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Abstract— This paper presents a systematic methodology to 

deal with variable transport delays by constructing a new 

discrete domain where the delay becomes fixed (a difference of 

samples). The Euler transformation is used to change from the 

continuous-time domain to this special discrete domain 

depending on the same variable as the transport delay. After this 

transformation, the model becomes nonlinear and the Takagi-

Sugeno fuzzy representation is obtained to handle the 

nonlinearities. To highlight and illustrate the efficiency of the 

proposed methodology, a LMI based controller design is 

developed to control a conveyor belt with variable transport 

delay.  
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I. INTRODUCTION 

Time-varying delays represent a major problem from a 
control point of view. Delays are naturally present in various 
industrial and practical applications. There is a vast literature 
concerning constant known time-delays with different kind of 
strategies. In the frequency domain, Smith predictors have 
been designed. In the state space and in presence of (known or 
unknown) constant time-delays, the methods are based on 
Lyapunov-Krasovskii as well as Lyapunov-Razumikhin 
theory. Finding stability conditions for fixed time-delay 
systems has been studied in [1]–[3]. Delayed systems are often 
nonlinear so the Takagi-Sugeno representation has been 
considered [4], [5] and lead to more complex control laws [6]. 
This work is motivated by the stability conditions of systems 
with time-varying or unknown delays [7], [8].  

This paper distinguishes between variable time and 
variable transport delays. A variable time delay is a delay that 
depends directly on the time. A variable transport delay is a 
delay appearing, e.g. when a certain distance has to be covered 
at a time-varying speed. Thus, it does not directly depend on 
the time, but on a variable that is time-varying. This work is 
focusing on this second category.  

Variable transport delays are naturally present in many 
systems. [9] presents several sources of delay: a transfer 
between two industrial processes, an inextensible pipe that 
drives a flow, the position of a remote sensor, etc. Simulation, 
modeling and control in the presence of variable transport 
delays have been addressed in the application literature.  
Examples can be found in marine applications for cooling the 
engine [10], in irrigation problems [11], in heating systems 
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[12], [13], in solar energy collecting systems [14] or in air-fuel 
ratio control where the lambda sensor is located in the exhaust 
manifold [15], [16]. 

The application considered in this paper is the conveyor 
belt. This system is used in industry for transporting materials 
from a point A to a point B. A transport delay is naturally 
present and depends on the speed of the engine driving the belt. 
Recent studies from the literature mainly focus on speed 
control for the belt conveyor [17]–[21]. 

This paper presents a transformation into a discrete-time 
domain where the sampling time is a function of the transport 
variables. In this new domain, the variable transport delay is 
expressed as a fixed one (related to different samples). Then, 
because the model becomes nonlinear, the Takagi-Sugeno 
fuzzy representation is employed and a state-feedback 
controller is designed.  

The paper has the following structure: Section 2 details the 
notations and some preliminaries. Section 3 presents the main 
contribution, including the transformation to make the variable 
transport delay fixed and the controller design. Section 4 gives 
an application example of a conveyor belt which illustrates the 
interest in such a methodology. Finally, Section 5 concludes 
the paper. 

II. PRELIMINARIES 

A. Notations 

Throughout this paper, the following notation is used: 

 x t  represents the state in the time domain,  x k  the state in 

the discrete-time domain and  x k
 the state in the domain 

given by the time-varying variable  t . I  denotes the 

identity matrix and    stands for the symmetric term of the 

left hand side. 

B. Variable transport delay formulation 

Let us consider the following linear state-space 
representation in the continuous-time domain with a delayed 
input: 

       x t Ax t Bu t t    (1) 

where A  is the system matrix, B  is the input matrix  and   

is the variable transport delay, which depends on an external 
variable  .  
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Remark 1: The main contribution can be extended to the case 
where both input and state are delayed and to several types of 
delays, but for reason of simplicity, in this paper we focus on 
the delayed input with only one transport delay. 

