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Abstract— Analysis and observer design for nonlinear sys-
tems have long been investigated, but no generally applicable
methods exist as yet. A large class of nonlinear systems can be
well approximated by Takagi-Sugeno fuzzy models, for which
methods and algorithms have been developed to analyze their
stability and to design observers. However, results obtained
for Takagi-Sugeno fuzzy models are in general not directly
applicable to the original nonlinear system. In this paper, we
investigate what conclusions can be drawn and what guarantees
can be expected when an observer is designed based on an
approximate fuzzy model and applied to the original nonlinear

system. It is shown that in general, exponential stability of the
estimation error dynamics cannot be obtained. However, the
estimation error is bounded. This bound is computed based on
the approximation error and the Lyapunov function used. The
results are illustrated using simulation examples.

I. INTRODUCTION

A large class of nonlinear functions can be exactly rep-

resented or accurately approximated by Takagi-Sugeno (TS)

fuzzy models [16]. A well-known method to obtain an exact

fuzzy representation of a nonlinear system is the sector non-

linearity approach [13]. However, when using this method,

the observability of the local models is not guaranteed,

even when the nonlinear system is observable. Although for

fuzzy models well-established methods exist to analyze their

stability or to design observers, these cannot be used if the

local models are not stable or observable, respectively.

Therefore, in this paper we consider fuzzy models that

retain observability in their local models, even though they

only approximate the nonlinear system. Several methods

exist to construct TS models such that they approximate a

given nonlinear model to an arbitrary degree of accuracy [5],

[10]. In this case, since the fuzzy model only approximates

the original nonlinear system, when the analysis or design

concerns the fuzzy model, the results may not directly hold

true for the nonlinear system. For instance, the observers

designed for the fuzzy model are in general not guaranteed

to perform as expected for the nonlinear system.

In fuzzy control, the problem of model-plant mismatch

has been addressed for specific types of fuzzy systems

by the use of robust controllers [1]–[4], [6]–[8]. However,

observer design and the contribution of the estimation error

to stabilization using output-feedback is rarely discussed. In

particular, the performance of the observer designed for the

approximate model and then applied to the original nonlinear
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system has not been studied for the case when the scheduling

variables themselves have to be estimated. Therefore, in this

paper, we investigate whether and when conclusions can be

drawn on the performance of a fuzzy observer designed

based on an approximate fuzzy model and applied to the

original nonlinear system that is approximated by the fuzzy

model. To simplify the computations, a common quadratic

Lyapunov function is used. Similar, although considerably

more complex conditions can be derived if other Lyapunov

functions or relaxed conditions are used.

The structure of the paper is as follows. Section II

presents the models used and reviews some classic results

for the stability of autonomous fuzzy systems. Section III

investigates when the stability of a TS system implies the

stability of the nonlinear system. These results serve as the

basis for investigating the expected performance the observer

designed for the fuzzy model and applied to the nonlinear

system, which is studied and illustrated using examples in

Section IV. The companion paper [11] continues this analysis

for control design and output feedback control. Conclusions

on the stability of the observers are drawn in Section V.

II. PRELIMINARIES

In this paper, we consider the following nonlinear system:

ẋ = f(x, u)

y = h(x, u)
(1)

where x is the vector of the state variables, u is the input

vector, y is the measurement vector. We assume that the

variables are defined on a compact set Cxuy , i.e., (x, u, y) ∈
Cxuy . A TS fuzzy approximation of this system can be

obtained (e.g., by linearization) as:

ẋ = f⋄(x, u) =
m∑

i=1

wi(x, u)(Aix + Biu + ai)

y = h
⋄(x, u) =

m∑

i=1

wi(x, u)(Cix + Diu + di)

(2)

so that the approximation errors f = f−f⋄ and h = h−h⋄

satisfy

‖f(x, u)‖ ≤ σf + δf‖x‖ ∀(x, u) ∈ Cxu

‖h(x, u)‖ ≤ σh + δh‖x‖ ∀(x, u) ∈ Cxu

(3)

where σf , σh, δf , and δh are known nonnegative finite

constants, and Cxu = {(x, u)|∃y s.t. (x, u, y) ∈ Cxuy}.

