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Abstract— Nonlinear stochastic dynamical systems are widely
used to model physical processes. In many practical applica-
tions, the state variables are defined on a compact set of the
state space, i.e., they are bounded or saturated. To estimate
the states of systems with saturated variables, the Saturated
Particle Filter (SPF) has recently been developed. This filter
exploits the structure of the saturated system using a specific
importance sampling distribution. In this paper we investigate
the asymptotic properties of the filter, in particular its almost
sure convergence to the true posterior PDF. Furthermore, an
improved SPF is developed that uses a novel resampling proce-
dure to overcome the practical shortcomings of the original SPF.
We prove that this new filter also converges almost surely to
the true posterior PDF. Both versions of the SPF are presented
in easy to implement algorithmic forms.

I. INTRODUCTION

Various practical problems require extracting information
of interest from an uncertain or dynamically changing en-
vironment. Such problems are often represented in a state
space form as Stochastic Dynamical Systems (SDS). In the
SDS framework the required information is modeled as an
unknown state or parameter of the system that needs to
be estimated from available measurements. If the unknown
property changes as the system evolves, the estimate has to
be updated each time a measurement becomes available. For
this purpose the Bayesian dynamic filter has been developed.
The Bayesian dynamic filter is a recursive algorithm that
uses prior knowledge of the system and the most current
measurement to compute the posterior estimate. This is
achieved by utilizing the Bayes theorem (Chapter 1 of [1]).
The posterior estimate is a probability density function (PDF)
of the state of the system.

The posterior PDF can be analytically computed only
for systems with linear dynamics and additive Gaussian
noises [2], [3], i.e., for a very restricted class of systems. In
case of nonlinear or/and non-Gaussian noises, in general itis
impossible to compute the exact form of the posterior PDF.
Therefore, one needs to rely on approximations. Two types
of approximations can be distinguished:parametric and
non-parametric. The posterior PDF is parametrically ap-
proximated if it can be characterized by a function that
depends on a finite number of parameters. In other words,
the approximation of the posterior PDF belongs to a finitely-
parameterized family of functions, e.g., Gaussians [4], [5],
[6], [7], sum of Gaussians [8], [9], [10], Pearson [11]. If
such a parameterization is impossible, the posterior PDF can
be approximated with a non-parametric PDF of an arbitrary
shape [12], [13], [14]. Among the non-parametric methods,
the Particle Filter (PF) has gained the most popularity. The

PF algorithm is based on the Monte Carlo method originally
proposed by Ulam and von Neuman (see [15] and the
references therein).

The properties of the PF have been extensively studied in
recent years [12], [16], [17], and many versions of PF have
been developed for specific types of problems [16], [18],
[19], [20], [21], [22]. In particular, the Saturated Particle
Filter (SPF) has been proposed in [23] as a method to
estimate the states of a Saturated Stochastic Dynamical
System (SSDS). A system belongs to the SSDS class if
at each time stepk for at least one of the state variables
the probability that it saturates is strictly positive [23]. The
point that belongs to the boundary of such a set is called
the saturation point. These systems are frequently found
both in industrial applications [24], [25], and in theoretical
research [20], [26].

Under certain conditions, the states of the SSDS can be
estimated by a parametric Unscented Kalman Filter [27],
[28], [29]. Nevertheless, the flexibility of the nonparametric
PF makes it a more suitable algorithm for the severely non-
linear SSDS [30], [20], [31], [23]. On the downside, however,
the PF is based on the Monte Carlo approximation, hence
it might require a large number of samples to achieve an
accurate estimate. This makes the algorithm computationally
expensive, and consequently, limits its on-line applicability.
The choice of the importance sampling density is a crucial
step toward reducing the computational costs, and therefore
making the filter feasible for on-line applications. This has
been an active field of research in recent years. In [20], [31]
the constrained PF has been proposed that produces a state
estimate that does not violate the physical constraints of the
system. This is done by discarding unsuitable particles [31],
or by projecting them on a constraint set [20]. The SPF
combines the projection approach with a novel sampling
method to effectively detect the saturation moment, and
forces the particles to rapidly jump to the part of the state
space close to the saturation point [23]. This makes the SPF
a powerful tool for solving the estimation problem for SSDS.

Since the PF approximates the true posterior PDF by
a set of N discrete samples the question that naturally
arises is whether the approximation converges to the true
posterior PDF asN → ∞, and if yes in what sense?
Extensive studies on the convergence properties of the PF
have been conducted in [1], [17] and [32]. In both [1]
and [17] two types of convergence have been discussed, 1)
almost sure convergence and 2) convergence in the mean
square error sense, and conditions that guarantee either type
of convergence have been derived. The focus of [32] is more



on investigating relations between the sample sizeN and the
time stepk. Moreover, [32] presents a number of interesting
results regarding asymptotic behavior of the variance of the
estimator.

In this paper we consider the almost sure convergence
of the SPF to the true posterior PDF. First, we derive
sufficient conditions for the almost sure convergence of the
SPF defined in [23]. Next, we propose an improved version
of the SPF with a novel resampling procedure and we prove
that it also converges almost surely to the true posterior
PDF. In both cases we discuss the practical meaning of the
constraints that ensure the filter’s convergence properties.
Furthermore, both algorithms are presented in an easy-to-
implement algorithmic form.

The paper is structured as follows. In Section II we present
background information regarding the PF, the SPF, and the
stochastic systems. In Section III we discuss asymptotic
properties of the originally proposed SPF. The improved
version of the SPF is derived in Section IV, where we also
prove the almost sure convergence of the new SPF to the
true posterior PDF and discuss the practical properties of
the improved SPF. Section V concludes the paper.

II. PRELIMINARIES

In this section we give an overview of the basic definitions
and properties concerning the asymptotic behavior of Parti-
cle Filters (PF). This section presents background material,
therefore the theorems are given without proofs. For detailed
proofs, see [17], [33].

A. Particle Filter

Definition 1 (Stochastic Dynamical System):The
Stochastic Dynamical System(SDS) is a process defined
recursively by

xk+1 = fk (xk, wk) , (1)

yk = hk (xk, vk) , (2)

x0 ∼ p0 (·) , (3)

wherewk andvk are mutually independent random variables,
fk is a (possibly nonlinear) function that describes the
state evolution,hk is a (possibly nonlinear) function that
establishes the observation model, andp0 is a probability
density function(PDF) of the initial statex0.

From the model (1)–(2) we derive thetransition probabil-
ity kernelKk−1(xk|xk−1) defined by

Kk−1(xk|xk−1) := Pw (fk−1 (xk−1, wk−1) = xk) , (4)

i.e., the conditional PDF of the variablexk given the previous
statexk−1, and thelikelihood functiongk(yk|xk) defined by

gk(yk|xk) := Pv (hk (xk, vk) = yk) , (5)

i.e., the conditional PDF of the variableyk given the current
statexk.

The PF represents the posterior PDFπk|k of the statexk

by N random samples (particles)
{

xi
k

}N

i=1
with their associ-

ated weights
{

ωi
k

}N

i=1
, normalized so that

∑N

i=1 ω
i = 1.

