
Implementation and Testing of Digital Filters
on STM32 Nucleo-64P

Simona-Daiana Sim
Department of Automation

Tehnical University of Cluj-Napoca
Cluj-Napoca, Romania

sim.simonadaiana@gmail.com

Zsófia Lendek
Department of Automation

Tehnical University of Cluj-Napoca
Cluj-Napoca, Romania

zsofia.lendek@aut.utcluj.ro

Petru Dobra
Department of Automation

Tehnical University of Cluj-Napoca
Cluj-Napoca, Romania

petru.dobra@aut.utcluj.ro

This paper aims to present two ways to design and implement

numerical filters. The first is the classic or hand-coded method,

which involves the implementation of a computational algorithm

in C, while the second is automatically generated code. Both FIR

and IIR filters are implemented and based on the results obtained,

the differences between them discussed. We highlight the

advantages and disadvantages of each method of implementation

and the costs in terms of design time, memory, performance. Both

implementation variants present satisfactory results and meet the

required requirements, the choice of one of them depends on the

application used and the programming experience.

Keywords — Digital filters, DSP, FIR, IIR, implementation,

testing.

I. INTRODUCTION

A vast theme in the digital era is presented [1] by digital
filters. A filter can restrain a system in its minimum form, i.e.
any system can be restricted in the form of a filter. Filters are
an important part of any system with signal processing. The
increasing complexity of digital applications has led to more
interest in the implementation of digital filters. Today, we find
digital filters everywhere: in phones, TVs, radios, household
appliances, but also in computer science, software audio
processing, image and videos filtering systems etc. Analog
and digital filters remove both unnecessary items or noise and
elements of unwanted signal. But these two types of filters
(analog or numeric) work differently in their, analog or digital
domain. When it comes to managing and processing the
signal, the digital filter is a system that performs a
mathematical calculation on the signal of discrete time,
obtained by sampling the input signal, to reduce or improve
certain aspects. Analog filters are those systems that act on a
continuous signal [2].

Digital filters can be more expensive [3] than their analog
equivalent due to increased complexity and the need for the
components (memory, speed, CPU), but they can get results
impossible to be transposed by analog filters. Digital filters [4]
can be thought as a linear phase pulse response. When used
for simulation in real time, the system often has [5] delays due
to digital analog conversion or its implementation. Nowadays,
reduced complexity architectures have been increasingly
investigated [6] [7], in particular for implementation on field-
programmable gate arrays.

Integrated circuits [3] provide the ability to design and
implement filters with performance characteristics that are
difficult to recreate with analog methods. Moreover, these
digital filters are not affected by the problems that impact
analog implementations, in particular, component shunting
and tolerance (for highly reliable applications, in terms of
temperature, aging, and radiation). Only a digital signal
processor is physically needed to obtain a digital filter. Its
output can be programmed through various programs,
allowing to design the filter coefficients according to the user's

wishes. This widens the range of filters that can be
implemented using the same microprocessor and the
simplicity of obtaining such a filter.

The model of a digital filter has its own characteristics.
The performance increase according to the filter’s response is
related to the output processing and calculation when using
algorithms intended for fixed-point coefficients. We also
discuss this aspect. The rounding method used to process the
filter coefficients can propagate numerical problems, as these
types of rounding errors can accumulate with each iteration,
thus, affecting the performance of the filter. There are
currently a multitude of methods and principles [8] to
minimize rounding errors. It is preferable to use an easy-to-
understand rounding method so it can solve problems such as
overflow and loss of accuracy.

This paper presents two methods for implementing
numerical filters and compares the results by the ease of
programming, the applications, and the tools used. Emphasis
is placed on the importance of quantization. The first
implementation is the classic one, in which the algorithm is
hand-coded, and the second implementation is based on the
code generated by Simulink, which requires less effort from
the programmer.

The paper is structured as follows: Section II presents the
setup description, Section III describes the background,
Section IV digital filters, Section V the design, Section VI the
implementation and Section VII the results. Section VIII
concludes the paper.

II. SETUP DESCRIPTION

The simplicity and advantage of digital filters come from
the fact that with the help of a development board, filters can
be implemented on different sampling frequencies depending
on the capabilities of the board. For testing, a signal generator
and an oscilloscope are needed.

