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Abstract— This paper investigates the scenario where a mo-
bile sensor must observe (i.e., estimate the state of) another
system, called the target. The estimation is affected by a
distance-dependent noise, and for this reason we propose to
control the sensor so that the effect of the noise is minimized.
We propose a novel approach in which the controller and the
observer are designed in tandem, with the common objective
of obtaining a better estimation. We give sufficient design
conditions for a general class of nonlinear systems satisfying
a Lipschitz-like condition on the nonlinearity. A numerical
example illustrates the obtained results.

I. INTRODUCTION

We consider a scenario where a dynamical system, called
the target, must be monitored – i.e., its state must be
estimated – by a second dynamical system, which we call
the (mobile) sensor. Examples include two unmanned aerial
vehicles (drones), one of which is following the other, or
two subsequent road vehicles in an automated platooning
system. The challenge here is that the mobile sensor can only
measure the output of the target with an error that is related
to the distance between the two systems. This is typical when
e.g. the position and attitude of an object must be estimated
from video images, or with time-of-flight distance sensors as
in e.g. [1], [2].

In order to accurately recover the target states, it is
therefore important not just to design a good estimator, but
also to control the sensor to reduce the error affecting the
measurements. In this paper, we provide an approach that
co-designs the controller and observer using Linear Matrix
Inequality (LMI) design tools, which are commonly used in
many areas of control, see e.g. [3], [4].

To explicitly provide an observer and controller design
procedure, we focus on a specific class of systems by using
the idea of a nonlinear observer design approach described
in [5] and [6]. We have two objectives here: an estimation
objective of accurately recovering the target states, and a
control objective of moving the sensor system so that the
target is tracked and that the estimation objective is achieved.
For this problem, we first present (i) a monolithic approach,
which defines the sufficient conditions for the error system
to achieve the objectives. This method provides a design
in terms of Bilinear Matrix Inequalities (BMI), which are
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difficult to solve. For this reason, we propose a second
approach (ii) where we decouple the error system into an
estimation error and a tracking error. With this decoupling
the design becomes more conservative, but the conditions are
defined in terms of LMIs, which can be efficiently solved.
For both (i) and (ii) above, the target inputs are assumed
known, which may not be always the case. Therefore, we
finally consider (iii) the case when the target inputs are
incompletely known, where the unknown part is modeled
as a disturbance, and give design conditions that guarantee
H∞ disturbance attenuation [7].

We evaluate all three approaches (i)-(iii) in numerical
experiments on two road vehicles, with dynamics taken from
[8]. First, we consider the case when the sensor vehicle
should reach the target, i.e., both should attain the same speed
and position asymptotically. This might lead to collisions in
practice, so with a change of variables we add a safe tracking
distance between the two vehicles for collision avoidance.
This collision avoidance procedure can be useful for more
than just the vehicle dynamics in our example.

The framework we consider, where the sensor is dynamic
and is controlled to actively reduce the observation error,
is nonstandard in systems and control, so research in this
area is not extensive. For example, in [9] a target A at
an unknown location is considered and a mobile sensor B
must move to the vicinity of A and then circumnavigate it.
Inaccurate measurements of the distance between A and B
are used to estimate the location of A. Compared to [9], our
approach closes the loop on this distance-dependent noise,
i.e. the mobile sensor is controlled so that this perturbation is
attenuated, which is not an objective in [9]. Another example
can be found in [10], where a nonlinear observer-based
controller is applied to the problem of anaerobic digestion.
In [10] the observer can be designed separately, without
the control, but in our case the controller-observer problem
must be solved in tandem so that the controller assists the
estimation task.

Similar ideas have been more thoroughly explored in
robotics, where the framework is called active sensing or
active perception, see for instance [11], [12], [13], [14]. How-
ever, approaches in robotics largely do not provide stability
guarantees, see e.g. [11], [14], and are often heuristically
developed for specific problems, for example in [12]. In
contrast, here we take a control-theoretic perspective, so our
major interest is to provide analytical guarantees for our
control and estimation problem.