A bound similar to (3) is frequently used in controller design

(see the companion paper [11]). In (2), Ai, Bi, Ci, Di, ai,



and di, i = 1, 2, . . . , m represent the matrices and biases

of the ith local linear model and wi, i = 1, 2, . . . , m are

the corresponding normalized membership functions, that

depend on the scheduling variables x, u.

Throughout the paper it is assumed that the mem-

bership functions are normalized, i.e., wi(x, u) ≥ 0,∑m

i=1
wi(x, u) = 1, ∀(x, u) ∈ Cxu. I and 0, respectively,

denote the identity and the zero matrices of the appropriate

dimensions, H(A) represents the Hermitian of the matrix A,

i.e., H(A) = A + AT , and ‖.‖ denotes the Euclidean norm

for vectors and the induced norm for matrices.

The nonlinear system (1) is now expressed as an uncertain

TS system, given as:

ẋ =

m∑

i=1

wi(x, u)(Aix + Biu + ai) + f (x, u)

y =
m∑

i=1

wi(x, u)(Cix + Diu + di) + h(x, u)

(4)

where the uncertainties f and h satisfy (3).

Note that the approximation error on a compact set of

variables always satisfies

‖f(x, u)‖ ≤ σ′

f

‖h(x, u)‖ ≤ σ′

h

(5)

for some σ′

f and σ′

h. However, as will be shown in the sequel,

by using (3) whenever possible, less conservative conditions

can be obtained.

Our results are based on the following conditions [17] for

the stability of autonomous fuzzy systems:

ẋ =

m∑

i=1

wi(z)Aix (6)

where Ai, i = 1, 2, . . . , m represent the ith local linear

model, wi is the corresponding normalized membership

function, and z the vector of the scheduling variables, which

may depend on the states, input, output, or other measured

exogenous variables.

Theorem 1: [17] System (6) is exponentially stable if

there exists P = PT > 0 so that

H(PAi) < 0 (7)

for i = 1, 2, . . . , m. �

Controller and observer design for fuzzy systems

of the form (2) often leads to establishing the neg-

ative definiteness of double summations of the form∑m

i=1

∑m

j=1
wi(z)wj(z)Υij , with Υij , i, j = 1, 2, . . . m

matrices of appropriate dimensions. In this paper we use the

following relaxations for such sums [17]:

Theorem 2: Let Υij be matrices of proper dimensions.

Then,
n∑

i=1

n∑

j=1

wi(z)wj(z)Υij < 0 (8)

holds, if

Υii < 0 for i = 1, 2, . . . , m,

1

2
(Υij + Υji) < 0, for i, j = 1, 2, . . . , m, i 6= j

(9)

Note that similar, although more complex results can also

be derived using other types of Lyapunov functions, as

long as using the derived conditions ensure the exponential

stability of the TS system.

III. STABILITY ANALYSIS

Stability analysis of uncertain or perturbed nonlinear

systems is in general investigated by using the Lyapunov

function that establishes exponential stability of the nominal

model for the uncertain system [9]. In this paper, we use a

similar approach, i.e., the Lyapunov function that establishes

stability of the fuzzy model is further used for the original

nonlinear system.

For stability analysis, consider the autonomous nonlinear

system

ẋ = f(x) (10)

that is approximated by the TS system

ẋ = f⋄(x) =

m∑

i=1

wi(x)Aix (11)

such that each local matrix Ai, i = 1, 2, . . . , m is stable

and the approximation error f = f − f⋄ satisfies

‖f(x)‖ ≤ σf + δf‖x‖ ∀x (12)

where σf and δf are nonnegative finite constants. Consider

the Lyapunov function V = xT Px. If there exist P = PT >

0, Q = QT > 0 so that the linear matrix inequality (LMI)

H(PAi) < −2Q, i = 1, 2, . . . , m (13)

is satisfied, then, by applying the same Lyapunov function
to the original nonlinear system (10), we obtain:

V̇ = x
TH(P (

mX

i=1

wi(x)Aix + f (x)))

= x
T

mX

i=1

wi(x)H(PAi)x + 2x
T
Pf(x)

≤ −2λmin(Q)‖x‖2 + 2λmax(P )δf‖x‖
2 + 2λmax(P )σf‖x‖

≤ −2(λmin(Q) − λmax(P )δf )(1 − θ)‖x‖2

− 2‖x‖(θ(λmin(Q) − λmax(P )δf )‖x‖ − λmax(P )σf )

with θ ∈ (0, 1) arbitrarily chosen, and where λmin(·) and

λmax(·) denote the eigenvalues with the smallest and largest

absolute magnitude.