The Matlab “filterDesigner” toolbox is used to design the
filters. The filter coefficients can be exported by various
methods. The following implementations are considered: 1.)
implementation using STM32 CubeMX and System
Workbench Eclipse STM32 and 2.) Keil uVision (MDK
Arm), STM32 CubeMX, and Simulink/Matlab were used.

The development board we use is STM32-NUCLEO-
L452RE-P. The ports required for the simulation are:

• ADC (Analog to Digital Converter - 12 bits) representing
the analog signal input that is to be filtered.

• DAC (Digital to Analog Converter - 12 bits) is use for
the output of the digital filter and its transformation into
analog signal.

• GPIO (General purpose input / output) to monitor and
check the sampling frequency and the period of the
interruption routine.

To generate and perform calculations at a certain time
interval, it is necessary to activate an internal clock

This work was supported by a grant of the Romanian Ministry of
Education and Research, CNCS - UEFISCDI, project number PN-III-P1-
1.1-TE-2019-1956, contract number TE 185/2021.

978-1-6654-7933-2/22/$31.00 ©2022 IEEE

corresponding to the microprocessor. The maximum
frequency of the Nucleo 64P board [9] is 80 MHz. The routine
of interruptions is set at 10, 20 and 40 kHz as the sampling
frequency for the next simulations.

The last step in setting the parameters and preparing for
design and implementation is to save the features. For the first
implementation, a project that allows programming in C is
exported. For the second approach, Toolchain / IDE: MDK-
ARM is used for the automatically generated Simulink [10]
code.

III. BACKGROUND

A signal is a physical quantity that varies [4] with time,
space, or any other variable. Most signals are analog, but to
process them digitally a transformation into a digital signal is
needed. Digital signals are obtained by sampling [11]
continuous signals. To obtain the discrete time signal, it is
important to know [8] the sampling period (Ts).

 Most applications rely on DSP (Digital Signal
Processors), which makes discretization of the continuous
signal necessary. This requires [12] an ADC (Analog-to-
Digital Converter) and DAC (Digital-to-Analog Converter).
The process of transforming the signals is shown in Figure 1.

Figure 1. Digital signal processing

A DAC is a data converter [5] that generates an analog
output from a digital input. It converts a limited number of
discrete codes to an analog output value. The performance of
ADCs and DACs is determined by [4] the number of samples
it can process and the number of bits used in the conversion
process.

The quality and reproduction of a signal has the resolution
of the two types of circuits (ADC and DAC), but also depends
on the processing time of the controller. The computation
time is strongly influenced by the representation [13] i.e.,
floating point or fixed point, with the disadvantage of limited
accuracy and propagating calculation errors. The
quantization, also called “amplitude discretization”, is a topic
of great importance when working with signals. ADC
converters (N bits) use a uniform quantization to convert
analog signals into digital ones. The limited accuracy of a
digitized value is a source of error, called [8] quantization
error. The disadvantages of signal quantization are the
addition of quantization noise over the obtained signal and
the lack of ability to recover the initial signal. Other problems
that may occur are calculation errors, such as overflow, which
means exceeding the range for variables of a certain type.
These aspects are treated and detailed in the following
sections.

As mentioned above, the role of filters is to process signals
or to eliminate unwanted frequencies. From the point of view
of the cut-off frequencies, which determine the signals that are
attenuated or rejected, the analog and digital filters are
classified as [4]: low pass filters which allow the passage of
low frequency signals, i.e. signals that have a frequency
between 0 Hz and the cutoff frequency; high pass filters that
allow the passage of high frequency signals, i.e. signals that

have a frequency higher than the cutoff frequency. There are
also bandpass filters and band-stop filters that are
complementary and that cut or let a certain frequency band
pass. In this paper, due to lack of space, low pass and high pass
filters will be presented.

IV. DIGITAL FILTERS

Digital filters can be classified into two main categories:
1) Finite impulse response (FIR) filters and 2) Infinite impulse
response (IIR) filters.

A. Finite impulse response filter

FIR can be represented [4] by:

���� = ���� ∗ ℎ��� = 	 ℎ�
���� −
�
��

���
(1)

Where: y [n] represents the output signal of the filter, x [n]
represents the input signal, h [n] is the Dirac impulse and n is
the number of coefficients.