In the sequel, following some definitions, we describe
the problem statement in Section II. Then, in Section III



we provide the monolithic and the decoupled approaches to
solve the problem together with the results on disturbance
attenuation. Numerical results are given in Section IV, and
Section V concludes the paper.
Notation. Let F = FT ∈ Rn×n be a real symmetric matrix.
F > 0 and F < 0 means that F is positive definite or
negative definite, respectively. I denotes the identity matrix
and 0 the zero matrix of appropriate dimensions. The symbol
∗ in a matrix indicates a transposed quantity in the symmetric

position, for instance
(
P ∗
A P

)
=

(
P AT

A P

)
, and A+ ∗ =

A+AT . The notation diag(f1, ..., fn), where f1, ..., fn ∈ R,
stands for the diagonal matrix, whose diagonal components
are f1, ..., fn. Notation ‖s‖ denotes the Euclidean norm of
s ∈ Rn. The notation 〈∇V (x), f(x))〉 refers to ∂V (x)

∂x f(x).

II. PROBLEM STATEMENT

In this section we define the form considered for the target
dynamics, the observer structure used and the control law.
Based on these elements, the estimation and the tracking
error are also defined for further analysis.

A. System description and assumptions

The target is modeled as:

ẋT =AxT +Gψ(HxT ) +B(uT + d)

yT =CxT +Dω(xT , xS)
(1)

where xT ∈ Rnx represents the state, uT ∈ Rnu stands for
the control input, yT ∈ Rny is the measurement, d ∈ Rnu
is a disturbance and ω will be defined later. The nominal
input uT is known, but it is affected by a disturbance.
This makes sense in many applications. For instance, in
highway driving, a constant speed is usually maintained
with some positive and negative accelerations, which can be
considered as disturbances on top of a constant input. For
another example, consider two drones that must execute a
mission cooperatively while maintaining radio silence (e.g.
for concealment reasons). The sensor drone is able to obtain
the mission plan of the target drone in the beginning, and
perhaps sporadically updated plans during the mission (so
nominal inputs are known), but in-between, state estimation
from passive sensors like camera images must be performed.
Of course, due to unpredictable conditions in the field the
inputs will change compared to the nominal ones, and these
changes can be modeled using disturbance d.

The term ψ(HxT ) ∈ Rr is an r-dimensional vector where
each entry is a function of a linear combination of the states.

ψi = ψi
(∑nx

j=1HijxTj
)
, i = 1, ..., r.

The vector ψ is a way of allowing nonlinearity in the
dynamics, and must fulfill the following assumption.

Assumption 1: For any i ∈ {1, ..., r} there exist positive
constants ai ≤ bi bounded, so that

ai ≤
ψi(v)− ψi(w)

v − w
≤ bi, ∀v, w ∈ R, v 6= w. (2)

�

Assumption 1 intuitively bounds the rate of change of the
nonlinearity, and is a global Lipschitz property of ψ. Such
an assumption is made e.g. in [15], [5], [6], [10]. In view of
(2), it holds that

ψi(v)− ψi(w) = δi(t)(v − w), (3)

where functions δi(t) ∈ [ai, bi] for i = 1, r. The matrix
containing these functions on the diagonal is denoted with
δq = diag(δq1, ...δqr).

The output (measurement) equation in (1) is given by a
linear term, CxT , perturbed by the unknown term ω(xT , xS),
which is assumed to verify the next property.

Assumption 2: For any xT , xS ∈ Rn,

‖ω(xT , xS)‖ ≤ max{ζ1‖xT − xS‖ζ2 − ζ3, 0}, (4)

where xS ∈ Rn is the state of the sensor system, and ζ3 ≥ 0,
ζ1 > 0, and ζ2 > 1 are constants. �
Equation (4) implies that ω vanishes when the sensor state
xS is a ball centered at xT of radius depending on ζ3. In
other words, the sensor is accurate when its states are close to
that of the target. Assumption 2 is for instance verified by the
model of [1] for radio-frequency (RF) communication, where
the power ζ2 is the path loss exponent, see also Section III-D.

