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Abstract— A large class of nonlinear systems can be well
approximated by Takagi-Sugeno fuzzy models, for which meth-
ods and algorithms have been developed to analyze their
stability and to design observers and controllers. However,
results obtained for Takagi-Sugeno fuzzy models are in general
not directly applicable to the original nonlinear system. In this
paper, we investigate what conclusions can be drawn when an
observer-based controller is designed for an approximate model
and then applied to the original nonlinear system. In particular,
we consider the case when the scheduling vector used in the
membership functions of the observer depends on the states

that have to be estimated. The results are illustrated using
simulation examples.

I. INTRODUCTION

A large class of nonlinear functions can be exactly repre-

sented or well-approximated by Takagi-Sugeno (TS) fuzzy

models [23]. The TS fuzzy model consists of a rule-base.

The antecedents partition a subset of the variables into fuzzy

regions, while the consequent of each rule is in general a

linear or affine model, valid locally in the corresponding

region. Methods to derive an exact fuzzy representation of

a nonlinear exist [22], but in many cases the local models

obtained are not controllable and/or observable.

Therefore, in this paper we consider fuzzy models that

approximate a given nonlinear system. Several methods exist

to construct TS models such that they approximate a given

nonlinear model to an arbitrary degree of accuracy [9],

[19]. In this case, since the fuzzy model only approximates

the original nonlinear system, the controller and/or observer

designed for the fuzzy model may not perform as expected

for the nonlinear system. For instance, a stabilizing controller

designed for the fuzzy model may not stabilize the original

nonlinear system.

For a class of nonlinear systems, when using control based

on TS fuzzy models, this shortcoming has been circumvented

by the use of robust controllers. Robust fuzzy control has at-

tracted increased research interest in the last decade. Results

range from fuzzy control of nonlinear systems in canonical

forms [1], [3], [10], through control of fuzzy systems with

parametric uncertainties [2], [4], [6], [11] to delay-dependent

fuzzy systems [5], [12], [17]. Applications include control

of robotic manipulators [13], [15], [16], magnetic bearing

systems [7], [14], and vehicle lateral dynamics [8].

Although there is an impressive body of literature concern-

ing robust fuzzy control, observer design and the contribution
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of the estimation error to stabilization using output-feedback

is rarely discussed. In particular, the effect of the observer

designed for the approximate model on the stability of the

closed-loop system has not been investigated. This problem

becomes even more complicated when the scheduling vari-

ables themselves have to be estimated. Therefore, in this

paper, we investigate whether and when conclusions can be

drawn about the performance of an observer-based controller.

Both the observer and the controller are designed based

on the approximate fuzzy model and then applied to the

nonlinear system. In order to keep the computations simple,

a common quadratic Lyapunov function is used.

The structure of the paper is as follows. Section II presents

the models used and reviews some classic results for the

stability of autonomous fuzzy systems. The stability analysis

of the fuzzy model and the analysis of the fuzzy observer

designed based on the approximate fuzzy model has been

performed in the companion paper [20]. In this paper we

continue by investigating the stabilization of the nonlinear

system using a fuzzy state feedback controller in Section III

and observer-based output-feedback controller in Section IV.

The different cases are illustrated using examples in the

corresponding sections. Section V concludes the paper.

II. PRELIMINARIES

We consider the following nonlinear system:

ẋ = f(x, u)

y = h(x, u)
(1)

where x is the vector of the state variables, u is the input

vector, y is the measurement vector. We assume that the

variables are defined on a compact set Cxuy , i.e., (x, u, y) ∈
Cxuy . A TS fuzzy approximation of this system can be

obtained as:

ẋ = f⋄(x, u) =
m∑

i=1

wi(x)(Aix + Biu)

y = h
⋄(x, u) =

m∑

i=1

wi(x)(Cix + Diu + di)

(2)

so that the approximation errors f = f−f⋄ and h = h−h⋄

satisfy

‖f(x, u)‖ ≤ σf + δf‖x‖ ∀(x, u) ∈ Cxu

‖h(x, u)‖ ≤ σh + δh‖x‖ ∀(x, u) ∈ Cxu

(3)

where σf , σh, δf , and δh are nonnegative finite constants, and

Cxu = {(x, u)|∃y s.t. (x, u, y) ∈ Cxuy}. In (2), Ai, Bi,

Ci, Di, and di, i = 1, 2, . . . , m represent the matrices and



biases of the ith local linear model and wi, i = 1, 2, . . . , m

are the corresponding membership functions, which depend

on the scheduling variable x.