These filters are non-recursive filters and do not have
feedback reaction, which makes them more stable to
implementation. Their transfer function [4] is:

���� = 	 ����
��

���
(2)

where N represents the number of filter coefficients, ��
 =
0, … , � − 1, represents the impulse response, i.e., the filter

coefficients, and �� represents the clock delay.
The filter can be represented in several ways. The most

used structures are [4]: Direct I shape, Cascade shape,
Frequency sampling shape, Lattice shape, etc.

The choice of the form determines how the filter is
implemented. The Lattice form is generally used in FIR filters
together with an adaptive algorithm. The frequency sampling
structure is suitable for filters that have been designed based
on frequency response. Each has its own advantages and
particularities, but the Direct form I presents the simplest and
most practical [4] implementation. Therefore, we use this
form.

B. Infinite impulse response filter

IIR filters generate an infinite impulse response. Unlike
FIR filters, in which the output is calculated only on the basis
of present and past inputs, IIR filters also take into account the
filter’s past output. This turns the behavior of the filter into a
recursive one. The feedback mechanism provides a faster
response time. They are intended for programs that do not
require a linear phase.

The transfer function of an IIR filter [4] is given in (3).

���� = ∑ !�!"!�#
$ + ∑ &!�!'!�$

(3)

The output is computed as:

(�)� = − 	 &!(�) − !� + 	 !*�) − !�
"

!�#

'

!�$
(4)

IIR filters can be represented by structures [4] such as
Direct form I, Normal and transposed direct form II, Cascade,
Lattice, etc. The form we use for the implementation is Direct
Form I because it is the simplest one [4].

V. FILTER DESIGN

We use “filterDesigner” from Matlab [14] to design the
two types of filters. The specifications are:

• Filter type: low-pass and high-pass are considered
• Filter category: IIR (Infinite Impulse Response Filters)

and FIR (Finite Impulse Response Filters)
• Filter order: a specific number or a minimum generated

by the algorithm based on the other specifications
• Frequency characteristics: the sampling frequency (Fs)

used in this paper is between 10 and 40 kHz. Fpass is the
frequency of the beginning of a pass band, and Fstop is the
frequency of the end of a pass band.

An aspect of major importance is the representation of the
filter coefficients, namely: fixed or floating point. Due to the
memory and the long time to process arithmetic operations
with floating-point representation, the coefficients of the
transfer functions are chosen to have a fixed-point
representation for the first implementation. The quantization
method considered optimal by Matlab was chosen, having a
16-bit representation. For the second implementation, the
floating-point implementation was chosen due to the poor
export of the coefficients from filterDesigner-Simulink-
MDK-ARM.

In the following, both low-pass and high-pass filters will
be presented. The sampling frequency for the first
implementation is set to 20 kHz. For the second
implementation, due to floating point representation, the
sampling frequency is set to 10 kHz. It is desired to obtain as
small as possible order of the system for an easier and faster
processing, but to maintain some performances considered
necessary.

A. FIR design

For the first implementation, the hand-coded one, the
obtained filters were exported as C-headers with an integer
vector B of length BL containing the coefficients. For the
second implementation using Simulink, they are easily
exported to Simulink as a block model directly from
filterDesigner.

The low-pass filter aims to attenuate the signal with a
frequency higher than the cutoff frequency Fstop and to allow
signals to pass unchanged from 0 Hz to Fpass. The high-pass
filter allows the passage of signals of a frequency higher than
the cutoff frequency Fpass, and the frequencies from 0 to
Fstop will be attenuated. The magnitude response
characteristics are given by: Astop - attenuation in the
stopband and Apass - passband ripple. All FIR filters are
designed using the Equiripple method. This method is based
on the Remez algorithm [4], which allows [15] for an
equiripple response in the assigned filter pass and stop bands.
Equiripple filters provide the smallest transition bandwidth
possible for a given ripple level.

1) Hand-coded implementation

For this implementation, the filters with coefficients
having a fixed-point representation. Their sampling
frequency is 20 kHz.

The low-pass filter has the following characteristics:
Fpass = 200, Fstop = 2000, Apass = 1, Astop = 60 and the
order obtained is 21. It can be seen in the Figure 2. The
coefficients (signed integer, on 16 bits) are:

BL = {207, 416, 773, 1262, 1874, 577, 3320, 4038, 4660, 5119, 5362,

5362, 5119, 4660, 4038, 3320, 2577, 1874, 1262, 773, 416, 207}.