By analyzing the expression of V̇ , the following cases can

be distinguished:

1) (λmin(Q) − λmax(P )δf < 0) or (λmin(Q) −
λmax(P )δf = 0 and σf > 0): no conclusion can be

drawn;

2) λmin(Q) − λmax(P )δf = 0 and σf = 0: if the

membership functions are sufficiently smooth, and x =
0 is the only equilibrium point, based on LaSalle’s



invariance principle and Barbalat’s lemma [9], x = 0
is a globally asymptotically stable equilibrium point

of the nonlinear system (10). This result is in general

obtained when adaptive fuzzy controllers are designed.

In stability analysis of TS systems, this case is rarely

encountered.

3) λmin(Q)− λmax(P )δf > 0 and σf = 0: the nonlinear

system (10) has a globally exponentially stable equi-

librium point in x = 0. This result is found only if

the approximation error is Lipschitz continuous in the

states.

4) λmin(Q) − λmax(P )δf > 0 and σf > 0: the states

of the nonlinear system (10) are uniformly ultimately

bounded by

γ =

√
λmax(P )

λmin(P )

λmax(P )

λmin(Q) − λmax(P )δf

σf

θ
. (14)

or

γ <

√
λmax(P )

λmin(P )

λmax(P )

λmin(Q) − λmax(P )δf

σf . (15)

As soon as the nonlinear system is approximated to

a constant accuracy by the fuzzy model, i.e., the

approximation error is bound by a constant, this result

is obtained. Moreover, since in most cases only a

constant upper bound on the approximation error can

be determined, this is the most frequently found result.

The above presented cases are illustrated on the following

example.

Example 1: Consider the nonlinear system

ẋ =

(
−1.1 x2

1 − x2

2x2 −4.1 + x2
2

)
x (16)

with the state variables x1, x2 ∈ [−1, 1].
The system has one equilibrium point, x = 0. This

equilibrium point is asymptotically stable on the domain

defined by x1, x2 ∈ [−1, 1]. The stability is provable

with the Lyapunov function V = xT x. Note that if the

sector nonlinearity approach is used to obtain an exact TS

representation of this system, one of the local matrices is(
−1.1 2

2 −3.1

)
, which has a positive eigenvalue 0.1361.

Therefore, the stability of the so obtained TS model cannot

be established.

A TS approximation of the system (16) can be obtained

using the approach of [10]. Normalized triangular mem-

bership functions are chosen, that attain their maximum

in the points defined by {(x1, x2)|x1, x2 ∈ {−1, 0, 1}}.

Therefore, 9 local models are obtained, and each one is

asymptotically stable. Moreover, with this approximation we

have the approximation error either ‖f‖ ≤ 0.58‖x‖, or

‖f‖ ≤ 0.53.

If the bound ‖f‖ ≤ 0.58‖x‖ is used, with P and

Q computed1 as P =

(
14.4874 0.0211
0.0211 7.2243

)
, and Q =

1To solve LMI problems, in this paper Yalmip’s [12] sedumi solver has
been used.

(
9.7100 −2.9048
−2.9048 10.4225

)
the exponential stability of the non-

linear system is proven (case 3).

If the approximation error bound ‖f‖ ≤ 0.53 is used, with

P =

(
0.4945 0.0379
0.0379 0.2188

)
, Q = 0.3920 I the ultimate bound

γ = 1.0469 is obtained (case 4). �

IV. STATE ESTIMATION

Design of estimators in the presence of model uncertain-

ties is one of the most important issues in fault detection

and identification. However, observer design as such for

nonlinear systems using TS fuzzy models when the TS

model is only an approximation and the guarantees that

can be expected for the original nonlinear system are rarely

discussed in the literature. It is important to note that in the

context of robust output-feedback fuzzy control, observers

are used. However, it is generally assumed that the controller

compensates for or attenuates the estimation error resulting

from the observer model–true system mismatch, without

actually analyzing how this error affects the stability of the

closed-loop system.

In this paper, we consider that an observer is designed

based on a TS approximation of a given nonlinear system.