Throughout the paper it is assumed that the membership

functions are normalized, i.e., wi(x) ≥ 0,
∑m

i=1
wi(x) = 1,

∀(x, u) ∈ Cxu. I and 0, respectively, denote the identity

and the zero matrices of the appropriate dimensions, H(A)
represents the Hermitian of the matrix A, i.e., H(A) = A +
AT , and ‖.‖ denotes the Euclidean norm for vectors and the

induced norm for matrices.

The nonlinear system (1) is now expressed as an uncertain

TS system, given as:

ẋ =

m∑

i=1

wi(x)(Aix + Biu) + f(x, u)

y =

m∑

i=1

wi(x)(Cix + Diu + di) + h(x, u)

(4)

where the uncertainties f and h satisfy (3).

Note that the approximation error on a compact set of

variables always satisfies

‖f(x, u)‖ ≤ σf

‖h(x, u)‖ ≤ σh

(5)

for some σf and σh. However, as will be shown in the sequel,

by using (3) whenever possible, less conservative conditions

can be obtained.

Remark: In the robust fuzzy control literature, for uncer-

tain fuzzy systems in general the form

ẋ =

m∑

i=1

wi(x)
[
(Ai + ∆Ai)x + (Bi + ∆Bi)u

]

is used, for which asymptotic stability can be obtained. In

order to be able to draw more general conclusions, in this

paper the TS approximation (4) is used.

Our results are based on the following conditions [24] for

the stability of autonomous fuzzy systems:

ẋ =

m∑

i=1

wi(z)Aix (6)

where Ai, i = 1, 2, . . . , m represents the ith local linear

model, wi is the corresponding normalized membership

function, and z the vector of the scheduling variables, which

may depend on the states, input, output, or other measured

exogenous variables.

Theorem 1: [24] System (6) is exponentially stable if

there exists P = PT > 0 so that

H(PAi) < 0 (7)

for i = 1, 2, . . . , m. �

Controller and observer design for fuzzy systems

of the form (2) often leads to establishing the neg-

ative definiteness of double summations of the form∑m

i=1

∑m

j=1
wi(z)wj(z)Υij , with Υij , i, j = 1, 2, . . . m

matrices of appropriate dimensions. In this paper we use the

following relaxations for such sums [24]:

Theorem 2: Let Υij be matrices of proper dimensions.

Then,
n∑

i=1

n∑

j=1

wi(z)wj(z)Υij < 0 (8)

holds, if

Υii < 0 for i = 1, 2, . . . , m,

1

2
(Υij + Υji) < 0, for i, j = 1, 2, . . . , m, i 6= j

(9)

Note that similar, although more complex results can also

be derived using other types of Lyapunov functions, as long

as the derived conditions ensure the exponential stability of

the TS system.

In the companion paper [20], we have already presented

stability analysis of autonomous TS systems and the con-

clusions that may be drawn regarding the nonlinear system

that has been approximated by it. Therefore, we do not repeat

those conclusions here, and instead refer the interested reader

to [20] for further details.

III. STABILIZATION USING FULL STATE-FEEDBACK

Development of sufficient conditions for the stabilization

using full state-feedback of uncertain TS fuzzy systems has

received increasing interest in the last years [4], [6], [7],

[11], in particular for discrete-time systems. In this paper, we

consider continuous-time TS systems. Instead of developing

conditions to design controllers that asymptotically stabilize

the system, we investigate what conclusions regarding the

original nonlinear system can be drawn if a controller has

already been designed for its fuzzy approximation. There-

fore, consider the nonlinear system

ẋ = f (x, u) (10)

that is approximated by the TS system

ẋ = f
⋄(x, u) =

m∑

i=1

wi(x)(Aix + Biu) (11)

so that the approximation error f = f − f⋄ satisfies

‖f(x, u)‖ ≤ σf + δf‖x‖ ∀(x, u) ∈ Cxu (12)

with σf and δf being nonnegative finite constants.