Figure 2. Low-pass FIR filter - hand-coded

The high-pass filter has the following characteristics:

Fstop = 1000, Fpass = 3000, Astop = 60, Apass = 3 and the
order obtained is 18. It can be seen in the Figure 3. The
coefficients (signed integer, on 16 bits) are:

BL = { -895, 210, 1068, 1027, 1024, -578, -2420, -5135, -6792, 24968,

-6792, -5135, -2420, -578, 1024, 1027, 1068, 210, -895 }.

Figure 3. High-pass FIR filter – hand-coded

2) Automatic implementation

For the automatic implementation, the sampling
frequency was set at 10 kHz and a floating-point
representation is used.

The low-pass filter has the following characteristics:
Fpass = 500, Fstop = 2000, Apass = 1, Astop = 40 and the
order obtained is 8. The magnitude plot can be seen in the
Figure 4. The coefficients (real) are:

BL = { 0.02047, 0.07474, 0.13626, 0.19894, 0.21986, 0.19894,

0.13626, 0.07474, 0.02047 }.

The high-pass filter has the following characteristics:
Fstop = 500, Fpass = 2000, Astop = 40, Apass = 1 and the
order obtained is 10. The filter’s response is seen in Figure 5.
The coefficients (real) are:

BL = { 0.03709, 0.01608, -0.04184, -0.14059, -0.23637, 0.72381,
-0.23637, -0.14059, -0.04184, 0.01608, 0.03709 }.

Figure 4. Low-pass FIR filter - automatic

Figure 5. High-pass FIR filter - automatic

B. IIR design

Next, we present the design of IIR filters. The
quantization of the terms will be applied only for the first
implementation and the aim is to obtain an order of the
function as small as possible while satisfying the required

specifications. Similarly to the FIR filter design, the sampling
frequency is 20 kHz for the first implementation and 10 kHz
for the second one. To highlight the short computation time
of fixed-point implementation, filters with a sampling
frequency of 40 kHz were also obtained.

For hand-coded implementation, a C-header file that
contains two vectors containing the denominator (DEN) and
numerator (NUM) coefficients will be generated. The second
implementation involves only creating a Simulink block
directly from the filterDesigner. All filters are designed using
the Butterworth method. The frequency response of the
Butterworth filter approximation function is also often
referred to as the "maximally flat" (no ripple) response [16],
because the passband is designed to have a frequency
response that is mathematically as flat as possible from 0 Hz
to the cutoff frequency.

1) Hand-coded implementation

The low-pass filter has a sampling frequency of 20 kHz
and the following characteristics: Fpass = 1000, Fstop =
5000, Apass = 3, Astop = 60 and order 4. The magnitude plot
is shown in Figure 6. The coefficients (signed integer, on 16
bits) are:

NUM = { 5, 21, 31, 21, 5}

DEN = { 8192, -25251, 29863, -15968, 3247}.

Figure 6. Low-pass IIR filter – hand-coded

The high-pass filter has a sampling frequency of 20 kHz

and has the following characteristics: Fstop = 2000, Fpass =
6000, Astop = 40, Apass = 3 and the order is 4. The
magnitude plot is shown in Figure 7. The coefficients (signed
integer, on 16 bits) are:

NUM = { 1458, -5832, 8748, -5832, 1458 }
DEN = { 16384, 1104, 7986, 232, 291 }.

Figure 7. High-pass IIR filter – hand-coded

2) Automatic implementation

The low-pass filter has a sampling frequency of 10 kHz
and has the following characteristics: Fpass = 500, Fstop =
2000, Apass = 1, Astop = 40 and the order obtained is 4. The
filter’s response is shown in Figure 8. The coefficients are:

NUM = { 0.00153, 0.00614, 0.00921, 0.00614, 0.00153 }

DEN = { 1, -2.82423, 3.11624, -1.57098, 0.30353 }.

