect adaptive fuzzy controller is de-

signed to have a good tracking performance and to deal

with parameter uncertainties of the robot arm. After the

development of stable direct and indirect adaptive control

schemes [1], [2], adaptive fuzzy controllers have been used

to control nonlinear systems in diverse areas. The control

law is based on the feedback linearization rule and the
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nonlinearities are approximated by an adaptive fuzzy system

so that the nonlinear control problem is transformed into

a linear control problem. Second, a continuous-time sliding

mode (SM) controller is designed to control the robotic

manipulator. Sliding-mode control is a preferred nonlinear

control method, because of its insensitivity to the parametric

uncertainties and external disturbances [3].

In the literature, many different control methods have been

proposed to control robotic arms. These approaches usually

assume that the arm has only its own mass or is carrying a

constant payload. Some of them use an exact model of the

robot arm and others utilize adaptive systems to approximate

the robot arm model. In [4], a Takagi-Sugeno fuzzy model

based sliding mode controller has been proposed to control

robot manipulators. In addition, fast online closed-loop

identification with generalized proportional integral control

method in [5], adaptive fuzzy controllers in [6], [7], [8],

Takagi-Sugeno adaptive fuzzy controllers in [9] have been

proposed to control robot manipulators with constant

payload.

Robotic arms and some mechanical systems with time

varying unknown payload have also been controlled by

compensating the effect of the varying payload. In [10],

an adaptive controller has been proposed to control the

mechanical system where the varying payload is estimated

by bounded time functions. In [11], a sliding mode controller

is used to control the robot arm and the effect of the varying

payload is compensated by the controller. Finally, [12], a

double-layer sliding-mode control has been proposed to

control the robot arm and a PI (proportional + integrative)

based disturbance observer has been used to estimate the

time-varying payload to obtain zero steady-state error.

The rest of the paper is organized as follows. In Section 2,

the mathematical model of the Delft robot arm and its

physical parameters are given. Then, the adaptive fuzzy and

sliding mode controllers are described in Sections 3 and 4,

respectively. Simulation and real-time results are presented

in Section 5 and Section 6 concludes the paper.

II. DYNAMIC MODEL OF THE DELFT ROBOT ARM

The Delft robot arm [13] is shown in Figure 1 and a

simplified schematic of one joint is shown in Figure 2. Two

actuators are installed to control one joint angle: a ball screw

driven macro-actuator is connected to the link
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through a low-stiffness spring, and a micro-actuator is

directly connected to the link. The primary task of the macro-

actuator is to compensate the effect of the gravity force under

varying payload by controlling the distance u (Figure 2). The

micro-actuator is employed for high-precision control of the

gravity-compensated arm. However, the macro-actuator can

also be used to assist the micro-actuator in speeding up the

transients.

Fig. 1. Delft robot arm.

In this paper we focus on the macro-actuator and we pick-

and-place tasks with varying payload. The dynamics of the

system under study are given by:

mL2ϕ̈+ (Kur −mgL) sin(ϕ) = τ

Ku−Kr cos(ϕ) = F
(1)

where ϕ is the angle of the robot arm in radians (see

Figure 2), ϕ̇ is the angular velocity (rad/sec) and g =
9.81m/s2 is the acceleration due to gravity, τ and F are the

driving torque and forces of the macro and micro actuators,

respectively. The physical parameters are: K = 568N/m is

the spring constant, L = 0.4m is the length of the link,

r = 0.075m is the length of the spring arm.

Fig. 2. One joint of the robot arm considered.

We neglect the dynamics of the macro-actuator motor, i.e.,

assume the macro-actuator can quickly set the distance u to

a desired value. The corresponding mathematical model of

the manipulator without the micro-actuator is given by

ẋ1 = x2,

ẋ2 = sin(x1)
g

L
− sin(x1)

Kr

L2m(t)
u(t),

(2)

where x1 is the angular position (ϕ) of the arm. The variable

u(t) in (2) is the input signal due to the macro-actuator.

Its value is physically limited to the interval [2, 20] cm.

