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Abstract— This paper presents an unknown input observer
for a two-link robot arm. To handle the inherent nonlinearities,
a Takagi-Sugeno fuzzy model in descriptor form is used.
The design conditions are given as linear matrix inequalities,
which can be efficiently solved. The observer is tested both in
simulation and on experimental, measured data.

I. INTRODUCTION

Robotics has a growing impact on our everyday life.
Traditional applications in industry are complemented by an
increasing integration of robots in the human environment,
with domestic and assistive robotics being prime examples
of this trend. However, many of the practical challenges
associated to the real time control and monitoring of robotic
systems are not yet solved. Assistive robots have to act safely
and reliably [2], [3] in a partially unknown and dynamically
changing environment.

Robotic arm applications typically require advanced model
based control algorithms [4], [6]. The dynamic model is
usually obtained from Newton-Euler equations. Once these
equations are obtained, a state space representation naturally
leads to a descriptor model [6], [7]. The resulting descriptor
model is highly nonlinear. Linear approximations are very
common; however, they only provide local conclusions [8].

In this paper, we address the estimation of the unknown
inputs for two joints of a Cyton Gamma robot arm. This
robot arm is designed to create an easy access for every user,
and by default is controlled in position. However, depending
on the payload, the default controller performances may
degrade. In order to implement a high-performance model-
based controller, an accurate model is necessary. To obtain
such a model, both the parameters of the robot arm and the
actual torque input applied need to be identified/estimated.

In general, systems are subject to known and unknown
inputs (disturbances, measurement noise, modeling uncer-
tainties, etc.). Designing observers for both the states of
the system and unknown inputs is an important task in
robust control, monitoring and fault-tolerant control [9],
[10]. Estimating unknown inputs also reduces the number
of sensors to be used. For instance, in biomechanics, the
estimation of unknown inputs such as the joint torques and
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angular velocities avoids the use of sensors on the person
under study [11].

In order to efficiently address the nonlinear dynamics and
at the same time keep it in a natural form, in this paper
Takagi-Sugeno fuzzy models [12] in descriptor form [13]
will be used. TS models are nonlinear, convex combinations
of local linear models, and are able to exactly represent large
class of nonlinear systems in a compact set of the state-space
[14]. TS descriptor models generalize the standard TS model,
and allow obtaining a smaller number of conditions [15],
[16] by keeping apart the nonlinearities on the two sides
of the dynamic equation. For TS models, well-established
methods and algorithms have already been developed to
design observers. In general, Lyapunov synthesis is used,
employing common quadratic, piecewise quadratic, or, re-
cently, nonquadratic [15], [17] Lyapunov functions. The
observer design conditions are generally in the form of linear
matrix inequalities (LMIs), which can be solved using convex
optimization methods [18]. For TS descriptor models, several
new results have been obtained for discrete-time controller
design [19], although the observer design problem is still
solved based on a common quadratic Lyapunov function.
In this paper, we generalize existing results to estimate the
unknown inputs of the robotic arm.

The rest of the paper is organized as follows: Section
II provides the description of the robot arm considered.
Section III presents the TS model and the unknown input
observer design. The observer is evaluated on simulated and
experimental data in Section IV. Section V concludes the
paper.

Notations: In order to develop our results we will use
the following notations. Let F = FT ∈ RnF×nF be a
symmetric matrix; F > 0 and F < 0 stands for positive
and negative definiteness. I denotes the identity matrix, 0 is
the zero matrix of appropriate dimensions. A (∗) in a matrix
indicates a transposed quantity in the symmetric position. For

instance
(
P (∗)
A P

)
is equivalent to

(
P AT

A P

)
, and A+(∗)

is equivalent to A+AT .

II. ROBOT ARM MODEL

The last two joints of Robai Cyton Gamma robot arm, and
its schematic representation are presented in Figs. 1 and 2.
The dynamic model of the robot arm in Fig. 2 is given by:

q̇ =q̇

M(q)q̈ =−D(q, q̇)q̇ + Iτ
(1)



Fig. 1. Robai Cyton Gamma
robot arm, two joints

Fig. 2. Schematic representa-
tion of the 2DOF robot arm

where q =
[
q1 q2

]T
are the angles of the two joints,

q̇ =
[
q̇1 q̇2

]T
are the angular velocities, τ =

[
τ1 τ2

]T
are the torques. M is the inertia matrix and D contains the
Coriolis and centrifugal forces together with the damping.
The parameters of the system are presented in Table I.