Although for observer design the state transition model

may contain affine terms (see [20]), for stabilization, the

nonlinear system has to be approximated by a fuzzy model

of the form (11), i.e., the local models may not be affine and

the membership functions may not depend on the control

input u. This is firstly because stabilization to zero of affine

fuzzy systems using a classical fuzzy state-feedback can only

be performed if the affine term is compensated for in each

rule. Secondly, if the membership functions depend on the

control input, when actually computing the input, an implicit

equation has to be solved.

Using a classical fuzzy state-feedback

u =

m∑

i=1

wi(x)Kix



we have the closed-loop fuzzy system:

ẋ =
m∑

i=1

m∑

j=1

wi(x)wj(x)(Ai + BiKj)x (13)

and the dynamics of the closed-loop nonlinear system can

be described as

ẋ =

m∑

i=1

m∑

j=1

wi(x)wj(x)(Ai + BiKj)x + f(x, u) (14)

With a common quadratic Lyapunov function, the TS

system (13) is globally exponentially stable, according to

Theorem 2, if there exist P = PT > 0, Q = QT > 0 so that

H(P (Ai + BiKi)) < −2Q

H(P (Ai + BiKj) + P (Aj + BjKi)) < −4Q

for all j, i = 1, 2, . . . , m, i 6= j

(15)

With the same Lyapunov function applied to the original
nonlinear system (1), we obtain:

V̇ = x
TH(P (

mX

i=1

mX

j=1

wi(x)wj(x)Gijx + f (x)))

≤ −2(λmin(Q) − λmax(P )δf )(1 − θ)‖x‖2

− 2‖x‖(θ(λmin(Q) − λmax(P )δf )‖x‖ − λmax(P )σf )

with θ ∈ (0, 1) arbitrarily chosen and Gij = Ai + BiKj .

By analyzing the expression of V̇ , the following cases can

be distinguished:

1) (λmin(Q) − λmax(P )δf < 0) or (λmin(Q) −
λmax(P )δf = 0 and σf > 0): no conclusion can be

drawn;

2) λmin(Q) − λmax(P )δf = 0 and σf = 0: if the

membership functions are sufficiently smooth, and x =
0 is the only equilibrium point, based on LaSalle’s

invariance principle and Barbalat’s lemma [18], x = 0
is a globally asymptotically stable equilibrium point of

the nonlinear system (14). Such results are in general

enforced when adaptive fuzzy controllers are designed.

3) λmin(Q) − λmax(P )δf > 0 and σf = 0: the non-

linear system (14) has a globally exponentially stable

equilibrium point in x = 0. Note that this result can

only be obtained if the approximation error is Lipschitz

continuous in the states.

4) λmin(Q) − λmax(P )δf > 0 and σf > 0: the states

of the nonlinear system (14) are uniformly ultimately

bounded by

γ =

√
λmax(P )

λmin(P )

λmax(P )

λmin(Q) − λmax(P )δf

σf

θ
. (16)

It is important to note that in robust fuzzy control the

affine term in (12) is in general considered to be an external

disturbance affecting the system, and not a model mismatch,

i.e, uncertainty is presumed to affect only the matrices Ai and

Bi, i = 1, 2, . . . , m. Nevertheless, even if the disturbance

is due to model mismatch, robust controllers that are able to

attenuate its effect can be designed.

If the controller has already been designed using (15),

only the above conditions can be verified. However, if the

controller is to be designed, then, in order to obtain a bound

as small as possible one can also solve the multiobjective

optimization problem:

maximize λmin(Q), λmin(P ),

minimize λmax(P ),

subject to

P = PT > 0

Q = QT > 0

H(P (Ai + BiKi)) ≤ −2Q, i = 1, 2, . . . , m

H(P (Ai + BiKj) + P (Aj + BjKi)) ≤ −4Q

j, i = 1, 2, . . . , m

(17)

Example 1: Consider the nonlinear system

ẋ =

(
1.1 x2

1
+ 0.1

−x1 − 1 −3 − x2
2

)
x +

(
1
0

)
u (18)

with x1, x2 ∈ [−1, 1]. This system is unstable.