This observer is afterwards applied to the nonlinear system.

We investigate when and what guarantees can be expected

on the convergence of the estimation error, in particular,

when the scheduling vector of the TS model depends on

unmeasured states.

Therefore, consider the nonlinear system (1), with the

approximation:

ẋ = f⋄(x, u) =

m∑

i=1

wi(x, u)(Aix + Biu + ai)

y = h⋄(x, u) =

m∑

i=1

wi(x, u)(Cix + Diu + di)

(17)

so that the approximation errors f = f−f⋄ and h = h−h⋄

satisfy2

‖f(x, u)‖ ≤ σf ∀x, u

‖h(x, u)‖ ≤ σh ∀x, u
(18)

where σf and σh are nonnegative finite constants. Recall that

such a bound can always be obtained on a compact set, and

therefore (18) is a valid assumption.

The observer considered in this section is of the form

˙̂x =

m∑

i=1

wi(x̂, u)(Aix̂ + Biu + ai + Li(y − ŷ))

ŷ =
m∑

i=1

wi(x̂, u)(Cix̂ + Diu + di)

(19)

2See after the derivation of the error system why a Lipschitz condition
like (3) cannot be used.



If the observer (19) is now used for the nonlinear sys-
tem (1), the error dynamics can be expressed as:

ė = f (x, u) − f
⋄(bx, u)

=
mX

i=1

wi(x, u)(Aix + Biu + ai) + f (x, u)

−
mX

i=1

wi(bx, u)(Aibx + Biu + ai + Li(y − by))

=

mX

i=1

wi(bx, u)(Aie − Li(y − by)) + f (x, u)

+
mX

i=1

(wi(x, u) − wi(bx, u))(Aix + Biu + ai)

=
mX

i=1

wi(bx, u)(Aie − Li

· (
mX

j=1

wj(x, u)(Cjx + Dju + dj) + h(x, u) + f (x, u)

−

mX

j=1

wj(bx, u)(Cj bx + Dju + dj)))

+ ∆wf + f (x, u)

=
mX

i=1

wi(bx, u)(Aie − Li(
mX

j=1

wj(bx, u)Cje

+

mX

j=1

(wj(x, u) − wj(bx, u))(Cjx + Dju + dj)

+ h(x, u))) + ∆wf + f (x, u)

or, simply as

ė =
mX

i=1

mX

j=1

wi(bx, u)wj(bx, u)(Ai − LiCj)e

−

mX

i=1

wi(bx, u)Li(∆wh + h(x, u)) + ∆wf + f (x, u)

(20)

with

∆wf =

m∑

i=1

(wi(x, u) − wi(x̂, u))(Aix + Biu + ai)

∆wh =
m∑

j=1

(wj(x, u) − wj(x̂, u))(Cjx + Dju + dj)

For the observer–TS fuzzy model mismatch, bounds sim-

ilar to (3) are assumed:

‖∆wf‖ ≤ σwf + δwf‖e‖

‖∆wh‖ ≤ σwh + δwh‖e‖
(21)

Using these bounds, in the worst case,

‖ −

m∑

i=1

wi(x̂, u)Li(∆wh + h(x, u)) + ∆wf + f (x, u)‖

≤ max
i

‖Li‖(σwh + δwh‖e‖ + σh)

+ σf + σwf + δwf‖e‖

= σ + δ‖e‖
(22)

with
σ = max

i
‖Li‖(σwh + σh) + σf + σwf

δ = max
i

‖Li‖δwh + δwf

(23)

To summarize, we have:

ė =

m∑

i=1

m∑

j=1

wi(x̂, u)wj(x̂, u)(Ai − LiCj)e + ∆

‖∆‖ ≤ σ + δ‖e‖

(24)

with δ and σ given by (23). Note however, that σ depends

on the Li, i = 1, 2, . . . , m to be designed, and in order to

obtain the smallest possible bound on the estimation error, σ,

and therefore ‖Li‖, i = 1, 2, . . . , m should be minimized.