At time instant k, the previous posterior PDFπk−1|k−1

is represented byN samples
{

xi
k−1

}N

i=1
and the corre-

sponding weights
{

ωi
k−1

}N

i=1
. To approximate the true pos-

terior πk|k, new samples
{

xi
k

}N

i=1
and weights

{

ωi
k

}N

i=1
are generated using theSequential Importance Sampling
(SIS) method [34], [16]. The SIS method is a recursive
algorithm that uses the most recent observationyk to com-
pute

{(

xi
k, ω

i
k

)}N

i=1
in two steps. First, for everyi =

1, ..., N , samplexi
k is drawn from a (chosen)importance

kernel K̃k−1(x
i
k|xi

k−1, yk). Next, using the most recent ob-
servationyk, the weightsωi

k are updated according to the
Bayes rule

ω̃i
k = ωi

k−1

gk(yk|xi
k)Kk−1(x

i
k|xi

k−1)

K̃k−1(xi
k|xi

k−1, yk)
(6)

and normalized

ωi
k =

ω̃i
k

∑N

j=1 ω̃
j
k

. (7)

The posterior PDFπk|k is represented by the set of weighted
samples, conventionally denoted by:

πk|k ≈ πN
k|k :=

N
∑

i=1

ωi
kδ(xk − xi

k), (8)

whereδ denotes the Dirac delta at zero.
In theory, the best possible importance density is the

posterior PDFπk|k itself. For every other choice of the

importance density the variance of the weights
{

ωi
k

}N

i=1
increases over time [34]. Since it is generally impossible
to sample from the posterior PDFπk|k one needs to rely
on suboptimal importance densities in practice. It has been
shown (see [34] and the references therein) that the impor-
tance density that minimizes the variance of the weights
{

ωi
k

}N

i=1
conditional upon simulated trajectories

{

xi
j

}k−1

j=1

and the observations{yj}kj=1 is equal toP
(

xk|xi
k−1, yk

)

,
i.e., the PDF of the statexk conditional upon immediately
preceding realizationxi

k−1 of the simulated trajectory and the
most current observationyk. P

(

xk|xi
k−1, yk

)

is an optimal
importance density in the aforementioned sense. Unfortu-
nately, apart from a restricted class of systems [34], [35],
[36], sampling fromP

(

xk|xi
k−1, yk

)

is practically impossi-
ble. Therefore, various suboptimal importance densities have
been proposed during the recent years. The simplest choice is
to use an importance density that is fixed over the time [37].
A more popular approach is utilized in thebootstrap particle
filter (BPF) [38], [39]. The BPF samples points

{

wi
k−1

}N

i=1
from the noise distribution ofwk−1, then propagates them
together with the particles

{

xi
k−1

}N

i=1
, which approximate

the previous posterior PDFπk−1|k−1, through the prediction
model (1) to obtain the particlesxi

k := fk−1

(

xi
k−1, w

i
k−1

)

that approximate the predicted PDFπk|k−1. A slightly dif-

ferent formulation of the BPF, with particles
{

xi
k−1

}N

i=1
sampled directly from the transition probabilityP

(

xk|xi
k−1

)

,
is presented in [40]. Another variation of the BPF [17]



allows sampling particles
{

xi
k−1

}N

i=1
from the weighted tran-

sition probability 1
N

∑N

j=1 P

(

xk|xj
k−1

)

. More information
on other types of importance densities can be found in [32],
[41].

A common problem of PF is the particle degeneracy: after
several iterations, all but few particles will have negligible
weights. This does not come as a surprise since the variance
of the weights

{

ωi
k

}N

i=1
can only increase over time. When

that occurs most of the computational power is wasted
on updating negligible weights and the accuracy of the
algorithm strongly deteriorates since the posterior PDFπk|k
is approximated only by a small set of significant particles.
The degeneracy phenomenon can be circumvented by mon-
itoring the weights and resampling the particles, e.g., with
Algorithm 1, after the degeneracy is detected [12], [42], [43],
[44]. A common measure of the degeneracy is theeffective
sample sizeNeff, computed by [12], [45]:

Neff =
1

N
∑

i=1

(ωi
k)

2

. (9)

Alternatively one can test a Kullback-Leibler distance be-
tween the sets of weights obtained in the consecutive itera-
tions [43], or simply measure the maximum weight at each
iteration before resampling [43], [42].

Algorithm 1 Resampling

Output: {(xi
new, ω

i
new)}Ni=1

for i = 1, 2, . . . , N do
Compute cumulative sum of weights:ωi

c =
∑i

j=1 ω
j
k

end for
Draw u1 from U(0, 1

N
)

for i = 1, 2, . . . , N do
Find x+i, the first sample such thatωi

c ≥ ui.
Replace particlei: xi

new = x+i, ωi
new = 1

N

ui+1 = ui +
1
N

end for

The PF that monitors the degeneracy usingNeff is sum-
marized in Algorithm 2.

B. Saturated Particle Filter

We start with a definition of the class of systems we ana-
lyze. The goal of this paper is to investigate the asymptotic
properties of the SPF with a new resampling algorithm. Thus,
to make the argument simpler, we restrict our considerations
to the SPF defined on one dimensional SDS. To properly
extend the SPF method to the higher-dimensional systems we
have to identify right conditions that need to be imposed on
the dynamical system (1)–(3), e.g., the constraints of the state
variables need to be convex. These are subject of ongoing
research that is beyond the scope of this paper. However,
the general concepts of the SPF, new resampling and the
asymptotic properties of the algorithm are well captured by
the one-dimensional case hereby discussed. Another assump-
tion, which greatly simplifies the calculations that follow, is

Algorithm 2 Particle filter

Input: Kk−1(xk|xk−1), K̃k−1(xk|xk−1, yk), gk(yk|xk),
p0(x0), N , NT

Initialize:
for i = 1, 2, . . . , N do

Draw a new particle:xi
0 ∼ p(x0)

Assign weight:ωi
0 = 1

N

end for
At every time step k = 1, 2, 3, . . .
for i = 1, 2, . . . , N do

Draw particle from importance distribution:
xi
k ∼ K̃k−1(x

i
k|xi

k−1, yk)
Use measuredyk to update the weight:

ω̃i
k = ωi

k−1

gk(yk|xi
k)Kk−1(x

i
k|xi

k−1)

K̃k−1(xi
k
|xi

k−1
,yk)

end for
Normalize weights:ωi

k =
ω̃i

k∑
N
j=1

ω̃
j

k

if 1∑
N
i=1

(ωi
k
)2

< NT then

Resample using Algorithm 1.
end if

considering only systems bounded on the positive real line.
This condition is of purely technical nature as any variable
bounded inR, by an affine change of variables, can be
transformed into a variable constrained inR+.

Definition 2 (Saturated Stochastic Dynamical System):
Let us consider a real-valued SDS with the observation
model given by

yk = hk (xk) + vk, (10)

whereEvk = 0. Such SDS is calledSaturated Stochastic
Dynamical System(SSDS) if there exists a functionC :
R+ → R+ and a functionFk : R+ ×R → R+ such that for
eachk ≥ 1, the state equation takes the form:

xk+1 = min (Fk (xk, wk) , C (xk)) . (11)

In the above definition the functionFk corresponds to the
transition function of the “unsaturated” system, i.e., the
system with the state that is not bounded by the functionC.
An example of SSDS is discussed in Section IV-D.3.

In order to online estimate the states of the SSDS theSatu-
rated Particle Filter(SPF) has been developed [23]. The SPF
is a SIS-type of algorithm that samples particles

{

xi
k+1

}N

i=1

from a special importance kernel̃K
(

·|xi
k, yk+1

)

that is
chosen in such a way that the distribution of these particlesis
“closer” to the posterior PDFπk+1|k+1 than the distribution
of the particles obtained by the BPF, i.e., by sampling
from the transition probability kernelK

(

·|xi
k

)

. The SPF’s
improved estimation performance comes from the use of the
detection functionwhose purpose is to quickly detect whether
the saturation occurred by comparing the measurements
with the state constraints. In other words, the detection
function is intended as a “pseudometric” betweenyk+1 and



hk+1

(

C
(

xi
k

))

. This extra information is used to force the
particles to move to the “appropriate” region already in the
sampling step of the algorithm. In general, the choice of
detection function depends on the dynamics of the system
under consideration. For the class of systems presented in
Definition 2 let us introduce:

Definition 3 (Detection function):Let α : R → R be a
function for which the following conditions are satisfied:

1) α is non-decreasing,
2) there existsy0 ∈ R such thatα(y0) = 0.

Then, the mapping
(

yk+1, x
i
k

)

7→ α
(

yk+1 − hk+1

(

C
(

xi
k

)))

(12)

is called adetection function.

This is not the only possible way of defining detection
functions. Nevertheless, throughout this paper we stick tothis
definition because for the one dimensional SSDS it illustrates
well the idea behind the SPF method.

Since there is one to one relation between the detection
function defined by (12) andα, in what follows, we do not
make a distinction between these two objects.