A TS approximation of the system (18) is obtained using

the approach in [19]. Normalized triangular membership

functions are chosen, that attain their maximum in the points

defined by {(x1, x2)|x1, x2 ∈ {−1, 0, 1}}. The TS system

can be written as:

ẋ =

m∑

i=1

wi(x)(Aix + Bu) (19)

The approximation errors can be written as ‖f‖ ≤ σf +
δf‖x‖ = 0.407α+0.48(1−α)‖x‖, with α arbitrarily chosen

in [0, 1], and ‖h‖ = σh + δh‖x‖ = 0.

By simply solving the feasibility problem1

Find P = PT > 0, Q = QT > 0, s.t. (15) is satisfied

one obtains P =

(
6.5 0.33
0.33 0.38

)
, λmin(P ) = 0.36,

λmax(P ) = 6.52, Q = I . With these results, the following

cases can be distinguished:

1) if α is chosen such that α < 0.69, then we have

λmin(Q)−λmax(P )δf > 0 and therefore no conclusion

can be drawn

2) for α > 0.69, we have Case 4, i.e., the states of the

controlled nonlinear system (18), using the controller

designed for the fuzzy system (19) are ultimately

uniformly bounded by

γ =

√
λmax(P )

λmin(P )

λmax(P )

λmin(Q) − λmax(P )δ

σ

θ

=
11.3α

(1 − 3.13(1 − α))θ
< 11.3

with α ∈ [0.69, 1] and θ ∈ (0, 1).

1For solving the LMI problems in this paper, the sedumi solver of
Yalmip [21] has been used.



Solving (17), i.e., minimizing2 λmax(P ) and maximizing

λmin(Q) and λmin(P ), one obtains: P =

(
0.20 0.002
0.002 0.17

)
,

λmin(P ) = 0.17, λmax(P ) = 0.20 and Q = I .

With these values, depending on the choice of α, we have

the following cases:

1) for α = 0 we have σf = 0 and λmin(Q)−λmax(P )δ >

0 and therefore the states of the nonlinear system

converge exponentially to 0
2) for α = 1, i.e., when a constant approximation error

is considered, the states of the nonlinear system (18)

are uniformly ultimately bounded by γ = 0.088
θ

, with

θ ∈ (0, 1), i.e., γ < 0.088.

3) otherwise, we obtain that the states are uniformly

ultimately bounded by

γ =

√
λmax(P )

λmin(P )

λmax(P )

λmin(Q) − λmax(P )δ

σ

θ

=
0.088α

(1 − 0.48(1 − α))θ

with θ ∈ (0, 1) and α ∈ (0, 1).

As illustrated above, by solving the optimization problem

together with the design problem, not only a lower bound,

but even exponential convergence of the nonlinear system

can be obtained. �

IV. OUTPUT-FEEDBACK CONTROL

Although output-feedback control is often considered in

robust fuzzy control, it is in general assumed that the con-

troller is able to compensate for or attenuate the disturbance

resulting from the mismatch between the model used by the

observer and the true system, without explicitly analyzing

this model mismatch. In this section, although we do not

design robust controllers, we analyze the disturbance due to

the mismatch and investigate what guarantees can be given

in this case.

Note that also in this case, the membership function cannot

depend on the control input, and the state transition function

cannot have an affine term, i.e., the same restrictions as for

Section III apply. Therefore, the approximation considered

is (2), with the approximation errors bounded as (3).

The observer is of the form

˙̂x =

m∑

i=1

wi(x̂)(Aix̂ + Biu + Li(y − ŷ))

ŷ =
m∑

i=1

wi(x̂)(Cix̂ + Diu + di)

(20)

and the controller used is

u =
m∑

i=1

wi(x̂)Kix̂ (21)

2For solving this problem, a single objective function that was the linear
combination of the objectives in (17) has been optimized.