Using the Lyapunov function V = eT Pe, similarly to

Section III, and assuming that there exist P = PT > 0,

Q = QT > 0 so that

H(P (Ai − LiCi)) < −2Q

H(P (Ai − LiCj) + P (Aj − LjCi)) < −4Q

j, i = 1, 2, . . . , m

(25)

we get

V̇ = eTH(P
m∑

i=1

m∑

j=1

wi(x̂, u)wj(x̂, u)(Ai − LiCj)e)

+ 2eT P∆

≤ −2(λmin(Q) − λmax(P )δ)(1 − θ)‖x‖2

− 2‖x‖(θ(λmin(Q) − λmax(P )δ)‖x‖ − λmax(P )σ)

with θ ∈ (0, 1). Based on the results presented in Section III,

by analyzing the expression of V̇ , when the observer (19) is

applied to the nonlinear system (1), one of the following

conclusions can be drawn regarding the estimation error:

1) (λmin(Q)−λmax(P )δ < 0) or (λmin(Q)−λmax(P )δ =
0 and σ > 0): no conclusion can be drawn;

2) λmin(Q)−λmax(P )δ = 0 and σ = 0: under conditions

similar to those in Section III, the estimation error

dynamics are asymptotically stable.

3) λmin(Q) − λmax(P )δ > 0 and σ = 0: the nonlinear

system (20) has a globally exponentially stable equi-

librium point in x = 0; However, this case can only be

obtained if the fuzzy system is an exact representation

of the nonlinear system, i.e., in (18) σf , σh = 0,

4) λmin(Q) − λmax(P )δ > 0 and σ > 0: the estimation

error is uniformly ultimately bounded by

γ =

√
λmax(P )

λmin(P )

λmax(P )

λmin(Q) − λmax(P )δ

σ

θ
. (26)

This is the result obtained in general.

The following example illustrates the computation of the

bounds during observer design:

Example 2: Consider the nonlinear system

ẋ =

(
1.1 x2

1 + 0.1
−x1 − 1 −3 + x2

2

)
x

y = [1 0]x

(27)



with x1, x2 ∈ [−1, 1]. Note that this system is unstable.

A TS approximation of the system (27) is obtained using

the approach of [10]. Normalized triangular membership

functions are chosen, that attain their maximum in the points

defined by {(x1, x2)|x1, x2 ∈ {−1, 0, 1}}, and 9 local

models are obtained. The TS system can be written as:

ẋ =

m∑

i=1

wi(x)Aix

y = [1 0]x

(28)

The approximation errors are ‖f‖ ≤ σf = 0.407 and

‖h‖ = σh = 0. With these membership functions, we have

‖
∑m

i=1
(wi(x) − x(x̂))Aix‖ ≤ 6.3 and ‖

∑m

i=1
(wi(x) −

wi(x̂))Aix‖ ≤ 6.3‖e‖. Combining the two bounds, we can

actually use ‖
∑m

i=1
(wi(x) − wi(x̂))Aix‖ ≤ α · 6.3 + (1 −

α)·6.3‖e‖, with α arbitrarily chosen in [0, 1]. Consequently,

δ = (1 − α) · 6.3, and σ = α · 6.3 + 0.407.

Solving (25) such that simultaneously λmax(P ) is mini-

mized and λmin(P ) and λmin(Q) are maximized, one ob-

tains: λmin(P ) = 0.33, λmax(P ) = 0.33 and Q = I .

Consequently, δ = (1 − α) · 6.3, and σ = α · 6.3 + 0.407.

With these values, the cases presented above become:

• for α < 20

21
, i.e., (1−α) ·6.3 > 0.3 we have λmin(Q)−

λmax(P )δ < 0 and no conclusion can be drawn

• since σf > 0, the conclusion of “asymptotic stability”

(Cases 2) and 3) above) using the observer (19) is

excluded.

• for α ≥ 20

21
, we obtain that the estimation error is

uniformly ultimately bounded by

γ =

√
λmax(P )

λmin(P )

λmax(P )

λmin(Q) − λmax(P )δ

σ

θ

=
0.33 · (6.3α + 0.407)

(1 − 2.08(1 − α))θ

< 2.2

with θ ∈ (0, 1) and α ∈ [20
21

, 1].