Another important constraint is the limitation of the pay-

load to the interval [0.35, 2] kg, where 0.35 kg is the mass

of the end-effector. The angular position changes between

[π6 ,
5π
6 ] radians and friction in the joint is neglected. The

control objective is to track desired angular positions while

carrying different payloads. The payload changes in time

abruptly and randomly. In this paper, we compare sliding

mode and adaptive fuzzy control methods to control the robot

arm with constant and varying payload.

III. INDIRECT ADAPTIVE FUZZY CONTROL

Indirect adaptive control is important for the control of

unknown and uncertain nonlinear systems. The unknown

system is modeled online and this system knowledge is used

to generate the control input to drive the system to the

next desired state. The control law employed is based on

the feedback linearization approach. Consider an nth order

nonlinear dynamic system of the form

ẋ1 = x2,

ẋ2 = x3,

...

ẋn = f(x) + g(x)u,

y = x1,

(3)

where u ∈ R and x = [x1, x2, . . . , xn]
T ∈ R

n are the control

input and the state, respectively, and f and g are nonlinear

and bounded functions of the state. The aim of the controller

is to generate an appropriate control signal such that the

system follows a given bounded reference signal yr. The

tracking error is defined as e = yr − y, and the error with

its n − 1 derivatives is given as e = [e, ė, . . . , e(n−1)]. The

feedback-linearizing controller is defined so that it cancels

the nonlinearity of the input-affine system (3)

u =
1

g(x)
[−f(x) + yr + λT e] (4)

where λ = [λn . . . λ1]
T . Substituting (4) into (3), we obtain

that the closed-loop system is governed by

e(n) + λ1e
(n−1) + . . .+ λne = 0 (5)

where the constants λi, i = 1, 2, ..., n are appropriately

chosen parameters such that the roots of the polynomial

h(s) = sn + λ1s
(n−1) + . . . + λn are in the open left-

half complex plane. Then, we have limt→∞ e(t) = 0, which

means that the plant output converges asymptotically to the

desired reference. However, in (4), the nonlinear functions

f(x) and g(x) are unknown and approximated by the

adaptive fuzzy system as

f̂(x) = ŵT
f φf (x)

ĝ(x) = ŵT
g φg(x)

(6)

where ŵf and ŵg are consequent parameter vectors, which

are adapted online, and φf(x) and φg(x) are the basis

functions, which are defined a priori. If the approximated
8292



functions (6) are substituted into (4), then the control law

becomes

u =
1

ĝ(x)
[−f̂(x) + yr + λT e]. (7)

For controllability, the following assumption is required:

Assumption 1. The function ĝ(x) is assumed to be bounded,

i.e., 0 < gmin(x) ≤ ĝ(x) ≤ gmax(x) for x ∈ Uc, where Uc

denotes the controllability region.

The generated control input (7) is substituted into (3). After

some manipulations, the error dynamics are obtained as

ė = Λe+ bs (8)

where Λ ∈ R
n×n is a matrix in the companion form, with the

last row containing the vector −λT , b = [0, . . . , 1] ∈ R
n×1.

The adaptive fuzzy system can approximate the f̂(x) and

ĝ(x) functions up to a very small error s in (8), which is

called the minimum approximation error and is described

as [1]

s = [w∗T
f φf(x)− f(x)] + [w∗T

g φg − g(x)]u (9)

where w∗T
f and w∗T

g are the optimal parameters of the

adaptive fuzzy system.

A. Stability and Parameter Adaptation Laws

The adaptation laws of the parameters are derived from

Lyapunov synthesis. The selected Lyapunov function that

includes the control errors and the parameters errors is

given by

V =
1

2
eTPe+

1

2γf
w̃T

f w̃f +
1

2γg
w̃T

g w̃g (10)

where γf and γg are the learning rates of the f̂(x) and ĝ(x)
functions, respectively. w̃f and w̃g are the parameter error

vectors. The symmetric positive-definite matrices P,Q ∈
R

n×n and Λc satisfy the Lyapunov equation

ΛT
c P+PΛc = −Q (11)

This Lyapunov function can be used to show the boundedness

of the tracking errors and parameter errors [3]. The time-

derivative of the Lyapunov function (10) is obtained by using

(8) and (11) as

V̇ = −eTQe+
1

2γf
[ẇf + γfesφf(x)]

+
1

2γg
[ẇg + γgesφg(x)u] + ess

(12)

where es = eTpn, and pn is the last column of the matrix

P . From the time derivative of the Lyapunov function, if the

parameters are updated as

ẇf = −γfesφf(x), (13)

ẇg = −γgesφg(x)u (14)

then the terms in the square brackets in (12) are zero and V̇
becomes

V̇ = −eTQe+ ess. (15)

The term ess in (15) can be either neglected or compensated.