The estimation error for the nonlinear system can be
derived as:

ė = f (x, u) − f
⋄(bx, u)

=

mX

i=1

wi(x)(Aix + Biu) + f (x, u)

−

mX

i=1

wi(bx)(Aibx + Biu + Li(y − by))

=

mX

i=1

wi(bx)(Aie − Li(y − by))

+

mX

i=1

(wi(x) − wi(bx))(Aix + Biu) + f (x, u)

=
mX

i=1

wi(bx)(Aie − Li

· (
mX

j=1

wj(x)(Cjx + Dju + dj) + h(x, u)

−
mX

j=1

wj(bx)(Cj bx + Dju + dj)))

+ ∆wf + f (x, u)

=
mX

i=1

wi(bx)(Aie − Li(
mX

j=1

wj(bx)Cje

+

mX

j=1

(wj(x) − wj(bx))(Cjx + Dju + dj)

+ h(x, u))) + ∆wf + f (x, u)

ė =

mX

i=1

mX

j=1

wi(bx)wj(bx)(Ai − LiCj)e

−
mX

i=1

wi(bx)Li(∆wh + h(x, u)) + ∆wf + f (x, u)

(22)

with

∆wf =

m∑

i=1

(wi(x) − wi(x̂))(Aix + Biu)

∆wh =

m∑

j=1

(wj(x) − wj(x̂))(Cjx + Dju + dj)

Note that since the goal is also stabilization, in this case the

bounds on f and h can contain a term that is Lipschitz in

x. Moreover, one could also use bounds on ∆wf and ∆wh

such as

‖∆wf‖ ≤ σwf + δwf‖e‖ + ηwf‖x‖
‖∆wh‖ ≤ σwh + δwh‖e‖ + ηwh‖x‖

(23)

However, for the simplicity of the computations, in this

paper the following bounds are assumed:

‖∆wf‖ ≤ σwf + δwf‖e‖
‖∆wh‖ ≤ σwh + δwh‖e‖

(24)

Then, in the worst case, the following bound can be



derived:

‖ −
m∑

i=1

wi(x̂)Li(∆wh + h(x, u))

+ ∆wf + f(x, u)‖
≤ max

i
‖Li‖(σwh + δwh‖e‖ + σh + δh‖x‖)

+ σf + δf‖x‖ + σwf + δwf‖e‖
≤ σe + δe‖e‖ + ηe‖x‖

(25)

with
σe = max

i
‖Li‖(σwh + σh) + σf + σwf

δe = max
i

‖Li‖δwh + δwf

ηe = max
i

‖Li‖δh + δf

(26)

In fact:

ė =

m∑

i=1

m∑

j=1

wi(x̂)wj(x̂)(Ai − LiCj)e + ∆e

‖∆e‖ ≤ σe + δe‖e‖ + ηe‖x‖
(27)

Second, the closed-loop dynamics using the estimate-

based control law is:

ẋ =
m∑

i=1

wi(x)(Aix + Bi

m∑

j=1

wj(x̂)Kjx̂)

+ f (x, u)

=

m∑

i=1

m∑

j=1

wi(x)wj(x̂)[(Ai + BiKj)x + BiKje]

+ f (x, u)

(28)

with

‖f(x, u)‖ ≤ σf + δf‖x‖ (29)

Combining the dynamics of the estimation error and the

state, we get

(
ė

ẋ

)
=

m∑

i=1

m∑

j=1

m∑

k=1

wi(x̂)wj(x)wk(x̂)

(
Ai − LiCk 0

Kk Aj + BjKk

)(
e

x

)
+ ∆

(30)

with

∆ =

(
∆e

f (x, u)

)
(31)

Knowing that ‖∆e‖ ≤ σe + δe‖e‖ + ηe‖x‖ and

‖f(x, u)‖ ≤ σf + δf‖x‖, we have

‖∆‖ ≤‖∆e‖ + ‖f(x, u)‖
≤σe + σf + δe‖e‖ + (ηe + δf )‖x‖

≤σ + δ

∥∥∥∥
e

x

∥∥∥∥

where σ = σe + σf and δ =
√

2max{δe, ηe + δf}.