The high-pass filter has a sampling frequency of 10 kHz
and has the following characteristics: Fstop = 500, Fpass =
2000, Astop = 40, Apass = 1 and the order obtained is 4. It
can be seen in the Figure 9. The coefficients are:

NUM = { 0.28117, -1.12471, 1.68706, -1.12471, 0.28117 }

DEN = { 1, -1.60531, 1.31159, -0.50256, 0.07937 }

Figure 8. Low-pass IIR filter - automatic

Figure 9. High-pass IIR filter - automatic

VI. IMPLEMENTATION

All methods presented in this paper have the same
objective, but the difficulty of programming and the result
will be different. The process as a whole is the same
regardless of the implementation. The first step is to read the
input through the ADC converter, update the input vector,
calculate the output and write the scaled output after
quantization through the DAC converter. The output signal is
displayed on an oscilloscope for validation together with the
signal that verifies the sampling period.

The implementation was intended with a frequency of 20
kHz, but in the floating point, this could not be obtained. The
automatic generation did not support the connection well (an
issue that is left for future work) and thus it was decided to
reduce the sampling frequency to 10 kHz. On the other hand,
for the hand-coded implementation, results with a sampling
frequency of 40 kHz have also been obtained.

A. Hand-coded implementation

For this implementation, the algorithm for each type of
filter (FIR and IIR) was written in C and is loaded on the
development board through System Workbench for STM32.
Files directly exported from Matlab were used as headers.
The implementation chosen in this paper is based on Direct
form I.

The algorithm used to calculate the filter output is based
on equations (1) and (4). For all filters, in this paper, the
structure that was implemented is the Direct form I using a
fixed point representation.

B. Automatic implementation

Filters can be directly exported from the filterDesigner to
Simulink. In order to create the project that will be loaded on
the development board, the pins are set, after which a
Simulink file containing the blocks for STM32 is created. All
designed filters are exported to the Simulink file and linked
between the ADC input and the DAC output as shown in
Figure 10.

The time set for the simulation is discrete and has a
sampling period of 0.1 ms. After the code is built, the filter
can be run by the processor through the Keil µVersion
application.

Figure 10. Simulink file

VII. RESULTS AND COMPARISON

This section presents the obtained results for the filters
and interpreted with the help of an oscilloscope and a periodic
signal generator of certain frequencies depending on the
parameters of interest. All the filters have first been simulated
and validated in Simulink. The specifications have been
satisfied. Afterwards they have been implemented on the
microcontroller. The figures in this section are obtained by
means of an oscilloscope. The graphs on the following pages
show the input signal (blue) and the filter output signal
(purple); the PB5 port output (yellow) - which confirms the
compliance with the frequency of the interrupt routine and the
processing time of the calculations - is only available for
certain graphics.

A. Results for hand-coded implementation

1) Low-pass filters

The FIR filter is shown in Figure 11, and the IIR filter, in
Figure 12. The input signal is a 0-3 kHz for FIR filter (0-10
kHz for the IIR filter) variable frequency signal. Figure 13
shows the response of an IIR filter with a sampling frequency
of 40 kHz. It has the following characteristics: Fpass = 500,
Fstop = 2000, Apass = 1, Astop = 40, order 3. The best
performance for this frequency is obtained by a filter up to an
order of 12.

Figure 11. Low-pass filter response (FIR) - hand-coded

Figure 12. Low-pass filter response (IIR) – hand-coded

Figure 13. Low-pass filter response (IIR) (40kHz sampling frequency)-

hand-coded

2) High-pass filters

It is noted that the filter output maintains the required
specifications and the sampling frequency of 20 kHz. The
input signal is a variable frequency signal: 0-3 kHz for the
first filter and 0-10 kHz for the second. The FIR response can
be seen in the Figure 14 and the IIR one in the Figure 15.

Figure 14. High-pass filter response (FIR) – hand-coded

Figure 15. High-pass filter response (IIR) – hand-coded

B. Results for automatic implementation

For this implementation, the input signal is the same for
all the filters: a signal with a variable frequency between 0
and 5 kHz.

1) Low-pass filter

The FIR filter response is shown in Figure 16, and the IIR
in Figure 17.

Figure 16. Low-pass filter response (FIR) -automatic

Figure 17. Low-pass filter response (IIR) - automatic

2) High-pass filter

The response of the FIR filter design is shown in Figure
18, and the IIR in Figure 19.

Figure 18. High-pass filter response (FIR) - automatic

Figure 19. High-pass filter response (IIR) - automatic

VIII. CONCLUSIONS

 All filters comply with the requirements and correspond to
the simulations performed. A summary of their characteristics
can be seen in Table 1.