When the approximation of the fuzzy system is accurate,

this term will not have a significant effect on the parameters

change and tracking [1]. In addition, the adaptation laws

(13) and (14) can be modified to have better convergence

[14], [15], [16].

In this paper, we provide the persistent excitation of the

fuzzy basis functions to guarantee the convergence and

boundedness of the parameters.

Definition 1. [15] A fuzzy basis vector φ(x) is persistently

excited, if there exist constants α > 0 and T0 > 0 such that

∫ t+T0

t

φ(x(τ ))φ
T
(x(τ ))dτ ≥ αI ∀t ≥ t0. (16)

IV. SLIDING MODE CONTROL

Sliding mode control can provide robust control of nonli-

near systems with disturbances and parametric uncertainties.

The control law is based on the known mathematical model

of the nonlinear system and the design of the controller has

two phases. The first one is to select the sliding surface

(or manifold), so that the states are restricted to the sliding

surface with desired dynamics. The second phase consists

in designing a control law that drives the states to the

sliding surface and then keeps the states there. Consider the

following single-input nonlinear system

ẋ1 = x2,

ẋ2 = x3,

...

ẋn = f(x) + g(x)u,

y = x1,

(17)

where u ∈ R and x = [x1, x2, . . . , xn]
T ∈ R

n are the

control input and states, respectively. The nonlinear functions

f(x) = f0(x) + Δf(x) and g(x) = g0(x) + Δg(x) are

not precisely known and f0(x) and g0(x) are the nominal

known parts of the functions, and Δf(x) and Δg(x) are the

parametric variations or modeling errors. They are assumed

to be bounded as |fmax(x)−fmin(x)| < F and |gmax(x)−
gmin(x)| < B. For the nonlinear system, only the nominal

values and bounds of the functions are assumed to be known.

The control task is to track the reference signal xd, where the

tracking error is defined as e = xd−x with n−1 derivatives

as e = [e, ė, ..., e(n−1)]T . The first step is to define the sliding

surface [3] as

σ(e; t) = (
d

dt
+ λ)n−1e, (18)

where λ is a positive constant and its value determines the

decay ratio of the tracking error. When the sliding surface

goes to zero, the tracking error also goes to zero, such that

the states of the nonlinear system track the desired states. To

keep the value of σ at zero, the input signal is designed to

satisfy
1

2

d

dt
σ2 ≤ −η|σ|, (19)
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σσ̇ ≤ −η|σ| (20)

where η is a strictly positive constant. Essentially, (19) states

that the squared distance to the surface, as measured by

σ2, decreases along system trajectories. For a second order

system (n = 2), the dynamics of the sliding mode can be

written as follows:

σ̇ = ë+ λė = f0(x) + g0(x)u− ẍd + λė (21)

To achieve σ̇ = 0, the equivalent control input of the system

is derived as

ueq =
1

g0(x)
(−f0(x) + ẍd − λė) (22)

where g0(x) �= 0 for controllability as in Assumption 1. To

satisfy the dynamics in (20) and to reach the desired states in

finite time a discontinuous control part is added to input (22)

as

u = ueq + uc =
1

g0(x)
(−f0(x) + ẍd − λė)− k sgn(σ),

(23)

where sgn(·) is the signum function

sgn(σ) =

{
+1 σ ≥ 0,
−1 σ < 0,

(24)

and

k ≥ β(F + η) + (β − 1)|ueq| (25)

where β =
√

gmax(x)
gmin(x)

is a positive constant. By using (23)

with k satisfying (25), one obtains

σ̇σ ≤ −η|σ| = −ησsgn(σ) (26)

The value of k is an important design parameter of the

sliding-mode controller. It must satisfy equation (19) and it

influences the convergence of the tracking error. The control

input eventually drives the dynamics of σ and e to zero.