For the above bounds, the same cases can be distinguished

as in the previous section. However, it has to be noted that

firstly, Case 2) and Case 3) (see Section III) in practice will

only be obtained if the fuzzy model is an exact representation

of the nonlinear system and the membership functions do

not depend on unmeasured variables. Secondly, the bound

obtained in Case 4) is very conservative, and therefore in

practical cases the applied output-feedback obtains better

results than those that can be concluded based on this bound.

Moreover, also due to the conservativeness of the result, the

design of the output-feedback control such that some desired

bounds are satisfied is not practical. However, the bounds can

also be computed after designing the observer and controller,

and therefore be used to establish guarantees for the closed-

loop system.

The following example illustrates the computation of the

bounds for output-feedback control:

Example 2: Consider the nonlinear system

ẋ =

(
1.1 x2

1 + 0.1
−x1 − 1 −3 + x2

2

)
x +

(
1
0

)
u

y = [1 0]x

(32)

with x1, x2 ∈ [−1, 1].
A TS approximation of this system is obtained as in

Example 1, where the approximation errors are ‖f‖ ≤ σf +
δf‖x‖ = 0.407α+0.48(1−α)‖x‖, α ∈ [0, 1] and ‖h‖ = 0.

With the same membership functions as in Example 1, we

also have ∆wf ≤ σwf + δwf‖e‖ = β ·6.3+(1−β) ·6.3‖e‖,

with β ∈ [0, 1]. Since the measurement matrix is common

for all the rules, the equations can be simplified, and we

have ‖∆wh‖ = 0. Consequently, σe = 0.407α + 6.3β, δe =
6.3(1 − β), and ηe = 0.48(1− α), and σ = 0.814α + 6.3β,

and δ =
√

2max{6.3(1 − β), 0.96(1 − α)}.

Solving the problem

Find P = PT > 0, Q = QT > 0 such that

H
(
P

(
Ai − LiCk 0

Kk Aj + BjKk

) )
< −2Q

for all j, i = 1, 2, . . . , m

we obtain P =





12.53 0 0 0
0 12.53 0 0
0 0 9.06 2.90
0 0 2.90 1.03



 and Q = I ,

λmin(P ) = 0.09, and λmax(P ) = 12.53. With these values,

we have the bound on the state and estimation error

γ =
147.8(0.814α + 6.3β)

θ(1 −
√

2 max{6.3(1 − β), 0.96(1 − α)}
(33)

under the condition that

1 −
√

2 max{6.3(1 − β), 0.96(1 − α)} > 0

and α, β, θ ∈ (0, 1). It can be easily seen that this bound is

very large, irrespective of the values chosen for α, β, such

that (33) is satisfied. However, a large part of this bound is

due to the observer-model error. For instance, consider the

system

ẋ =

(
1.1 x2

1 + 0.1
−x1 − 1 −3 + x2

1

)
x +

(
1
0

)
u

y = [1 0]x

(34)



with x1, x2 ∈ [−1, 1]. The difference with respect to the

system (32) is that the (2, 2) element of the matrix depends

on x1, instead of x2. For this system, the membership

functions will only depend on x1 = y, i.e., on the measured

variable. Therefore, in the membership functions of the

observer, we can use its true value, and consequently ∆wf =
∆wh = 0. Moreover, a solution such that λmax(P ) = 1.05,

λmin(P ) = 0.73, and λmin(Q) = 1 can also be obtained.

With these values, the bound on the estimation error becomes

γ =

√
λmax(P )

λmin(P )

λmax(P )

λmin(Q) − λmax(P )δ

σ

θ

=
0.512α

(1 − 0.5(1 − α))θ

with θ ∈ (0, 1) and α ∈ [0, 1]. It can easily be seen that for

α = 0, this bound is actually 0, and therefore both the states

of the nonlinear system and the estimation error converge

to 0. �

V. CONCLUSIONS

In this paper we have investigated what stability guar-

antees can be obtained when a controller is designed for

a fuzzy approximation of a nonlinear system and applied

to the original nonlinear system. We have studied how the

guarantees depend on the approximation error and on the

mismatch between the observer-model and the true system.

In our future research we will investigate whether the results

can be improved by using other types of observers or

controllers.
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