TABLE I
SYSTEM PARAMETERS

Notation Value Description
L1[m] 0.075 length first-second joint
L2[m] 0.16 length second joint end-effector
M1[kg] 0.11 mass first joint
M2[kg] 0.21448 mass second joint
I1x[kgm2] 0.472 · 10−4 moment of inertia
I1y [kgm2] 0.3675 · 10−4 moment of inertia
I1z [kgm2] 0.1932 · 10−5 moment of inertia
I2x[kgm2] 0.280771 · 10−3 moment of inertia
I2y [kgm2] 0.2857 · 10−2 moment of inertia
I2z [kgm2] 0.64961 · 10−3 moment of inertia
b1[−] 0.094 friction coefficient, first joint
b2[−] 0.028 friction coefficient, second joint

Since the effects of gravity depend only on the positions
and they are known, they do not affect the estimation and
are therefore not included in the model. Using (1) and the
notation x =

[
q1 q2 q̇1 q̇2

]T
, the following descriptor

form can be written:

E(x)ẋ = A(x)x+Bτ (2)

with

E(x) =

(
I 0
0 M(x)

)
, A(x) =

(
0 I
0 −D(x)

)
, B =

(
0
I

)
(3)

where

M(x) =

(
M(1, 1) 0

0
M2L

2
2

4 + I2y

)
M(1, 1) =I1x + I2z + cos(x2)2(I2x − I2z)

+M2(L1 +
L2 cos(x2)

2
)2

(4)

and

D(x) =

(
D(1, 1) 0
D(2, 1) b2

)
D(1, 1) =− (x4(sin(2x2)(

M2L
2
2

4
+ I2x − I2z)

+ L1L2M2 sin(x2))− b1)

D(2, 1) =x3(
sin(2x2)

2
(I2x − I2z +

L2

4
)

+
L2M2L1 sin(x2)

2
)

(5)

In the M(x) matrix one nonlinearity can be observed at
M(1, 1) and in (5) two nonlinearities appear at D(1, 1)
and D(1, 2). Since the measurements and the control are
in discrete-time, a discrete-time model is developed:

E(x)xk+1 =(E(x) + TsA(x))xk + TsBτk (6)

where Ts = 1
140 is the sampling time. We denote Ed(xk) =

E(xk), Ad(xk) = (E(xk) + TsA(xk)) and Bd = TsB. The
bounds on the state variables are:

x1, x2 ∈
[−3π

4 , 3π
4

]
x3, x4 ∈

[
−3, 3

] (7)

With these limits and the sampling time Ts = 1
140 the

following bounds were found for the nonlinearities:

Ad3,3 ∈
[
−2.7808e− 04, 0.0049

]
Ad3,4 ∈

[
−3.8584e− 05, 3.8584e− 05

]
Ed3,1 ∈

[
0.0004, 0.0056

] (8)

Although in descriptor form the nonlinear parts in the system
equation change in a small range, in the classical state space
form the range of the nonlinearities is much larger, of the
order of 103.

III. TS MODELS AND UNKNOWN INPUT
OBSERVER

In order to use the nonlinear model (instead of a linearized
one), we employ TS descriptor models. The classic TS
fuzzy model is a convex combination of discrete-time linear
models, having the form:

xk+1 =

r∑
i=1

hi(zk)(Aixk +Biuk)

yk =

r∑
i=1

hi(zk)Cixk

(9)

where xk is the state vector, uk is the control input, zk is the
premise vector and r is the number of rules. Matrices Ai,
Bi and Ci represents the i-th local model. The membership
functions h are nonlinear functions with the property: hi ∈[
0, 1

]
,
∑r
i=1 hi = 1. The TS fuzzy discrete-time descriptor

model has the following form:
re∑
i=1

vi(zk)Eixk+1 =

ra∑
i=1

hi(zk)(Aixk +Biuk)

yk =

ra∑
i=1

hi(zk)Cixk

(10)



In this case the nonlinearities are in both side of the equation.
v and h are the membership functions, and Ei is the
descriptor matrix of the local model. A TS (descriptor) model
can exactly represent a nonlinear (descriptor) system in a
compact set of the state space.