TABLE I. DESIGN COMPARISON BETWEEN FILTERS

Filter Hand-coded Automatic

FIR Low-pass Fs=20kHz
Fpass = 200
Fstop = 2000
Apass = 1
Astop = 60
order = 21

Fs=10kHz
Fpass = 500
Fstop = 2000
Apass = 1
Astop = 40
order = 8

FIR High-pass Fs=20kHz
Fstop = 1000
Fpass = 3000
Astop = 60
Apass = 3
order = 18

Fs=10kHz
Fstop = 500
Fpass = 2000
Astop = 40
Apass = 1
order = 10

IIR Low-pass Fs=20kHz
Fpass = 1000
Fstop = 5000
Apass = 3
Astop = 60
order = 4

Fs=10kHz
Fpass = 500
Fstop = 2000
Apass = 1
Astop = 40
order = 4

IIR High-pass Fs=20kHz Fs=10kHz

Fstop = 2000
Fpass = 6000
Astop = 40
Apass = 3
order = 4

Fstop = 500
Fpass = 2000
Astop = 40
Apass = 1
order = 4

 The most obvious conclusions are related to the power of
quantization in reducing computational time. By this
quantization, satisfactory results were obtained at a switching
frequency of 40 kHz. The disadvantage of this quantization is
a loss of precision and other problems such as overflowing,
instability, etc. The advantage of the automatically generated
code is the simplicity and the minimum programming
requirements. The downside in this case was the inability to
generate a code that works on fixed point representation. This
issue needs to be further investigated. The limits tested for
hand-coded implementation is at a frequency of 40kHz for a
12th order IIR filter. For automatic implementation, IIR filter
was successfully implemented at 20kHz but with a 2nd order.

IX. REFERENCES

[1] C. Dede, "Tendencies for Technology in The Year 2000,"
Educational Media International, vol. 20, no. 1, pp. 23-24,
1983.

[2] S. Rolf, H. Xiao and V. V. Mac E., Design of Analog Filters 2nd
edition, Oxford University Press, 2009.

[3] R. Oshana, DSP Software Development Tehniques for
Embedded and Real-Time Systems, 2006.

[4] J. G. Proakis and D. G. Manolakis, Digital Signal Processing,
Third Edition ed., Prentice-Hall International INC, 1996.

[5] M. J. Pelgrom, Analog-to-Digital Conversion, Springer-Verlag
New York, 2013.

[6] R. R. S. Seshadri, "FPGA implementation of fast digital FIR and
IIR filters," Concurrency Computation: Practice and
Experience, vol. 33, p. e5246, 2021.

[7] C. Wang, H. Xi, T. Chen and J. Liu, "Design of IIR Digital
Filter," in International Conference on Cognitive based
Information Processing and Applications (CIPA 2021),
Singapore, 2022.

[8] B. Widrow and I. Kollár , Quantization Noise: Roundoff Error
in Digital Computation, Signal Processing, Control, and
Communications, Cambridge University Press, 2008.

[9] "STM Product overview Nucleo 64P," [Online]. Available:
https://www.st.com/en/evaluation-tools/nucleo-l452re-p.html.

[10] "STMicroelectronics Hardware Support from Simulink,"
[Online]. Available:
https://www.mathworks.com/products/hardware/stmicroelectron
ics.html.

[11] B. G. Lawrence R. Rabiner, Theory and application of digital
signal processing, Prentice-Hall, 1975.

[12] A. V. Oppenheim, R. W. Schafer and J. R. Buck, Discrete-Time
Signal Processing, New Jersey: Prentice Hall, 1998.

[13] V. Madisetti, Digital Signal Processing Fundamentals, CRC
Press, 2017.

[14] "Introduction to Filter Designer," Mathworks, [Online].
Available:
https://www.mathworks.com/help/signal/ug/introduction-to-
filter-designer.html.

[15] G. Macchiarella, "“Equi-Ripple” Synthesis of Multiband
Prototype Filters Using a Remez-Like Algorithm," IEEE

Microwave and Wireless Components Letters, vol. 23, no. 5, pp.
231-233, 2013.

[16] G. Ellis, Control System Design Guide, Elsevier Science, 2012.