With the use of the detection functionα we define the
probabilities of saturation [23]:

Definition 4 (Probabilities of saturation):For every i =
1, ..., N the predicted probability of saturationqi is given
by

qi =

∫ +∞

C(xi
k)

P
(

Fk (xk, wk) = z|xi
k

)

dz, (13)

and theupdated probability of saturationqαi is given by

qαi :=







1 if qi + α
(

yk+1 − hk+1

(

C
(

xi
k

)))

> 1,
0 if qi + α

(

yk+1 − hk+1

(

C
(

xi
k

)))

< 0,
qi + α

(

yk+1 − hk+1

(

C
(

xi
k

)))

otherwise.
(14)

Using qαi defined in (14), and the detection functionα,
we define the importance densitỹKk of the SPF by:

K̃k

(

x|xi
k, yk+1

)

:= qαi δ
(

C
(

xi
k

)

− x
)

+
1− qαi
1− qi

P
(

Fk (xk, wk) = x|xi
k

)

1[0,C(xi
k))

(x) , (15)

whereδ denotes the Dirac delta function, and1[0,C(xi
k))

is

an indicator function on the interval
[

0, C
(

xi
k

))

.
It can be easily seen that̃Kk defines a probability kernel.

The importance density of the BPF filter is a special case
of K̃k with α ≡ 0.

Given the particlexi
k, a new particlexi

k+1 is drawn
from the importance densitỹKk

(

·|xi
k, yk+1

)

. By (15) the
particle xi

k+1 saturates, i.e.,xi
k+1 = C

(

xi
k

)

, with the
probability qαi , and with probability1− qαi it is drawn from

1

1− qi
P
(

Fk (xk, wk) = x|xi
k

)

1[0,C(xi
k))

(x) (16)

The associated weightsωi
k+1 are computed using (6). Ifxi

k+1

saturates, i.e.,xi
k+1 = C

(

xi
k

)

, then, by the definitions ofqi,
andqαi , the weightωi

k+1 follows the formula:

ωi
k+1 ∝ ωi

k

qi
qαi

gk+1

(

yk+1|xi
k+1

)

, (17)

if xi
k+1 does not saturate, the weightωi

k+1 is updated by:

ωi
k+1 ∝ ωi

k

1− qi
1− qαi

gk+1

(

yk+1|xi
k+1

)

. (18)

The SPF algorithm, developed in [23], is summarized in
Algorithm 3. Note that the updated probability of saturation
depends on the choice of the detection functionα. Therefore,
throughqαi , the SPF also depends onα.

Algorithm 3 Saturated PF for a givenα

Input:
{(

xi
k, ω

i
k

)}N

i=1
, yk+1

Output:
{(

xi
k+1, ω

i
k+1

)}N

i=1
for i = 1, 2, . . . , N do

Compute the probabilityqi according to (13)
Compute the probabilityqαi according to (14)
Draw u ∼ U (0, 1)
if u ≤ qαi then

Particlexi
k+1 saturates:

xi
k+1 := C

(

xi
k

)

ωi
k+1 ∝ ωi

k

qi
qαi

gk+1

(

yk+1|xi
k+1

)

else
Particlexi

k+1 does not saturate:

xi
k+1 ∼ 1− qαi

1− qi
P
(

Fk (xk, wk) = •|xi
k

)

1[0,C(xi
k))

(•)

ωi
k+1 ∝ ωi

k

1− qi
1− qαi

gk+1

(

yk+1|xi
k+1

)

end if
end for

Up to this point we have defined the framework of SSDS
and we have formulated the SPF algorithm solving the
filtering problem for SSDS. More details concerning these
topics can be found in [23]. Next, we present several concepts
from stochastic systems theory.

C. Stochastic Systems Theory

We start this section with giving the basic definitions that
are further used to establish the asymptotic properties of
the SPF. Then, we recall the theorems dealing with the con-
vergence properties of the Particle Filters. A comprehensive
overview of the presented topics can be found in [17], [33],
and [1].

Definition 5 (Feller kernel):The transition probability
kernel K(−|·) on (X,ΣX ,P) has theFeller property1 if,
for every continuous and bounded functionϕ, the function

z →
∫

X

ϕ(x)K(dx|z) (19)

1Weak Feller property by the definition of [33].



is continuous and bounded [1].

In the following, we show that the PF can be defined as
an operator on the space of probabilistic measuresP (X),
whereX is a given vector space. The construction of such an
abstract operator requires some extra effort, but it allowsus
to derive simple conditions that guarantee good asymptotic
behavior of a generic PF.

We start by introducing the operators [17] that will be used
in the proof of convergence.

LetKk be a transition probability kernel on the probability
space(X,ΣX ,P) defined by (4) and let̃Kk be an arbitrary
probability kernel that is absolutely continuous with respect
to Kk. Furthermore, letgk be a likelihood function defined
by (5) and letωk be aweighted likelihood functiondefined
by:

ωk (y, x|xk) :=
gk+1 (y|x)Kk (x|xk)

K̃k (x|xk, y)
. (20)

Definition 6 (Prediction operator):Theprediction opera-
tor bk maps the probabilistic measureν ∈ P (X) into the
probabilistic measurebk (ν) ∈ P (X), defined by

[bk (ν)] (A) :=

∫

X

K̃k (A|xk, yk+1) ν (dxk) , (21)

for everyA ∈ ΣX .

Definition 7 (Update operator):For given yk+1 and xk,
the update operatorak maps the probabilistic measure
ν ∈ P (X) into the probabilistic measureak (ν) ∈ P (X),
defined by
∫

X

ϕ (x) [ak (ν)] (dx) :=

[∫

X

ϕ (x)ωk (yk+1, x|xk) ν (dx)

]

×
[∫

X

ωk (yk+1, x|xk) ν (dx)

]−1

(22)

for every continuous and bounded functionϕ.

Definition 8 (Multinomial sampling operator):The
multinomial sampling operator cN assigns to the
probabilistic measureν ∈ P (X) its random discrete
approximationcN,x (ν) according to:

cN,x (ν) :=
1

N

N
∑

j=1

δ{Vj(x)}, (23)

whereN > 0, x ∈ X, Vj , j = 1, ..., N are i.i.d. random
variables onX with the common distributionν.

Equation (23) formally defines the empirical approxima-
tion of an arbitrary distributionν by means of Monte Carlo
sampling.

A special case of importance sampling, which is employed
in the BPF, is when it is desirable to directly draw sam-
ples from the transition kernelKk (−|·). In such a case
K̃k (−|·) := Kk (−|·), andωk reduces togk.

Definition 9 (Particle Filter): Let c̄N be the resampling
operator on P (X) that maps the measureν into a random

measurēcN,· ∈ P (X) composed ofN discrete random mea-
sures. TheParticle Filter is an operatorkNk that transforms
the empirical measureπN

k|k, which approximates the state of
the system at timek, into the empirical measureπN

k+1|k+1

at timek + 1:

πN
k+1|k+1 = kNk

(

πN
k|k

)

:=
[

c̄N ◦ ak ◦ cN ◦ bk
]

(

πN
k|k

)

.

(24)

The relation between this abstract definition and the stan-
dard formulation of the PF is the following:

1) Prediction stage:First, the predicted state density is
computed by applying the operatorbk, defined in
Definition 6, to the empirical measureπN

k|k. Then the
predicted state density is approximated byN random
samples obtained by applying the sampling operator
cN (Definition 8) tobk

(

πN
k|k

)

.
2) Update stage:After the prediction stage, the updated

state density is computed as the output of the update
operatorak (Definition 7) applied tocN ◦ bk

(

πN
k|k

)

.

Finally, applying the operator̄cN to the updated state
density corresponds to the resampling step of the PF.

The asymptotic properties of the PF can be established
from the following theorem:

Theorem 1 (Convergence of the generic PF [17]):Let
us assume that for eachk the importance kernel̃Kk is Feller,
and the likelihood functionωk is bounded, continuous,
and strictly positive. Furthermore, let̄cN be a resampling
operator such that for every bounded functionϕ, there exists
a constantL such that:

E

[

(∫

X

ϕ(x)
[

c̄N,· (ν)
]

(dx)−
∫

X

ϕ(x)ν(dx)

)4
]

≤ L

N2
.

(25)
Then, asN → ∞, the empirical measureπN

k+1|k+1 defined
by (24) converges almost surely towards the true posterior
PDF πk+1|k+1.

III. ASYMPTOTIC PROPERTIES OF THE SPF
UNDER STANDARD RESAMPLING

In this section we investigate asymptotic properties of
the SPF with respect to Theorem 1. First, we prove the
theoretical convergence of the SPF. Second, we discuss the
practical consequences of the conditions derived in the first
part.