The expression

Γhh =

ra∑
i1=1

ra∑
i1=1

hi1(zk)hi2(zk)Γi1,i2

is called double-convex sum, where hi1 and hi2 are the
membership functions, Γi1,i2 is a matrix and Γhh is the
notation of the convex sum.

Lemma 1: [20] The double convex-sum

Γhh =

ra∑
i1=1

ra∑
i2=1

hi1(zk)hi2(zk)Γi1,i2 < 0

is negative if the following set of LMIs hold:

Γi,i < 0, ∀i ∈ 1, 2, ..., ra
2

ra − 1
Γi1,i1 + Γi1,i2 + Γi2,i1 < 0

i1, i2 ∈ 1, 2, ..., ra, i1 6= i2
Lemma 2: [21] Consider a vector x ∈ Rnx and two

matrices Q = QT ∈ Rnx×nx and R ∈ Rm×nx such
that rank(R) < nx. The two following expressions are
equivalent:

1) xTQx < 0, x ∈ {x ∈ Rnx ,x 6= 0,Rx = 0}
2) ∃M ∈ Rm×nx such that Q+MR+RTMT < 0

Based on the sector nonlinearity approach [22] the discrete-
time nonlinear system (6) can be written in the fuzzy descrip-
tor representation. Denoting Ev =

∑re
i=1 v(zk)Ei, Ah =∑ra

i=1 h(zk)Ai and Ch =
∑ra
i=1 h(zk)Ci. The discrete-time

fuzzy descriptor model (10) has the form:

Evxk+1 =Ahxk +Buk

yk =Chxk
(11)

Our main goal is to obtain an unknown input discrete-time
fuzzy observer for the descriptor model. In this case the input
torque is the unknown input. Based on [23] we consider
the unknown inputs as state variables, so the new state
vector has the form xek =

[
xTk dTk

]T
, where dk represents

the unknown input vector. Based on the continuous case
described [23] we use the relation dk+1 = Idk, considering
the input as piece-wise constant. With these notations we
have the following system:

Evxk+1 =Ahxk +Bdk

dk+1 =Idk
(12)

From here we have
Eevx

e
k+1 =Aehx

e
k

yk =Cehx
e
k

(13)

where

Eev =

(
Ev 0
0 I

)
, Aeh =

(
Ah Bk
0 I

)
,

Ceh =
(
Ch 0

) (14)

Now with these matrices we design a discrete-time TS
observer. The aim is to make the estimation error converge
to zero as time tends to infinity. An observer is proposed by
[23], but for our TS fuzzy system the corresponding LMIs
are unfeasible; we need a less conservative design. In [23] the
M matrix was chosen to be M =

[
0 P

]T
, it is dependent

on the P matrix, for this system we used a more general
form M =

[
0 K

]T
, where K is a free matrix.

The TS fuzzy observer has the form:

Eev x̂
e
k+1 =Aehx̂

e
k + Lhv(y − ŷ)

ŷk =Cehx̂
e
k

(15)

Based on (15) and (13) we have the error dynamics:

Eevek+1 = (Aeh − LhvCeh)ek (16)

where ek = xek − x̂ek; this can be written in the form:[
Aeh − LhvCeh −Eev

] [ ek
ek+1

]
= 0 (17)

The following results can be formulated:
Theorem 1: The estimation error dynamics in (17) is

asymptotically stable if there exist matrices P = PT > 0,
K, and Ni2j for i1, i2 = 1, 2, . . . , re and j = 1, 2, . . . , ra
so that for every i1, i2 and j

Γji1,i2 < 0
2

m−1Γji1,i1 + Γji1,i2 + Γji2,i1 < 0
(18)

with

Γji1,i2 =

[
−P (∗)