However, it may cause oscillations (or chattering) on the

sliding surface. To avoid the chattering effect, the signum

function can be replaced with other functions. The well-

known approach is to use a saturation function [3]

sat(σ) =

{
σ σ < |1|,

sgn(σ) otherwise.
(27)

V. SIMULATION AND REAL-TIME RESULTS

In this part, we compare indirect adaptive fuzzy control

and sliding mode control on the robot arm described in

Section II. First, an adaptive fuzzy system is designed to

approximate the nonlinear functions f(x) and g(x) of the

robot arm (2). The antecedent part of the fuzzy system

is constructed using fixed Gaussian membership functions,

where the standard deviation and centers are decided by

considering the input of the adaptive fuzzy system, which

is the angular position of the arm x1. Therefore, the centers

of the membership functions are linearly spaced between 0
and π rad with the step of π

10 rad. The standard deviation of

the Gaussian functions is selected as π
10 . The closed-loop

feedback control parameters (5), λ1 and λ2, are selected

as 20 and 100, respectively. The corresponding P matrix

(11) is calculated from the Lyapunov equation and the last

column of the P matrix pn = [10, 1] is used to calculate es
(12) [14]. Finally, the learning rates of the f̂(x) and ĝ(x)
approximators are selected as γf = 10 and γg = 500; γg is

chosen relatively large to account for large changes in the

ĝ(x) function.

Second, a sliding mode controller is designed with sliding

mode parameter λ = 10, which is determined by trial and

error. The nominal function values of the robot arm (2) are

calculated as f0(x) = 24.52 and go(x) = −226.59, by

using x10 = π
2 radians and m0 = 1.175 = 2+0.35

2 kg. These

values are used to calculate the input signal (23). Using the

minimum and maximum values of the payload and reference

signals, the maximum and minimum values of the nonlinear

functions are found as [fmin(x), fmax(x)] = [21.23, 24.52]
and [gmin(x), gmax(x)] = [−115.28,−760.71], respec-

tively. Finally, for the switching part of the sliding mode

controller, the k value is derived from (25) as k ≥ 8.59 +
2.56η and its value is chosen as 10. The uncertainty caused

by additional payload is compensated by the controller.

To compare the controllers, the performances are measured

by maximum absolute error max(|e|), the integral of the

absolute error (IAE = 1
T

∫ T

0
|e|dt), the steady state error

|e|ss of the tracking controller, and the required control effort∫ t1
t0

|u(t)|2dt.
A. Reference Tracking with Varying Payload: Simulation

In simulation, both the reference position and the pay-

load are changed. Consequently, there is uncertainty not

only due to the payload change, but also due to the

reference signal change, and their combination causes a

large variation in the g(x) function. The payload changes

as [0.35, 1.6, 0.35, 0.9, 0.35, 1.2, 0.35, 0.7, 0.35, 1.8] kg. The

reference signal changes as [ 2π3 , π
3 ,

5π
6 , π

2 ] rad. Figure 3

shows the reference tracking, tracking errors and the input

signals generated by the controllers. The control parameters

of both controllers and the approximation capability of the

fuzzy system have an important role in the tracking control.

When the payload and the reference signal change, the input

signal is first produced to track the reference signal and

second to hold the payload at that position. This is seen

clearly in Figure 3.

Both controllers have acceptable tracking performance, but

the sliding-mode control results are more accurate than the

adaptive fuzzy control results. However, we must note that

the adaptive fuzzy controller generates the control signal

after approximating the changes in the nonlinear functions.

Therefore, it needs more time to track the reference signal.

Even though the adaptive fuzzy controller has a larger

tracking error at the beginning, in a short time the tracking

error decreases to very small value. In addition, smaller

steady-state tracking errors are obtained. The performance

measures of the controllers are given in Table I.