A. Theoretical results

We start with formulating the SPF algorithm in terms of
the operator notation introduced in Section II-C.

Definition 10 (Saturated Particle Filter):Consider the
SSDS defined by (1)-(3) and (11), and letα be an arbitrary
detection function satisfying Definition 3. Furthermore,
let Kk be the transition probability kernel andgk be the
likelihood function corresponding to the state model (1)
and the observation model (2) respectively. TheSaturated



Particle Filter (SPF) is a PF with the transition probability
kernelK̃k defined by:

K̃k (x|xk, yk+1) := qαk+1 (xk, yk+1) δ{C(xk)} (x)

+
1− qαk+1 (xk, yk+1)

1− qk+1 (xk)
Kk (x|xk) , (26)

and with the weighted likelihood function defined by

ω̃k (y, x|xk−1) := gk (y|x)
(

1− qk (xk−1)

1− qαk (xk−1, y)
1[0,C(xk−1))(x)

+
qk (xk−1)

qαk (xk−1, y)
δC(xk−1)(x)

)

, (27)

where the predicted probability of saturationqk and the
updated probability of saturationqαk are defined as:

qk (x) :=

∫ +∞

C(x)

Kk (dz|x) , (28)

qαk (x, y) :=







1 if qk (x) + α (y − hk+1 (C (x))) > 1,
0 if qk (x) + α (y − hk+1 (C (x))) < 0,
qk (x) + α (y − hk+1 (C (x))) otherwise.

(29)

It is easy to see that Definition 10 is an abstraction of
Algorithm 3.

In what follows we derive sufficient conditions that, if
satisfied, ensure the almost sure convergence of the SPF to
the true posterior PDFπk+1|k+1. We start with two technical
lemmas:

Lemma 1:Let Kk be a bounded Feller kernel and let
C : R+ → R+ be a continuous function. Then, for every
bounded and continuous functionϕ, the function

z →
∫ C(z)

0

ϕ(x)Kk(dx|z) (30)

is continuous.

Proof: Let {zn} be a sequence inR+ such that
zn → z0. We have:

∣

∣

∣

∣

∣

∫ C(zn)

0

ϕ(x)Kk(dx|zn)−
∫ C(z0)

0

ϕ(x)Kk(dx|z0)
∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ C(zn)

0

ϕ(x)Kk(dx|zn)−
∫ C(z0)

0

ϕ(x)Kk(dx|zn)
∣

∣

∣

∣

∣

(31a)

+

∣

∣

∣

∣

∣

∫ C(z0)

0

ϕ(x)Kk(dx|zn)−
∫ C(z0)

0

ϕ(x)Kk(dx|z0)
∣

∣

∣

∣

∣

.

(31b)

The term (31b) converges to zero by the Feller property
of Kk. Thus, let us focus on (31a). We have:

∣

∣

∣

∣

∣

∫ C(zn)

0

ϕ(x)Kk(dx|zn)−
∫ C(z0)

0

ϕ(x)Kk(dx|zn)
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ C(zn)

C(z0)

ϕ(x)Kk(dx|zn)
∣

∣

∣

∣

∣

(32)

≤ ‖ϕ‖∞ ‖Kk(·|zn)‖∞

∣

∣

∣

∣

∣

∫ C(zn)

C(z0)

dx

∣

∣

∣

∣

∣

(33)

= ‖ϕ‖∞ ‖Kk(·|zn)‖∞ |C (zn)− C (z0)| . (34)

The term (34) converges to zero by the continuity ofC.
Lemma 2:Assume thatKk is a bounded Feller kernel.

Furthermore, letα, C, z → Kk (z|·) andhk+1 be continuous
functions. Then, the kernel̃Kk defined by (26) has the Feller
property.

Proof: First, let us observe that by Lemma 1 the
function qk is continuous. Consequently, the functionqαk is
continuous by the continuity ofqk, α, C andhk+1 (·, 0).

Let ϕ be a bounded continuous function onR. Then the
following holds:
∫

R

ϕ(x)K̃k (dx|z, y) = qαk+1 (z, y)ϕ (C (z))

+
1− qαk+1(z, y)

1− qk+1(z)

∫ C(z)

0

ϕ(x)Kk (dx|z) .
(35)

The continuity of the functions in (35) follows by the
continuity of qk, qαk , α, C and by Lemma 1.

Lemma 3:Assume that the likelihood functiongk is
bounded, continuous and strictly positive. Also, letα, C,
z → Kk (z|·) and hk+1 be continuous functions. Further-
more, let us assume that there exist positive constantsM1

andM2 such that for everyx ∈ R it holds:

0 < M1 ≤ qk(x) ≤ M2 < 1. (36)

Then, if the detection functionα is chosen so that it satisfies
the condition:

∀x ∈ R : −M1 < α(x) < 1−M2, (37)

the weighted likelihood functionωk defined by (27) is
continuous, bounded and strictly positive.

Proof: Continuity ofωk follows from the continuity of
gk, qk, qαk , andC.

By (37) there existsǫ > 0 such that:

−M1 + ǫ ≤ α(x) ≤ 1−M2 − ǫ (38)

holds for everyx ∈ R. Hence, for everyx, y ∈ R we have

qαk (x, y) = qk(x) + α (y − hk+1 (C (x)))

≤ M2 + 1−M2 − ǫ

≤ 1− ǫ. (39)

Similarly, we deduce that for everyx, y ∈ R it holds:

qαk (x, y) ≥ ǫ. (40)



Therefore, by (27), we have

‖ωk‖∞ ≤ ‖gk‖∞
1

ǫ
, (41)

hence,ωk is bounded.
Finally, strict positivity ofωk follows by the strict posi-

tivity of gk and by (36).
The asymptotic properties of the SPF are described by the

next theorem:
Theorem 2 (Convergence of the SPF:cN–resampling):

Let us consider a SPFkNk with the resampling operatorcN

defined by Definition 8. If

1) Kk is a bounded Feller kernel,
2) gk is bounded, continuous and strictly positive,
3) α, C, z → Kk (z|·) andhk+1 are continuous functions,
4) conditions (36) and (37) are satisfied,

then kNk

(

πN
k|k

)

converges almost surely towards the true
posterior PDFπk+1|k+1.

Proof: It has been proven in [17] that the multino-
mial sampling operatorcN satisfies (25). Furthermore, by
Lemmas 1–3, the kernel̃Kk is Feller, and the weighted
likelihood functionωk is bounded, continuous and strictly
positive. Therefore, by Theorem 1,kNk

(

πN
k|k

)

converges
almost surely towards the true posterior PDFπk+1|k+1.

B. Practical considerations

Let us now discuss the meaning of conditions 1)–4) of
Theorem 2 from the practical perspective.

Assumptions 1)–3) of Theorem 2 ensure that the model
is “appropriately smooth”, which is the case in most real
life applications. Therefore, we can safely conclude that
conditions 1)–3) are not very restrictive from the practical
point of view.

Assumption 4) of Theorem 2 is more problematic. In
particular, ensuring that (36) is satisfied is not trivial, because
often the functionqk cannot be evaluated analytically [24].
Fortunately, in practice, we do not need to compute the
values qk (x) for every x ∈ R. It is sufficient to check
whether (36) holds for every particlexi

k−1, i.e., we need
to check whether there exist positive constantsM1 andM2

such that for everyi = 1, ..., N

0 < M1 ≤ qik ≤ M2 < 1 (42)

holds.
Obviously, (42) is satisfied if and only if

min
i

{

qik
}

> 0, (43a)

max
i

{

qik
}

< 1. (43b)

Hence, for each particle the saturation event is possible, but
not certain.

If conditions in (43) are satisfied, we can chooseα such
that

−min
i
{qik} (1− ǫ) ≤ α ≤

(

1−max
i

{qik}
)

(1− ǫ) , (44)

where theǫ > 0 is small enough so thatα is nontrivial.

The advantage of choosingM1, M2 and α as in (42)
and (44) respectively, is the low computational complexity
of determiningM1, M2, andα that satisfy condition 4) of
Theorem 2. However, this approach has two shortcomings
that need to be tackled.