It is assumed that the sensor model is the same as the target
model: it has the same dynamics with the same number of
states and inputs

ẋS =AxS +Gψ(HxS) +BuS , (5)

where uS ∈ Rnu is the control input of the sensor system to
be designed, and all the states of the sensor system, xS , are
available.

We consider the following structure for the observer:

˙̂xT =Ax̂T +Gψ(Hx̂T ) +BuT + L
(
yT − ŷT

)
ŷT =Cx̂T ,

(6)

where x̂T ∈ Rnx is the estimate of xT and L is the observer
gain. In the observer design the nominal input of the target
system, uT , is considered as a known term, but not the
disturbance, d.

B. Error dynamics

To state the problem, we introduce the estimation error,
e := xT−x̂T , and the tracking error, z := xT−xS . Since we
do not have direct access to z, we use its estimated version,
ẑ := x̂T − xS , which can be rewritten as ẑ = z − e. Now
we are ready to define the estimation error dynamics:

ė =(A− LC)e− LDω(xT , xS) +Bd

+G
[
ψ(HxT )− ψ(Hx̂T )

]
.

(7)

On the other hand, the tracking error dynamics is

ż =Az+G
[
ψ(HxT )−ψ(HxS)

]
+B

[
uT +d− uS

]
(8)

Since the estimation error is affected by the distance between
the sensor and the target through the unknown term ω, we use
a control law that moves the mobile sensor to the vicinity of
the target. For this purpose, we propose to design a tracking



controller for system (5) to follow system (1) with the main
objective being the attenuation of the effect of the noise
ω. The following control law is considered for the sensor
system:

uS = uT +Kẑ = uT +K(z − e), (9)

where K is the controller gain, and we also use the nominal
input of the target system, uT . By using (9) we obtain the
overall error system:

ė =fe(e, xT , x̂T )− LDω(xT , xS) +Bd

ż =fz(z, xT , xS) +BKe+Bd
(10)

fe(e, xT , x̂T )=(A−LC)e+G
[
ψ(HxT )−ψ(Hx̂T )

]
(11)

fz(z, xT , xS)=(A−BK)z+G
[
ψ(HxT )−ψ(HxS)

]
(12)

System (10) can be rewritten as

χ̇=Ãχ+G̃

[
ψ(HxT )−ψ(Hx̂T )
ψ(HxT )−ψ(HxS)

]
−
[
LD
0

]
ω(xT , xS)+B̃d

(13)

where Ã =

[
A−LC 0
BK A−BK

]
, G̃ =

[
G 0
0 G

]
, B̃ =

[
B
B

]
,

and χ =
[
eT zT

]T
. We denote η =

[
ηTe ηTz

]T
, where

ηe :=HxT−Hx̂T =He, ηz =HxT−HxS=Hz. (14)

In view of (3), we can define δe(t)=diag(δe1(t), ..., δer(t))
and δz(t) = diag(δz1(t), ..., δzr(t)), to obtain[

ψ(HxT )− ψ(Hx̂T )
ψ(HxT )− ψ(HxS)

]
=

[
δe(t) 0

0 δz(t)

]
η. (15)

Denoting D̃=

[
−LD

0

]
and ∆(t)=

[
δe(t) 0

0 δz(t)

]
, we have

χ̇ = f(χ, η) + D̃ω(xT , xS) + B̃d (16)

where f(χ, η) = Ãχ+ G̃∆(t)η.
Next, we will present three approaches to solve the

observer and controller design problem. First, we use a
monolithic approach for the augmented system presented
in (10) without considering any disturbance on the input
(d = 0). The disadvantage of this method is that the obtained
conditions are defined as Bilinear Matrix Inequalities (BMI),
which are hard to solve. In the second approach, we provide
a more practical solution by decoupling the observer and
controller design, and the results obtained will be combined
to guarantee the stability of the augmented system (still for
d = 0). Finally, we take into consideration the effect of the
disturbance d, and sufficient conditions will be given to meet
the H∞ performance requirements.