A large part of the value of the bound is due to observer

model mismatch, i.e., the dependency of the scheduling

vector on the non-measured states. For instance, if the

considered system is

ẋ =

(
1.1 x2

1 + 0.1
−x1 − 1 −3 + x2

1

)
x

y = [1 0]x

(29)

instead of (27), the scheduling variable is x1 only, which is

measured. Therefore, ‖
∑m

i=1
(wi(x)−wi(x̂))Aix‖ = 0, and

the bound on the estimation error is simply

γ =

√
λmax(P )

λmin(P )

λmax(P )

λmin(Q)

σ

θ
=

0.13

θ
< 0.13

with θ ∈ (0, 1). �

Note that in Example 2 a common measurement matrix has

been considered. If the measurement matrix is not common

for all the rules, σ depends on the Li, i = 1, 2, . . . , m to

be designed. In such a case, to facilitate the design, one can

solve the multi-objective optimization problem:

maximize λmin(Q), λmin(P ),

minimize λmax(P ), ‖Li‖, i = 1, 2, . . . , m

subject to

P = PT > 0

Q = QT > 0

H(P (Ai − LiCi)) ≤ −2Q, i = 1, 2, . . . , m

H(P (Ai − LiCj) + P (Aj − LjCi)) ≤ −4Q

j, i = 1, 2, . . . , m

Recall that instead of using the bound (3), for the observer

(19), the constant bound on the approximation error has

been used. This is because, if the bounds on f and h for

observer design are not constants, but linear in x, then, with

the observer (19), the state itself has to be treated as a

disturbance that affects the error dynamics. This would lead

to a much larger bound on the estimation error.

A possible approach to still attain asymptotic stability is

when f and h are known, and Lipschitz, i.e., there exist

γf , γh ≥ 0 such that ‖f(x, u) − f(x̂, u)‖ ≤ γf‖x − x̂‖,

and ‖h(x, u)−h(x̂, u)‖ ≤ γh‖x− x̂‖. In this case, instead

of the observer (19), the observer

˙̂x =

m∑

i=1

wi(x̂, u)(Aix̂ + Biu + ai + Li(y − ŷ)) + f(x̂, u)

ŷ =

m∑

i=1

wi(x̂, u)(Cix̂ + Diu + di) + h(x̂, u)

(30)

can be used.

Then, similarly to linear observer design for nonlinear

systems with Lipschitz nonlinearities [14], [15], with γf and

γh incorporated into δ, asymptotic stability of the estimation

error can be obtained.

Example 3: Consider the nonlinear system

ẋ =

(
0.33x2

1 + x1 1
1 −1

)
x

y = [1 0]x

(31)

with x1, x2 ∈ [−1, 1].
A TS approximation of the system (31) can be obtained

as the two-rule fuzzy system:

ẋ =

2∑

i=1

wi(y)Aix

y = [1 0]x

(32)

with A1 =

(
−1 1
1 −1

)
, A2 =

(
1 1
1 −1

)
, w1(y) =

1−y
2

, w2(y) = 1+y
2

. The approximation error function is

f =

(
0.33x2

1 0
0 0

)
x. For this function, we have ‖f(x) −

f(x̂)‖ ≤ ‖x − x̂‖, i.e., δ = 1, and σ = 0. Note that since



the membership functions depend on a measured variable,

there is no observer-model mismatch.

Solving (25), one obtains L1 = L2 =

(
15.1
7.3

)
,

P =

(
0.2109 −0.3183
−0.3183 0.8475

)
, Q = I , λmin(P ) = 0.08,

λmax(P ) = 0.97. Then, using the observer

˙̂x =

2∑

i=1

wi(y)(Aix̂ + Li(x − ŷ)) + f(x̂)

e = [1 0]x̂

for the original nonlinear system (31), with a common

quadratic Lyapunov function we obtain that there exist P =
PT > 0, Q = QT > 0 such that λmin(Q) − λmax(P )δ >

0 and σ = 0 (i.e., case 3), and the estimation error is

asymptotically stable. �

V. CONCLUSIONS

In this paper we have investigated whether and when

stability guarantees can be obtained when an observer is

designed for a fuzzy approximation of a nonlinear system

and applied to the original nonlinear system. We have shown

that unless the nonlinear system can be exactly represented

or approximated up to a term that is Lipschitz continuous in

the error, the dynamics of the estimation error are not glob-

ally asymptotically stable. However, the error is in general

uniformly ultimately bounded. This bound can be computed

using the estimation error and the Lyapunov matrix. In our

future research we will investigate whether the estimation

error can be reduced by employing other types of observers.
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