1) α becomes recursive. By (44) we see that the condi-
tions thatα needs to satisfy depend on the values of
qi at time stepk. Thus,α is not any more defined for
all time stepsk, but it becomes a recursive function
αk that needs to be updated at each iteration of the
algorithm.

2) α becomes negligible. Since bothmin and max are
monotonic, with the increasing number of particles the
image ofαk becomes narrower. This means that the
influence ofαk becomes negligible, hence the SPF
becomes undistinguishable from the BPF.

Both issues are addressed in the next section.

IV. ASYMPTOTIC BEHAVIOR OF THE SPF UNDER
NEW RESAMPLING

In this section we derive an improved SPF algorithm
that allows for a recursive computation of the detection
functionαk. Furthermore, by introducing a new resampling
procedure, we make sure that at each time stepk the
influence ofαk is not trivial.

A. Motivation

As it was indicated in Section III, if there exists a particle
xi such thatqi ≈ 0 or qi ≈ 1, thenα becomes approximately
zero, and therefore its influence becomes negligible. If the
weightωi of such a particlexi is close to one it means that
the uncertainty associated with the estimate is very small.
Therefore, in the next filtering step, it is reasonable to “trust”
the model and limit the influence of the noisy measurement
on the subsequent estimate. In general, the same reasoning
holds if there exists a “small”ǫ such that in one of the
intervals [0, ǫ] or [1 − ǫ, 1] there are enoughqis so that the
weights of the associated particles almost sum up to1.

The situation is fundamentally different when we en-
counter a low weighted particlexi for such that either
qi ≈ 0 or qi ≈ 1. The probability of such an event is
very high, especially when we use a large set of particles,
yet such a particle does not give us any important informa-
tion about the system. Nevertheless, by (44), the existence
of such a particle significantly decreases the influence of
α. To avoid this undesirable situation we need to discard
the low weighted particles such that the correspondingqis
lay in either of the intervals[0, ǫ] or [1 − ǫ, 1], and in
their place resample an equal number of particles in the
“high probability” regions. Such resampling only slightly
influences the posterior PDFπN

k|k that approximates the
true posterior PDFπk|k. This is because the discussed
resampling procedure cuts only the “light” tails, i.e., tails
with negligible probability mass, thus also the resampled
particles add insignificant weights to the approximationπN

k|k.
Nevertheless, by applying such resampling algorithm we are
sure thatα is not trivial, and that the interval[−ǫ, ǫ] is in the



image ofα, i.e., ([−ǫ, ǫ] ⊂ α(R)). Furthermore, the number
of particles remains constant throughout the filtering.

B. New resampling

Let us now formalize the heuristic approach described
in Section IV-A. Following the convention described in
Section II we introduce a new resampling procedure by
defining a new resampling operatorc̄N acting on the space
of probability measures on

(

R+,ΣR+

)

. To define such an
operator we first need to introduce a concept of theǫ–set:

Definition 11 (ǫ–set): Consider the SPF setting according
to Definition 10, and letqk be a function defined by (28).
For a givenǫ we define theǫ–setΩǫ by:

Ωǫ := {x ∈ R+ : 1− ǫ > qk(x) > ǫ} . (45)

Let us now consider an arbitrary probability measureν
on
(

R+,ΣR+

)

. For a givenǫ we define a new probabilistic
measureνǫ as a measureν conditioned onΩǫ, i.e., for every
A ∈ ΣR+

it holds:

νǫ (A) := ν (A|Ωǫ) . (46)

Definition 12 (Resampling operator for the SPF):Let ν
be a probabilistic measure on

(

R+,ΣR+

)

, and let ǫ̃ > 0
be a given constant. Letǫ0 > 0 be the maximal positive
constant such that theν-measure onΩǫ0 is greater or equal
to 1− ǫ̃, i.e., ǫ0 is given by:

ǫ0 := max {ǫ : ν (Ωǫ) ≥ 1− ǫ̃} . (47)

The new resampling operator̄cN assigns to every proba-
bilistic measureν ∈ P

(

R+,ΣR+

)

its random approximation
c̄N,x (ν) given by

c̄N,x (ν) :=
1

N

N
∑

j=1

δṼj(x)
, (48)

where the{Ṽj}Nj=1 is a set ofN i.i.d. random variables
distributed according toνǫ0 .

Thus, the newly defined resampling operatorc̄N , when
applied to a measureν, returns a probabilistic measure
concentrated on the set that has aν-measure close to1− ǫ̃.
When used in the recursive framework of the SPF, the
operatorc̄N guarantees that the interval[−ǫ0, ǫ0] is in the
image of the detection functionα, i.e., ([−ǫ0, ǫ0] ⊂ α(R)).

Note that the operator̄cN depends on both the sample
sizeN and the constant̃ǫ > 0. In what follows we show that
the choice of̃ǫ is not arbitrary but it is strictly determined
by the sample sizeN . This is why in Definition 12 we did
not use any symbol indicating the dependency ofc̄N on ǫ̃.

C. Almost sure convergence of the SPF under the new
resampling

In this section we prove that as the number of samples
N increases, the SPF with the resampling operatorc̄N

from Definition 12 converges almost surely to the true
posterior PDFπk+1|k+1.

First, we prove the following two lemmas.
Lemma 4:Let ν be an arbitrary probabilistic measure on

(

R+,ΣR+

)

and let ǫ̃ > 0 be a given positive constant.

Furthermore, let
{

Ṽj

}N

j=1
be a set of i.i.d. variables with

a common distributionνǫ0 , with ǫ0 defined in (47). Finally,
let ϕ be a continuous and bounded function onR+. Then,
the following holds:

Eν

(

ϕ
(

Ṽj

)

−
∫

R+

ϕ(x)dν(x)

)

≤ 2‖ϕ‖∞ǫ̃ (49)

where‖ · ‖∞ is a supremum norm onR+.
Proof: By (46) the distributionνǫ0 of the variablesṼj

is a measureν conditioned on the setΩǫ0 . Therefore, we
have:

∣

∣

∣

∣

∣

Eν

(

ϕ
(

Ṽj

)

−
∫

R+

ϕ(x)dν(x)

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Eν

(

ϕ
(

Ṽj

))

−
∫

R+

ϕ(x)dν(x)

∣

∣

∣

∣

∣

(50)

=

∣

∣

∣

∣

∣

∫

R+

ϕ(x)dνǫ0(x)−
∫

R+

ϕ(x)dν(x)

∣

∣

∣

∣

∣

. (51)

By the definition ofνǫ0 we can write the first integral in (51)
as
∫

R+

ϕ(x)dνǫ0(x) =

∫

R+∩Ωǫ0

ϕ(x)ν(Ωǫ0)
−1dν(x). (52)

Let us split the second integral in (51) into two integrals over
R+ ∩ Ωǫ0 andR+ ∩ Ωc

ǫ0
respectively, i.e.,

∫

R+

ϕ(x)dν(x)

=

∫

R+∩Ωǫ0

ϕ(x)dν(x) +

∫

R+∩Ωc
ǫ0

ϕ(x)dν(x). (53)

Then, by (52)–(53), the expression (51) is bounded from
above by
∣

∣

∣

∣

∣

∫

R+∩Ωǫ0

ϕ(x)ν(Ωǫ0)
−1dν(x)−

∫

R+∩Ωǫ0

ϕ(x)dν(x)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

R+∩Ωc
ǫ0

ϕ(x)dν(x)

∣

∣

∣

∣

∣

(54)

≤ ‖ϕ‖∞
(

|1− ν (Ωǫ0)|+ ν
(

Ωc
ǫ0

))

(55)

≤ ‖ϕ‖∞ (ǫ̃+ ǫ̃) (56)

= 2ǫ̃‖ϕ‖∞ (57)

Lemma 5:Let ν be an arbitrary probabilistic measure on
(

R+,ΣR+

)

and let ǫ̃ > 0 be a given positive constant.