III. MAIN RESULTS

A. Monolithic design

Our goal is to design the matrices L and K to ensure
local stability for (16). To find these gains, Theorem 1 can
be used.

Theorem 1: Consider system (16) with d = 0 and As-
sumption 2 holds. If matrices P̃ = P̃T > 0, R1 = RT1 =

diag(r11, ..., r1r) > 0, R2 = diag(r21, ..., r2r) > 0, L, K
and constant ε can be found such that[

ÃT P̃ + ∗+ εI P̃ G̃+ H̃TR
∗ γ(R)

]
≤ 0 (17)

where R =

[
R1 0
0 R2

]
, H̃ =

[
H 0
0 H

]
, and γ(R) =

−2R diag( 1
b1
, ..., 1

br
, 1
b1
, ..., 1

br
), then (16) is locally asymp-

totically stable at the origin. �
Proof: Due to the lack of space, here we only

give a sketch of the proof. The full proof is available at
lendek.net/files/papers/acc20-zoli-supp.pdf.

First consider ω = 0, let V (χ) := χT P̃χ for any χ ∈ R2n.
For any χ ∈ R2n and η ∈ R2r,

〈∇V (χ),f(χ, η)〉=
[

χ
∆(t)η

]T[
ÃT P̃+P̃ Ã P̃ G̃

∗ 0

][
χ

∆(t)η

]
By using (17), we have:

〈∇V (χ), f(χ, η)〉 ≤
[

χ
∆(t)η

]T [−εI −H̃TR
∗ −γ(R)

] [
χ

∆(t)η

]
= −ε‖χ‖2 − 2χT H̃TR∆(t)η − ηT∆(t)T γ(R)∆(t)η.

Using (14) we have χT H̃TR∆(t)η = ηTe R1δe(t)ηe +
ηTz R2δz(t)ηz . This leads to

〈∇V (χ), f(χ, η)〉 ≤ −‖χ‖2

− 2ηTe
(
R1 − δTe R1diag

[
1
b1
, ..., 1

br

])
δe(t)ηe

− 2ηTz
(
R2 − δTz R2diag

[
1
b1
, ..., 1

br

])
δz(t)ηz.

R1 and δe(t) are diagonal matrices, with diagonal terms:
r1k
(
1− δek 1

bk

)
. Based on (3) we know that δek ∈ [0, bk],

and r1k > 0, which means that r1k(1− δek 1
bk

) ≥ 0, so

−2ηTe
(
R1 − δTe R1diag

[
1
b1
, ..., 1

br

])
δe(t)ηe ≤ 0, (18)

A similar deduction holds for ηz , so 〈∇V (χ), f(χ, η)〉 ≤
−‖χ‖2, which proves global stability when d = 0, ω = 0.

Next, we consider the uncertain term ω, and we prove
local stability. The term ω can be considered as a vanishing
perturbation and we can use Lemma 9.1 from [16]. We have:

〈∇V(χ),f(χ, η)+D̃ω(xT, xS)〉≤−ε‖χ‖2+2χTP̃D̃ω(xT, xS)

Based on Assumption 2, we obtain:

ω(xT , xS) ≤ ζ1‖z‖ζ2 ≤ ζ1‖χ‖ζ2 ,

which leads to

〈∇V (χ), f(χ, η)+D̃ω(xT, xS)〉≤
− ‖χ‖2

(
ε−2ζ1‖P̃ D̃‖‖χ‖ζ2−1

)
Note that (17) is a BMI. To overcome this issue, next we
propose a decoupled design.



B. Decoupled design

We give a decoupled approach in which we separately
design the observer and controller gains, allowing us to write
a set of LMIs instead of BMIs. The main advantage of
this approach is that the LMIs can be efficiently solved by
using optimization toolboxes. However, the design is more
conservative compared to the monolithic approach.