KAei1 −Ni2,jC
e
i1
−KEej + (∗) + P

]
(19)

Proof: Using the Lyapunov function:

V (ek) =eTk Pek (20)

we have the difference:

∆V (ek) = eTk+1Pek+1 − eTk Pek < 0[
ek
ek+1

]T [−P 0
0 P

] [
ek
ek+1

]
< 0

(21)

Using Lemma 2 together with the equality (17) and the
inequality (21) we have:

M
[
Aeh − LhvCeh −Eev

]
+ (∗) +

[
−P 0
0 P

]
< 0 (22)

Choosing M =
[
0 K

]T
and applying Lemma 1, we obtain

condition (18).
The observer gains are recovered as Li2,j = K−1Ni2,j . The
LMIs in (18) can be efficiently solved using the Yalmip
Matlab extension. We use the assumption that our input is
a constant quantity, so the observer will work in a good
manner in the case when we have a piece-wise constant
input. But it does not take into consideration the case when
the system is affected by noise, which happens usually in
a real application. In order to get better performance we
propose the H∞ approach. This approach is usually used in



controller design, but the idea can be applied also here. We
can reformulate the problem in the following form:

Eevx
e
k+1 =Aehx

e
k +Khwk

yk =Cehx
e
k

(23)

where wk represents the noise; we can consider the differ-
ence between the ideal input and the estimated input as a
noise on the system, and we want to find an observer which
reduces this. The form of the observer is:

Eev x̂
e
k+1 =Aehx̂

e
k +H−1hv Qhv(yk − ŷk)

ŷk =Cehx̂
e
k

(24)

The error dynamics has the form:

[
Aeh −H

−1
hv QhvC

e
h −Eev Kh

]  ek
ek+1

wk

 = 0 (25)

We have the following theorem:
Theorem 2: The estimation error dynamics in (25) is

asymptotically stable and the noise is attenuated by at least
γ, if there exist matrices P = PT > 0, Hi,j , and Qi,j , for
i = 1, 2, . . . , re and j = 1, 2, . . . , ra, and γ > 0 such that

Γhhvv = −P + I (∗) (∗)
Hhv −QhvC

e
h −HhvE

e
v + (∗) + P (∗)

εR(HhvA
e
h −QhvC

e
h) (HhvKh)T − εRHhvE

e
v T

 < 0

(26)
where T = εRHhvKh + (∗)− γ2I .

Proof: Using the Lyapunov function presented in (20);
to achieve γ attenuation we have the inequality:

∆V + eTk ek − γ2wTk wk < 0 ek
ek+1

wk

T I − P 0 0
0 P 0
0 0 −γ2I

 ek
ek+1

wk

 < 0
(27)

Using Lemma 2 with (27) and (25), we have:G1

G2

G3

 [Aeh −H−1hv QhvCeh −Eev Kh

]

+(∗) +

I − P 0 0
0 P 0
0 0 −γI

 < 0

(28)

For the sake of simplicity and to be able to recover results in
the literature we choose G1 = 0. To avoid bi-linear matrix
inequalities we have G2 = Hhv; for the same reason G3 =
εRHhv , where the purpose of the R is to get the appropriate
dimensions for the matrices. With these assumptions and
using Lemma 1 we obtain (26).

IV. EXPERIMENTAL RESULTS
The TS fuzzy representation (13) of the robot arm contains

the following matrices:

Eei =

I 0 0
0 E(2, 2) 0
0 0 I


i = 1, 2 : E(2, 2) =10−2

(
0.04 0

0 0.42

)
, 10−2

(
0.56 0

0 0.42

)
(29)

Aej =

I 1
140I 0

0 A(2, 2) 1
140I

0 0 I


j = 1, 2 : A(2, 2) =10−3

(
−0.27 0
−0.38 4

)
, 10−3

(
−0.27 0
0.38 4

)
j = 3, 4 : A(2, 2) =10−3

(
4.9 0
−0.38 4

)
, 10−3

(
4.9 0
0.38 4

)
(30)