Furthermore, let
{

Ṽj

}N

j=1
be a set of i.i.d. variables with

a common distributionνǫ0 , with ǫ0 defined in (47). Finally,



let ϕ be a continuous and bounded function onR+. Then,
the following holds:

Eν











1

N

N
∑

j=1

ϕ
(

Ṽj

)

−
∫

R+

ϕ(x)dν(x)





4






≤ 16

N2
‖ϕ‖4∞

(

3 + 4ǫ̃+ 6Nǫ̃2 +N2ǫ̃4
)

, (58)

where‖ · ‖∞ is a supremum norm onR+.
Proof:

Eν











1

N

N
∑

j=1

ϕ
(

Ṽj

)

−
∫

R+

ϕ(x)dν(x)





4





(59)

=
1

N4
Eν











N
∑

j=1

(

ϕ
(

Ṽj

)

−
∫

R+

ϕ(x)dν(x)

)





4






(60)

=
1

N4

N
∑

j1,...,j4=1

Eν

(

4
∏

k=1

(

ϕ
(

Ṽjk

)

−
∫

R+

ϕ(x)dν(x)

))

(61)

Because the variables are mutually independent, the sum
in (61) can be decomposed into the summation of the even
terms:

N
∑

j=1

Eν

(

ϕ
(

Ṽj

)

−
∫

R+

ϕ(x)dν(x)

)4

(62)

+ 6

N
∑

j1>j2=1

Eν

(

ϕ
(

Ṽj1

)

−
∫

R+

ϕ(x)dν(x)

)2

× Eν

(

ϕ
(

Ṽj2

)

−
∫

X

ϕ(x)dν(x)

)2

, (63)

and the odd terms:

4

N
∑

j1 6=j2=1

Eν

(

ϕ
(

Ṽj1

)

−
∫

R+

ϕ(x)dν(x)

)

× Eν

(

ϕ
(

Ṽj2

)

−
∫

R+

ϕ(x)dν(x)

)3

(64)

+ 12
∑

j1 > j2 ≥ 1
j1, j2 6= j3 ≥ 1

2
∏

k=1

Eν

(

ϕ
(

Ṽjk

)

−
∫

R+

ϕ(x)dν(x)

)

× Eν

(

ϕ
(

Ṽj3

)

−
∫

R+

ϕ(x)dν(x)

)2

(65)

+ 24

N
∑

j1>...>j4=1

4
∏

k=1

(

Eν

(

ϕ
(

Ṽjk

)

−
∫

R+

ϕ(x)dν(x)

))

(66)

Since ν is a probabilistic measure, the integral
∣

∣

∣

∫

R+
ϕ(x)dν(x)

∣

∣

∣
is bounded from above by‖ϕ‖∞.

Thus, for everyj ∈ {1, ..., N} and everyk ∈ N we have:

Eν

(

ϕ
(

Ṽj

)

−
∫

R+

ϕ(x)dν(x)

)k

≤ 2k‖ϕ‖k∞. (67)

Furthermore, given Lemma 4, the first-order terms are
bounded by2‖ϕ‖∞ǫ̃. Therefore, by (62)–(66) and (67), the
expression (59) is bounded from above by:

24

N4
‖ϕ‖4∞ ×

(

N + 6

(

N
2

)

+ 4N(N − 1)ǫ̃

+ 12N

(

N − 1
2

)

ǫ̃2 + 24

(

N
4

)

ǫ̃4
)

(68)

≤ 24

N2
‖ϕ‖4∞

(

3 + 4ǫ̃+ 6Nǫ̃2 +N2ǫ̃4
)

(69)

Theorem 3 (Convergence of the SPF:c̄N–resampling):
Let us setǫ̃ = 1√

N
and let c̄N be the resampling operator

introduced in Definition 12. Furthermore, letkNk be the SPF,
with the resampling operator̄cN such that the following
hold:

1) Kk is a bounded Feller kernel,
2) gk is bounded, continuous and strictly positive,
3) α, C, z → Kk (z|·) andhk+1 are continuous functions.

Then kNk

(

πN
k|k

)

converges almost surely towards the true
posterior PDFπk+1|k+1.

Proof: For a givenν ∈ P
(

R+,ΣR+

)

, by the definition
of c̄N we have

Eν





(

∫

R+

ϕ(x)
[

c̄N,· (ν)
]

(dx)−
∫

R+

ϕ(x)ν(dx)

)4




= Eν











1

N

N
∑

j=1

ϕ
(

Ṽj

)

−
∫

R+

ϕ(x)dν(x)





4





, (70)

where
{

Ṽj

}N

j=1
is a set of i.i.d. random variables distributed

according toνǫ0 . Sinceǫ̃ = 1√
N

then, by Lemma 5, we have:

Eν











1

N

N
∑

j=1

ϕ
(

Ṽj

)

−
∫

R+

ϕ(x)dν(x)





4





≤ 176

N2
‖ϕ‖4∞,

(71)
thus the resampling operatorc̄N satisfies (25). Furthermore,
by Lemmas 1–2, the kernel̃Kk is Feller. Moreover, by the
definition of the operator̄cN , (36)–(37) are satisfied (with
M1 = ǫ0 andM2 = 1−ǫ0) hence, by Lemma 3, the weighted
likelihood functionωk is bounded, continuous and strictly
positive. Therefore, by Theorem 1,kNk

(

πN
k|k

)

converges
almost surely towards the true posterior PDFπk+1|k+1.

D. Practical considerations

Let us now discuss the practical properties of the improved
SPF (iSPF), i.e., the SPF with the resampling operatorc̄N ,
in view of Theorem 3.



1) Implementation:The conditions 1)–3) of Theorem 3
are consistent with the conditions 1)–3) of Theorem 2 and
play exactly the same role, i.e., they ensure an “appropriate
smoothness” of the model. Thanks to the construction of the
operatorc̄N , the condition 4) of Theorem 2 is not necessary
anymore in Theorem 3. Indeed, the conditions (36)–(37) are
always satisfied withM1 = ǫ0 andM2 = 1− ǫ0.

In practical applications at each filtering iteration we
need to computeǫ0 according to (47). Since the real SPF
algorithm approximates the true PDF by the set ofN samples
{(

xi, ωi, qi
)}N

i=1
, given ǫ̃, we computeǫ0 by:

ǫ0 := max







ǫ :
∑

i:1−ǫ≥qi≥ǫ

ωi ≥ 1− ǫ̃







. (72)

A possible solution to the optimization problem (72) is
presented in Algorithm 4.

Algorithm 4 Computation ofǫ0

Input:
{(

ωi, qi
)}N

i=1
, ǫ̃

Initialize ǫ = 0
repeat

ǫ = ǫ+ 1
N

until
∑

i:1−ǫ>qi>ǫ ω
i ≤ 1− ǫ̃

ǫ0 = ǫ− 1
N

With ǫ0 chosen, the resampling procedure, represented
abstractly by the operator̄cN , proceeds as follows. First,
the algorithm discards the particles

(

xi, ωi, qi
)

such that
either 1 − ǫ0 < qi or qi < ǫ0. Next, the scaled degeneracy
measureN ′

eff is computed by

N ′
eff :=

1
N ′

∑

i=1

(ωi
k)

2

, (73)

where N ′ is a number of particles remaining after the
discarding step. IfN ′

eff drops below a specified threshold

N ′
T := NT ·N ′/N, (74)

which means that the particles that were not discarded
degenerate, all the particles are resampled according to
Algorithm 1.

If the degeneracy does not occur the algorithm resam-
plesN ′ particles from the conditional distributionνǫ0 , which
is approximated by the empirical PDF

{(

xi,
ωi

∑N ′

j=1 ω
j

)}N ′

i=1

. (75)

Note that this resampling method has all the properties
desired from the resampling algorithm discussed in Sec-
tion IV-A. The overall resampling procedure is summarized
in Algorithm 5.