From numerical simulations, it can be seen that the sliding

mode control is robust w.r.t. the uncertainties and obtains

better control performances in the transient response of the

system. However, due to the continuing adaptation, after a
8294
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Fig. 3. Sliding mode control (dashed), adaptive fuzzy control (dotted)

TABLE I

PERFORMANCES IN SIMULATION

Control Method max(|e|) IAE |e|ss
∫ T
0 |u|2dt

Sliding Mode Control 0.19 6.6e-3 3.4e-3 361.58
Adaptive Fuzzy Control 0.53 26.2e-3 0.046e-3 361.42

short-time, the adaptive fuzzy control yields better steady-

state errors. Concerning the control signal power required

for tracking, AFC requires less control effort than SMC. A

large disturbance is applied to the output signal at t = 53 s

and SMC results in a more oscillatory control signal than

the AFC. However, when the payload changes, the SMC

compensates easily the uncertainty caused by the payload,

and the tracking error of AFC is slightly larger. From this

simulation, it can be concluded that SMC is better for internal

uncertainty and AFC is preferable for external disturbance

rejection.

B. Reference Tracking with Constant Payload: Experiments

The designed control methods are applied to a nonlinear

DC servo system in a real-time experiment. The dynamics

Fig. 4. Servo system

of the servo system are given as

ẋ1 = x2,

ẋ2 =
−K2 − bR

RJ
x2 −mL

gL

J
sin(x1) +

K

RJ
u,

(28)

where x1 is the position of the payload in radians and x2 is

the angular velocity of the payload in rad/sec. The system is

shown in Figure 4 and the parameters are given in Table II.

TABLE II

PARAMETERS OF THE SERVO SYSTEM

K Electromotive force constant 0.0536 N m/A

b Damping of the mechanical system 3× 10−6 kg/s
R Electrical resistance 9.5

J Moment of inertia of the rotor 1.91× 10−4 kg m2

g Acceleration due to gravity 9.81 m/s2

L Payload distance from the disk center 0.042 m
mL Payload mass 30 g

This system is not designed to carry varying payloads,

so there is a constant payload mounted on the disk which

is mL = 30 g. The objective is to position the payload

according to a varying reference signal. Owing to the same

influence of gravity, the servo system dynamics (28) are

very similar to the robot manipulator dynamics (2). The

feedback parameters of controllers are adjusted to λ1 = 50
and λ2 = 15. The learning rates are chosen as ηf = 100 and

ηf = 500. The values of other parameters are the same as

in Section V-B.

Real-time control results, similar to those simulated, are

given in Figure 5-6 and in Table III. The trajectory tracking is

presented in Figure 5(a) and the tracking errors are shown in

Figure 5(b). When the reference signal changes, the sliding

mode control converges faster to the reference signal, but

after a short-time, the adaptive fuzzy control tracks the

reference signal with smaller steady-state errors. These errors

are acceptable for both controllers. The angular velocity

of the payload and the control signals are presented in

Figures 6(a) and 6(b), respectively. At t = 20 s, there is

a small oscillation of the payload and consequently, in the

adaptation of the fuzzy system parameters.
8295



TABLE III

REAL-TIME CONTROL PERFORMANCES

Control Method max(|e|) IAE |e|ss
∫ T
0 ||u||2dt

Sliding Mode Control 0.12 6.0e-3 1.3e-3 533.47
Adaptive Fuzzy Control 0.23 9.8e-3 0.41e-3 515.86

C. Discussion and Conclusion

The performance of the adaptive fuzzy system depends

on the design parameters. In general, the number of basis

used, the initial parameters, and the learning rates influence

the control performance. On the other hand, sliding mode

control uses prior knowledge about the system, and also one

parameter is determined based on the knowledge about the

system. Therefore, with proper tuning, it is not difficult to

obtain good performance using sliding mode control. The

robustness of the sliding mode control and the adaptation

power of the adaptive fuzzy control have similar effects. This

can be seen both in simulation and in real-time control. We

can conclude that if one has prior knowledge about system,

then to obtain robust performance, sliding mode control is a

preferred controller. However, if there is no knowledge about

the system, we can design adaptive fuzzy controllers, which

also results in smaller steady-state error values. In our future

work, we will design new controllers for varying payload

positioning of robot manipulators.
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