Note that the observer design conditions from [17], [5],
[6] are not suitable for controller design. Therefore, we first
provide sufficient conditions for controller design.

Theorem 2: Consider the plant:

ż =(A−BK)z +Gδz(t)ηz

ηz =Hz
(19)

where δz(t) = diag(δz1, ...δzr), and ∀k ∈ [1, r], δzk ∈
[ak, bk], 0 ≤ ak ≤ bk <∞, and define F = diag( 1

b1
, ..., 1

br
).

If there exist matrices P = PT > 0, Q = diag(q1, ..., qr) >
0, N , and a constant ε > 0, so thatAP −BN + ∗ G(FQ)T + PHT P

∗ −2FQF 0
∗ ∗ − 1

ε I

 < 0 (20)

then the origin of (19) is globally asymptotically stable, and
the controller gain can be recovered from K = NP−1. �

Proof: The Lyapunov function is V (z) = zTP−1z, and
we impose that

〈∇V (z), (A−BK)z +Gδz(t)ηz〉 <[
z

δz(t)ηz

]T [−εI −HT (FQ)T

∗ 2Q−1

] [
z

δz(t)ηz

]
.

(21)

Based on this, we have the following matrix inequality:[
P−1(A−BK)+∗+εI P−1G+HT (FQ)−T

∗ −2Q−1

]
< 0. Con-

gruence with
[
P 0
0 FQ

]
, Schur complement on εP 2 and

denoting M = KP gives (20). Since all F , Q and
δz(t) are diagonal, by examining the terms we obtain that
2ηTz

(
(FQ)−T δz − δTz Q−1δz

)
ηz ≤ 0. Finally, we have

〈∇V (z), (A−BK)z +Gδz(t)ηz〉 ≤ −ε‖z‖2 ≤ 0
Now we are ready to define the unperturbed (d = 0)
decoupled design approach.

Theorem 3: Consider the plant (10) with d = 0 and
Assumption 2 holds. If matrices P1 = PT1 > 0, P2 =
PT2 > 0, R1 = RT1 = diag(r11, ..., r1r) > 0, Q = QT =
diag(q1, ..., qr) > 0, M , N and constants εe and εz can be
found such that:[

ATP1 − CTMT + ∗+ εeI P1G+HTR1

∗ γ(R1)

]
≤ 0AP2 −BN + ∗ G(FQ)T + P2H

T P2

∗ −2FQF 0
∗ ∗ − 1

εz
I

 ≤ 0,

where F = diag( 1
b1
, ..., 1

br
), and γ(R1) = −2R1 F , then

the origin of (10) is locally asymptotically stable, and the
observer and controller gains can be recovered from L =
P−11 M and K = NP−12 . �

Proof: Let, for any e, z ∈ Rn Ve(e) := eTP1e,
Vz(z) := zTP−12 z, that satisfies the conditions of Theo-
rems 1-2 with ω = 0, we have: 〈∇Ve(e), fe(e, xT , x̂T )〉 ≤
−εe‖e‖2 and 〈∇Vz(z), fz(z, xT , xS)〉 ≤ −εz‖z‖2. Now
based on Section 7.6 from [3], there always exist con-

stants λ, εez > 0 for P =

[
λP1 0

0 P−12

]
, so that

〈∇V (e, z), f(e, xT , x̂T ), f(z, xT , xS)+BKe〉 ≤ −εez‖χ‖2.
Local stability is proved as in Theorem 1, when ω 6= 0.

C. H∞ design

In the first two approaches we considered the case when
the input of the target system, uT is known and we can use
it both for observer and controller design. Next, we consider
the scenario, when a nominal value of the target input, uT , is
known, but it is affected by an unknown disturbance term d.