As indicated in Section III-B, for the proper definition
of the SPF the detection functionα needs to be defined

Algorithm 5 SPF resampling

Input:
{(

xi, ωi, qi
)}N

i=1
, ǫ0, NT

Discarding step:
Discard the particles such that one of the following holds:

1− ǫ0 < qi or qi < ǫ0

Compute the degeneracy measure for the remainingN ′

particles:

N ′
eff :=

1
∑N ′

i=1 (ω
i)

2

Resampling step:
if N ′

eff < N ′
T then

resample
{(

xi, ωi
)}N

i=1
according to Algorithm 1

else
for i = 1 to N −N ′ do

draw xi from

xi ∼
{(

xi,
ωi

∑N ′

i=1 ω
i

)}N ′

i=1

ωi = 1
N−N ′

(

1−∑N ′

i=1 ω
i
)

end for
end if

recursively. Indeed, from (44) we can see thatα depends on
the set of probabilities of saturation

{

qik
}N

i=1
. Therefore, for

the recursive selection of the appropriate detection functionα
we proceed as follows: First, we choose an arbitrary detection
functionα0, and a constantǫ > 0; Then at each filtering step
k = 1, 2, ... we compute the minimum and maximum of the
set
{

qik
}N

i=1
and setαk to be equal to

αk(z) :=

{

α0(z)mini
{

qik
}

(1− ǫ) for z < α−1
k−1(0)

α0(z)
(

1−maxi
{

qik
})

(1− ǫ) otherwise
(76)

This is summarized in Algorithm 6.

Algorithm 6 Update of the detection functionαk

Input:
{

qik
}N

i=1
, α0, ǫ

Compute minimum and maximum:

MIN := min
i=1,...,N

{

qik
}

MAX := max
i=1,...,N

{

qik
}

if z < α−1
0 (0) then

αk(z) := α0(z)MIN (1− ǫ)
else

αk(z) := α0(z) (1− MAX ) (1− ǫ)
end if

Note that the constantǫ used in Algorithm 6 can be chosen
arbitrarily from the interval(0, 1). This gives us a degree of
freedom in choosing between the stronger influence ofα (for
small values ofǫ) and a stricter upper bound for the weighted
likelihood functionωk (for bigger values ofǫ). The exact
relation between these two properties will be investigatedin



our further research.
The overall iSPF is summarized in Algorithm 7.

Algorithm 7 improved SPF

Input:
{(

xi
k, ω

i
k, q

i
k

)}N

i=1
, αk, yk+1, ǫ,NT

Output:
{(

xi
k+1, ω

i
k+1, q

i
k+1

)}N

i=1
, αk+1

Prediction:
for i = 1 to N do

Computeqαi := qik + αk

(

yk+1 − hk+1

(

C
(

xi
k

)))

Computexi
k+1 according to Algorithm 3

Computeωi
k+1 according to Algorithm 3

Computeqik+1 :=
∫ +∞
C(xi

k+1
)
P
(

F (xk, wk) = z|xi
k+1

)

dz

end for
Resampling:
Computeǫ0 according to Algorithm 4
Resample particles according to Algorithm 5
for i = 1 to N do

Computeqik+1 :=
∫ +∞
C(xi

k+1
)
P
(

F (xk, wk) = z|xi
k+1

)

dz

end for{C}ompute the predicted probabilities of satura-
tion for the resampled particles
Update of the detection function:
Computeαk+1 according to Algorithm 6

2) Detection function: Let us analyze the problem
of α becoming negligible, mentioned in Section III-B.
By the definition of the resampling operator̄cN and
by (76), for each time stepk = 1, 2, ... the image
of αk contains the interval[−ǫ0 (1− ǫ) , ǫ0 (1− ǫ)], i.e.,
[−ǫ0 (1− ǫ) , ǫ0 (1− ǫ)] ⊂ αk(R). Therefore,αk is never
trivial. However, the value ofǫ0 depends on the value of̃ǫ
(see (47)), that in view of Theorem 3, decreases with the
rate 1√

N
whenN → ∞. This means that the measureνǫ0 of

the setΩǫ0 increases, hence by (45)–(47)ǫ0 decreases, and
therefore the image ofαk becomes narrower.

The rate of decrease ofǫ0 depends on the particular shapes
of both the distribution of the probabilities of saturation
{

qik
}N

i=1
and the distribution of weights

{

ωi
k

}N

i=1
. The

following example illustrates this dependency. First, letus
assume that both sets

{

qik
}N

i=1
and

{

ωi
k

}N

i=1
are uniformly

distributed on the interval[0, 1]. Then, for a given number
of particlesN , we expect (in the statistical sense) to discard√
N particles and the expected value ofǫ0 is equal to
1

2
√
N

. Second, let us assume that the weights
{

ωi
k

}N

i=1
are

again distributed uniformly on the interval[0, 1], but the set
{

qik
}N

i=1
is approximated by the Gaussian distribution2 with

mean 1
2 and the standard deviation110 . In such a case, we

still expect to discard
√
N particles at each step, but this time

the value ofǫ0 is given by 1
2 +

√
2

10 erf−1
(

2√
N

− 1
)

. Table I
compares the two cases for three different values ofN .

As we can see the expected value ofǫ0 is strongly
dependent on the distribution of

{

qik
}N

i=1
. Therefore, the

2The set
{

qi
k

}N

i=1
is bounded, therefore by saying that it is approximated

by Gaussian distribution we mean a Gaussian with truncated tails and
appropriately rescaled.

TABLE I

PROPERTIES OF THESPFFOR DIFFERENT DISTRIBUTIONS OF

PROBABILITIES OF SATURATION
{

qi
k

}N

i=1
AND WEIGHTS

{

ωi

k

}N

i=1

{

qi
k

}N

i=1
,
{

ωi

k

}N

i=1
≈ U (0, 1)

N = 102 N = 104 N = 106

expected number of 10 100 1000

discarded particles

expected value ofǫ0 0.05 0.005 0.0005

{

qi
k

}N

i=1
≈ N

(

1

2
, 1

10

)

,
{

ωi

k

}N

i=1
≈ U (0, 1)

N = 102 N = 104 N = 106

expected number of 10 100 1000

discarded particles

expected value ofǫ0 0.372 0.267 0.191

influence ofαk, which is determined by the value ofǫ0, also
depends on the shape of

{

qik
}N

i=1
. Let us explain a nature of

this dependency by analyzing the examples from Table I.

In the first case, where
{

qik
}N

i=1
≈ U (0, 1), the model

assigns the same probability to all the possible values of the
probabilities of saturationqik. In such situations the standard
Bayesian update procedure should be more than sufficient in
obtaining an accurate estimate. Thus, the small values ofǫ0,
and therefore the low influence ofαk is acceptable.

In the second case, where
{

qik
}N

i=1
≈ N

(

1
2 ,

1
10

)

, the
values of the majority of the probabilities of saturationqik are
close to 1

2 . That means that the model is very uncertain in
predicting whether the saturation will occur or not. In such
cases the standard Bayesian approach is slow in detecting
extreme changes of the system (e.g., saturation). Thus, for
this example, it is strongly recommended to enforce the
update procedure. For that we require a strong influence of
αk, hence relatively large values ofǫ0.

Note that in both cases the expected number of discarded
particles is small compared to the total number of particles.
Therefore, the problem of losing diversity of the samples [16]
is avoided.

3) Numerical example:We finish this section with a
comparison of the SPF developed in [23], the iSPF derived
in this paper, and the BPF. To illustrate the abilities of all
three methods we have chosen the SSDS given by

xk+1 = min (xk + wk, C (xk)) , (77)

yk = xk + vk, (78)

where wk is a random variable distributed according to
the exponential distribution, with parameterθ, i.e., with the
expected valueEwk = θ−1. The variablevk is a zero-mean
Gaussian variable with standard deviationσv. The boundary



functionC(·) is defined by:

C (x) := x+ log(2)/θ. (79)

The state model (77) is nonlinear and non-Gaussian,
whereas the observation model (78) is both linear and condi-
tionally Gaussian. The stochastic process (77) is a Lindley-
type process, i.e., it is a modification of the celebratedLind-
ley’s recursion, one of the most studied stochastic processes
in applied probability [26], [46]. These type of processes are
extensively used in queueing theory [46], [47].

To simulate the process from the initial statex0 = 1, we
usedθ = 1, σv = 1. The length of the simulation is20 time
steps. Note, that because the variablewk is exponentially
distributed, the cumulative density function of the random
variablexk+1 is known. Thus, the integral in (13) can be
computed analytically:

qi = exp
(

−θ
(

C
(

xi
k

)

− xi
k

))

. (80)

Figures 1 and 2 compare the results obtained by applying
the BPF, the iSPF, and the SPF with 10 and 1000 particles
respectively. All three filters use the model (77)–(78) with
true parameters. The offset of0.5 is introduced by setting the
initial statep0 for all three filters top0(·) = N (·; 0.5, 0.1).
The resampling thresholdNT is set to30% of the number
of particles. Both the iSPF and the SPF are using the same
detection functionα0 given by:

α (z) =







1 if z > 2,
−1 if z < 0,

z/2− 1 otherwise,
(81)

wherez = yk+1 − hk+1

(

C
(

xi
k

))

is evaluated at each time
step.