As it can be seen we have 2 local matrices for Eev and 4 for
Aeh. For this system the state vector contains the unknown
inputs dk which are the torques acting on the joints. We
measure the states, so we have the following Ceh matrix:

Ceh =
(
I 0

)
(31)

Because of their complicated form, the membership func-
tions h(zk) and v(zk) are not presented here. For this system
an observer was calculated based on Theorem 1, obtaining
the observer gains (due to the lack of space only some of
them are presented):

Li,j =

I 1
140I

0 L(2, 2)
0 L(3, 2)


i = 1, j = 1 : L(2, 2) =10−2

(
0.02 0

0 0.71

)
,

L(3, 2) =10−1
(

0.73 0
0 4.4

)
i = 2, j = 4 : L(2, 2) =10−2

(
0.56 0

0 0.71

)
,

L(3, 2) =10−1
(

0.79 0
0 4.4

)
(32)

The observer has first been tested in simulation. The input
signals can be seen in Fig. 3. The differences between the
estimated and the model input can be seen in Fig. 4. For
this simulation the initial condition for the model was x0 =[
0.5 1.3 0 0

]T
and for the observer x̂e0 = 0. As it can

Fig. 3. Piece-wise constant input

be seen in Fig. 4, the observer correctly estimates the input



Fig. 4. Difference between the estimated and the true inputs

torque. The peak values appear when the input has a sudden
change. For the second iteration we use the same input data,
but now we apply a band limited white noise on it. The
difference between the estimated noisy input and ideal input
can be seen in Fig. 5.

Fig. 5. Difference between the estimated and the ideal model values

Next we test the observer designed with conditions pro-
posed in Theorem 2. The effect of the noise appears mostly
on the unknown input so the size of wk was chosen to
be 2. For this reason the R matrix size is 2-by-6, to get
the appropriate dimensions. For the sake of simplicity we
used a constant matrix for Kh. The following matrices were
chosen:

R =
(
I I 0

)
, Kh =

(
I 0 I

)T (33)

Using the H∞ observer with the same noisy input data we
have the results in Fig. 6. Even though it is not so visible the
peak values of the noise were reduced, the best position to
see this is around 2 seconds. When the input changes there
is still a large overshoot

In what follows we test the observers on real data. Our
data source was a Robai Cyton Gamma 1500 robot arm.
The model parameters presented in Table I were determined
using this system. Because the angular velocities are actually

Fig. 6. Difference between the estimated and the model values with H∞
observer

computed from the measured angles, the velocity measure-
ments are noisy. An option to reduce the major noises is to
use a filter. A 12th order Butterworth filter was applied on
the angular velocity data with a normalized cut-off frequency
0.07. The filtered data can be seen in Fig. 7, where the initial
condition was x0 =

[
0.08 0 0 0

]T
. As it can be seen,

Fig. 7. State variables

both joints are moving. For the second joint we have a small
input, which produces a slow response. From the form of
the state variables on Fig. 7 we can assume that our input is
close to a piece-wise constant one.

The estimated inputs using the observer based on The-
orem 1 are presented in Fig. 8. Because of the system
parameters, a small variation on the input may cause a
relatively large variation on the output. In this case we have
a situation where the output changes in a small range, so for
the estimated inputs even smaller values appear. In order to
compare the results we apply the observer designed based
on Theorem 2 on the output data. The results can be seen in
Fig. 9. In both cases the estimated inputs have similar form.

V. CONCLUSIONS AND FUTURE WORK
In this paper the estimation of unknown inputs was dis-

cussed for a robot arm. Theorem 1 presented an unknown in-
put observer which was able to estimate piece-wise constant



Fig. 8. Estimated input based on real data

Fig. 9. Estimated input based on real data, H∞ approach

inputs. In the case when the measured data was noisy, the
observer was still able to estimate the input, but without any
guarantee regarding the noise. In order to attenuate the noise
an H∞ observer was presented. Finally these two observers
were tested on experimental data, situation where they had
similar performances. Both observers perform well in the
case when the input is piecewise constant.

In our future work we will deal with the non-constant
inputs. Another option is to estimate the input based only
on the measured angles. Furthermore, an observer-based-
controller will be developed.
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