Theorem 4: Consider system (16), if matrices P̃ =
P̃T > 0, R1 = RT1 = diag(r11, ..., r1r) > 0, R2 =
diag(r21, ..., r2r) > 0, L, K, and constants ε, µd can be
found such thatÃT P̃ + ∗+ εI P̃ G̃+ H̃TR P̃ B̃

∗ γ(R) 0
∗ ∗ −µdI

 ≤ 0 (22)

where R, H̃ , γ(R) are as in Theorem 1, then the augmented
error dynamics in (16) satisfies (23) for all ‖χ‖2 ≤ β,

〈∇V (χ), f(χ, η) + D̃ω + B̃d〉 − µd‖d‖2 ≤ 0. (23)
Proof: Using (23), and based on Theorem 1 we have:

〈∇V (χ), f(χ, η) + B̃d〉 − µd‖d‖2

≤ −|χ|2(ε− 2ζ1‖P̃ D̃‖‖χ‖ζ2−1).
(24)

A constant ‖χ‖2≤β exists, so (ε− 2ζ1‖P̃ D̃‖‖χ‖ζ2−1)≥0,
which leads to 〈∇V (χ), f(χ, η)+B̃d〉−µd‖d‖2≤0. For ω 6=0
we follow the steps in Theorem 1 to obtain (23).

D. Discussion on perturbation ω(xT , xS)

The perturbation model in (4) is frequent in radio-
frequency ranging measurements. For instance a model is
given in [1] with zero mean and distance-dependent variance
σ2 = σ2

0

(wi
w0

)α
, where σ2

0 is the variance at reference
distance w0 and α is the path loss exponent. To apply this
to our framework we approximate:
wi = ‖CxT −CxS‖ ≤ ‖C‖‖xT − xS‖, and take uniformly
distributed noise in the finite interval [−3σ, 3σ], which covers
95% of the probability mass of the original, normally-
distributed noise. Therefore, perturbation model (4) applies
with ζ1 = ‖C‖α/2 3σ0

rα0 /2
, ζ2 = α

2 , ζ3 = 0.

IV. NUMERICAL EXAMPLE

We illustrate the results of Section III by considering two
vehicles driving on a highway, as in [2]. The lead vehicle
is the target, and its state must be estimated by the follower
vehicle, which is the sensor. The vehicles can only move in
a straight line, with the following model taken from [8]

ẋ1 = x2

ẋ2 = − c1 − c2x22 + c3u.
(25)



Here, position x1 is the system’s output, and x2 the velocity.
We approximate the square nonlinearity for any x2 ∈ R by

ψa(x2) :=

{
c1 + c2x

2
2, |x2| ≤ vb

c1 + c2vb|x2|, |x2| > vb,
(26)

where vb is a given velocity up to which the approximation
is accurate. We take vb equal to the highway speed limit,
which means the approximation is accurate in typical driving
regimes. Since we consider highway driving, the velocity
is also taken to be positive, i.e. v > 0, in which case
Assumption 1 is verified with a = 0 and b = 2c2vb. We
have

A =

[
0 1
0 0

]
, B =

[
0
c3

]
, G =

[
0
−1

]
,

ψ(Hx) =ψa(x2), H =
[
0 1

]
.

(27)

Note that positive velocities are not enforced in the dynamics,
instead they will be verified a posteriori in the simulation
results.

As it was defined in Section II we consider the same
structure for the target, xT =

[
xT1 xT2

]T
, and for the

mobile sensor, xS =
[
xS1 xS2

]T
, with matrices defined

in (27). For the output of the target system, we have C =[
1 0

]
, D = 1. Based on [8], the parameters are c1 = 0.1,

c2 = 0.463 and c3 = 3.6. The threshold velocity is vb =
130[km/h] ' 37[m/s]. We take the following parameter
values: ζ1 = 0.005, ζ2 = 2. The parameter ζ3 = 0.18 defines
a small distance in which the effect of the ranging noise is
0. In the first case we consider the unperturbed input for the
target, d = 0. By using Theorem 3 the following gains were
found:

L =

[
8.61
0.48

]
, K =

[
6.61 6.15

]
, (28)

using sedumi solver in the Yalmip framework. The max-
imum norm on the initial condition for the augmented states
for which Theorem 3 provides local asymptotic stability at
the origin is: ‖χ0‖ ≤ ρ = 43.86. We choose the following
initial conditions: xT0 = [30, 0]T , xS0 = [0, 0]T and x̂T0 =
[0, 0]T , so ‖χ0‖ = 42.42. A constant input is considered for
the target system uT = 10. The output of the target system

Fig. 1. Output yT of the target, as seen by the sensor

can be seen in Fig 1. From 0 to 1.5 seconds, y is very noisy
since the distance between the sensor and the target is large,
so ω is large, but after that the effect of the ranging noise
is attenuated. The results obtained for the estimation and

tracking error are shown in Fig. 2. All the states of the error
systems are converging to 0.

Fig. 2. Evolution of the estimation and tracking errors

In order to make the approach more realistic, we would
like to maintain a safe distance between the sensor system
and the target. For this particular example, such a goal can

be achieved with a change of variables: z̃ := z−
[
q
0

]
, where

q > 0 is a predefined reference distance that needs to be
achieved and maintained between the two vehicles.

Note that ˙̃z1 = ż1 =z2 and ż2 depends only on z2 and uS .
We define the following control law:

uS = u+K

(
ẑ −

[
q
0

])
= u+K(z̃ − e). (29)

With this expression, our entire theoretical framework applies
directly, with z̃ instead of z. Based on (4) and the parameter
values ζ1, ζ2 and ζ3, we find that if ‖xT − xS‖ = ‖z‖ ≤ 6,
then ω = 0. We assume that the two vehicles will have
almost the same velocity around this region, which leads to
the conclusion that if the distance between the two vehicles
is less then 6[m] the effect of the ranging noise is vanishing.
Based on these we chose the tracking distance q = 5[m].
Simulation results can be seen on Fig. 3, from the same initial
conditions as before. In this setup z1 does not converge to

Fig. 3. Distance maintaining setup: xT − xS

0, but to q as we expected.
Finally, we consider the case of perturbed input, i.e.,

when d 6= 0 and verify the attenuation capabilities of the



gains in (28). We define the LMI problem so that µd is
minimized for condition (23). The obtained minimal value
is µd = 0.23, so the attenuation of the disturbance will be at
least

√
µd = 0.48. On the other hand, the maximum value

of the initial ‖χ‖ decreased to ‖χ0‖ = 23.61. The new
initial conditions according to this setup are the following:
xT0 = [16, 0]T , xS0 = [0, 0]T and x̂T0 = [0, 0]T , so
‖χ0‖ = 22.62. The input for the target system is uT = 10,
and we consider a constant disturbance d = 2 for 5 seconds
and then d = −1. The obtained results are shown in Fig. 4,
for both estimation and tracking error the effect of the input
disturbance is attenuated.

Fig. 4. Evolution of the estimation and tracking errors in presence of input
disturbance

V. CONCLUSIONS

This paper presented a novel controller-based observer
design approach for the scenario where a mobile sensor must
monitor the state of a target system. In particular, the mobile
sensor needs to be controlled so that a predefined distance
from the target is achieved and maintained. We presented a
case study in which a nonlinear target system was considered.
First a monolithic approach was provided, in which the
controller and observer design conditions are written as a
single bilinear matrix inequality. Next, we provided a more
practical approach, in which we decoupled the observer and
controller design, and the problem was defined in terms of
linear matrix inequalities. Finally, we considered the case
when a nominal input of the target is known, but it is affected
with an unknown disturbance term. In this final approach we
defined sufficient conditions for which an H∞ performance
index was obtained for the attenuation of the disturbance.
In order to study the effectiveness of these approaches, a
numerical example was considered for two road vehicles in
highway driving.

Among many future directions, we would like to extend
the approach with more complex models that involve more
than just scalar nonlinearities. On the other hand, we plan to

investigate cases where the model of the sensor is different
from the target.
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