Figures 1 and 2 present the average of ten independent
filters of each type applied to the simulated signal. From both
figures we can conclude that introducing new resampling
procedure improves the performance of the SPF introduced
in [23]. However, with the growing number of samples the
difference between the SPF and the iSPF becomes smaller.
This is not surprising since in the view of Theorems 2 and 3
both filters converge to the same distribution as the number
of samples increase.

Both simulations present results for a relatively small
number of particles. This is because, as it was previously
explained the influence of the detection function is the most
visible when there are few particles. In this example we can
observe that both the iSPF and the SPF outperform the BPF.
This is confirmed by comparing themean square errors3

(MSE) of the three methods. Table III reports values of such
errors and their dependency on the number of particles.

Finally, Figure 3 shows the standard deviations of
the MMSE estimates of three discussed filters. It might be
noticed that the spread of the MMSE estimates of filters us-
ing ten particles is much higher than the spread of the MMSE
estimates of filters using thousand particles. In the latter

3By the MSE we understand the average squared deviation of theestimate
from the true value of the state, i.e.,

∑

20

k=1
(x̂(k)− x(k))2 /20.
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Fig. 1. The BPF, the iSPF and the SPF with 10 particles appliedto the
system (77)–(78). The thick solid line is the true value of the state, the
circles denote the measurements, the thin dashed line denotesthe MMSE
estimate obtained by the BPF, the thin solid line represents the MMSE
estimate of the state obtained by the iSPF and the thin solid line with dots
represents the MMSE estimate of the state obtained by the SPF.
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Fig. 2. The BPF, the iSPF and the SPF with 1000 particles applied to
the system (77)–(78). The thick solid line is the true value of the state, the
circles denote the measurements, the thin dashed line denotesthe MMSE
estimate obtained by the BPF, the thin solid line represents the MMSE
estimate of the state obtained by the iSPF and the thin solid line with dots
represents the MMSE estimate of the state obtained by the SPF.

case the spread is negligible, and in the former case it is
considerable only for the BPF during the first few steps of
the simulation.

V. SUMMARY

Saturated Stochastic Dynamical Systems (SSDS) are
severely nonlinear models that are often met in real life
problems. Due to their complicated dynamical structure the
states or the parameters of the SSDS can be accurately
estimated only by non-parametric filters such as Particle



TABLE II

COMPARISON OF THEMEAN SQUARE ERRORS

N = 10 N = 100 N = 1000

BPF 0.3726 0.1808 0.1848

SPF 0.1516 0.0990 0.0946

iSPF 0.0693 0.0933 0.0880

TABLE III

THE MSE OF THREE FILTERS: THE BPF,THE SPFAND THE ISPF

OBTAINED FOR DIFFERENT NUMBERS OF PARTICLESN = 10, 100, 1000.
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Fig. 3. The standard deviations of 10 MMSE estimates obtainedby:
the BPF (dashed line), the iSPF (solid line) and the SPF (solid-dotted
line) with 10 particles (above) and 1000 particles (below) applied to the
system (77)–(78). Note that the standard deviations of the filter employing
1000 particles is one order of magnitude lower than the standard deviations
of filters using 10 particles.

Filters (PF).
The Saturated Particle Filter (SPF) exploits dynamical

systems with a specific structure that allows the state to sat-
urate. A characteristic feature of the SPF is the incorporation
of the measurement in the prediction step of the Bayesian
filtering. This is done through the use of the detection
function α. In this paper we have derived theimproved
Saturated Particle Filter(iSPF) with the novel resampling
algorithm and discussed asymptotic properties of the SPF
and the iSPF.

In Section II we have described the standard SPF as it was
introduced in [23]. Next, in Section III we have formulated
the SPF as an operator acting on the spaces of probability
measuresP (R+). Such an abstraction enables the proof of

the almost sure convergence of the posterior PDF given by
the standard SPF to the true posterior PDF. We have also
discussed the practical advantages and shortcomings of the
standard SPF.

In Section IV we have derived the iSPF. This new algo-
rithm is different from the standard SPF in two aspects:

1) The detection functionαk is updated recursively at
each time stepk,

2) A novel resampling procedurēcN is used to discard the
low weights particlesxi such that the corresponding
probability of saturationqi achieve extreme values
(qi ≈ 0 or qi ≈ 1).

We have shown in Theorem 3 that the iSPF also converges
almost surely to the true posterior PDF.

From Theorem 3 we have concluded that as the number
of samplesN grows the influence of the detection function
αk declines. This is not a surprise since the BPF can be
considered as a SPF with a detection functionαBPF = 0.
Furthermore, both the iSPF and the BPF converge almost
surely to the same distribution. Thus, with the growing
number of samplesN the difference between those two
estimators becomes smaller, hence the distance betweenαk

andαBPF also converges to zero.
The influence of the detection functionαk is most notice-

able when the number of samplesN is relatively small. The
strength of the influence always depends on the distribution
of the weights

{

ωi
k

}N

i=1
and the distribution of the probabil-

ities of saturation
{

qik
}N

i=1
. An analysis of this dependency

has been illustrated on an example described in Table I. We
have concluded that the influence ofαk is much stronger in
the case when the set

{

qik
}N

i=1
is concentrated around12 , i.e.,

{

qik
}N

i=1
≈ N

(

1
2 ,

1
10

)

, than in the case when the distribution

of the probabilities of saturation
{

qik
}N

i=1
is heavy tailed,

i.e.,
{

qik
}N

i=1
≈ U (0, 1). Furthermore, in Section IV-D.3

the illustrative example of SSDS is used to compare the
performance of the iSPF, the SPF and the BPF.

In general, the influence of the detection functionαk can
be further modified by an appropriate choice of the constant
ǫ > 0 in Algorithm 6. This must be done carefully because,
by (41), the value ofǫ determines the upper bound for the
weighted likelihood functionωk, hence also the variance
of the weights

{

ωi
k

}N

i=1
. The smaller theǫ is the wider

the image ofαk but, at the same time, the bigger is the
upper bound forωk. The exact nature of this relation will be
investigated in our further research.
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L IST OF SYMBOLS

ak the update operator at time stepk
bk the prediction operator at time stepk
cN the multinomial sampling operator
c̄N the resampling operator
fk state model at time stepk
Fk unsaturated state model at time stepk
gk likelihood function at time stepk
hk observation model at time stepk
kNk the particle filter at time stepk
p0 distribution of the initial state



qi
the predicted probability of saturation of the
i-th particle

qαi
the updated probability of saturation of the
i-th particle

wk process noise at time stepk
vk observation noise at time stepk
xk state variable at time stepk
xi
k the state estimate at time stepk

x̂k importance kernel at time stepk
yk observation variable at time stepk
C saturation function
Kk transition probability kernel at time stepk
K̃k importance kernel at time stepk
N sample size
Neff effective sample size
NT resampling threshold
Vj random variable onX
Pw probability with respect to state noisew

Pv
probability with respect to observation noise
v

α detection function
δ(·) Dirac delta

ϕ
characteristic function (continuous and
bounded)

ν probabilistic measure onX
νǫ probabilistic measure conditioned onΩǫ

ωk weighted likelihood function at time stepk

ω̃i
k

unnormalized weight associated with thei-th
particle at time stepk

ωi
k

normalized weight associated with thei-th
particle at time stepk

πk|k posterior measure of the state at time stepk

πN
k|k

empirical approximation of sizeN of the
posterior measure of the state at time stepk

Ωǫ ǫ-set, see Definition 11
ΣX sigma algebra on a vector spaceX

P (X)
the space of probabilistic measures on
(X,ΣX)

N
(

µ, σ2
) Gaussian distribution with meanµ and vari-

anceσ2

U (a, b) uniform distribution on interval[a, b]
‖ · ‖∞ supremum norm

erf
error function defined by erf(x) =
2√
π

∫ x

0
e−t2dt