The variable transport delay  t  is usually a function 

depending on a variable and its time-derivative, for instance in 
the case of the conveyor belt, dividing meters (the length) by 
the linear speed in meters per second leads to a delay in 

seconds. Let us introduce the variable  t  and its time-

derivative  t . Let us express the variable transport delay  

as: 

   
 
fix

t
t


 


  (2) 

where 
fix  represents a fixed value of the  t  variable, 

depending on the application. For example, it can be the length 
of the pipe, the length of the conveyor, the position of the 

sensor, etc. Let us assume that   0t   which makes sense in 

most of the applications where the start of the system is 

ensured by a dedicated module (   0t  ) and the system 

cannot work reversely (   0t  ). Then, equation (1) can be 

written as 

        x t Ax t Bu t t     (3) 

III. MAIN CONTRIBUTION 

A. Transformation to a new domain 

Since a time-varying delay is not easy to handle, the main 
idea is to transform the system equation (3) into a domain in 

which the delay     becomes fixed. As presented in 

equation (2), the delay is a function of the variable  t . Let 

us consider the   domain. Then,  x t  can be expressed as: 

 
   

 

   

 
 

dx t dx t d t dx t
t

dt d t dt d t




 
     (4) 

where  t  stands for the variable of the new domain. Such a 

transformation is often used in engine control to go to crank-

angle domain [22], [23]. The derivative of the state  x t  with 

respect to  t  can be derived from equation (4):  

 
 

   

 1dx t dx t

d t dtt 
  (5) 

In order to convert the continuous-time domain in the 
specific discrete   domain, a discretization is realized using 

the Euler approximation: 

 
 

 

   1

s

dx t x k x k

d t T

 



 
  (6) 

where 
sT   stands for a sampling value in the    domain, that 

has to be chosen taking into account that 
sT   should be small 

enough for not losing any information during the 
discretization. By combining (5) and (6), it is possible to 
deduce the recursive law between two samples in the   

domain: 

    
 

 
1 s

dx kT
x k x k

dtk


 


    (7) 

B. Fixing the delay 

Now that the   domain is built and the transformation law 

(7) is defined, the continuous-time dynamical state-space 
representation (3) in the new domain becomes 

   
 

      1 sT
x k x k Ax k Bu k

k


     


       (8) 

where  x k  stands for the state expressed in the new   

domain at the sample k ,  1x k   the state vector at the next 

sample according to the sampling period 
sT  . u  is the control 

input in the new   domain, and    the function that 

transforms the time-varying delay     into a delay 

expressed in the same unit as  . Consequently, in order to 

respect the units, the function    may be defined as: 

             (9) 

with   in 
1unit s     and     in  s . Then, the next step 

to make the delay fixed is to define the sampling value 
sT   

such as: 

    sk k T         (10) 

where   is a chosen integer representing the delay in number 

of samples. Then, combining (9) and (10) leads to the 

following expression for 
sT  : 

 
 

sT 
  




  (11) 

 C. Controller design 

Thanks to the proposed transformation, and choosing an 

appropriate 
sT   according to equation (11), the time-varying 

delay     becomes fixed in the   domain and is equal to 

  samples: 

    
 

    1 sT
x k x k Ax k Bx k

k


    


      (12) 

Two things are important to consider with such a 
transformation. First, from an application point of view, the 

choice of 
sT   is often highly dependent on the sensors. Second, 

even if the considered continuous-time system (1) is a very 



  

simple linear model, by this transformation and the term  

 
sT

k




, it becomes nonlinear in the   domain.  

In the literature, several methods exist to deal with 
nonlinearities. The simplest one consists in linearizing the 
model at several operating points. Instead of using this 
methodology that does not guarantee the stability during 
transient phases, in what follows the Takagi-Sugeno (TS) 
fuzzy representation [24] is used. 

TS models consist of a collection of linear subsystems 

linked together with some nonlinear functions 
ih  called 

‘membership functions’. These membership functions have to 
verify the convex sum property: 

      
1

0, 1
r

i i

i

h z k h z k


   (13) 

where r  is the number of local models.  

The sector nonlinearity methodology for obtaining TS 
models has the advantage of providing an exact representation 
of the nonlinear system inside a domain of validity. The 
transformation to the fuzzy model in general is not detailed in 
this paper and the interested reader is referred to [25]. A TS 
model equivalent to (12) in the domain   can be expressed as: 

          
1

1
r

i i i

i

x k h z k M x k N u k   


     (14) 

where 
ih  are the membership functions and the matrices 

iM  

and 
iN  stand for the linear subsystems depending on the 

bounds of the domain of validity. The notation is simplified 

along the rest of the paper, and 
zM  stands for   

1

r

i i

i

h z k M


  

and 
1zM 
 for   

1

1
r

i i

i

h z k M


 . Thus, (14) becomes: 

      1 z zx k M x k N u k        (15) 

Now, a fuzzy controller can be designed. For example, the 
simplest one consists of a state feedback including the 
membership functions, called Parallel Distributed 
Compensation (PDC) [26]: 

    zu k F x k    (16) 

where zF  is the fuzzy controller gain. Then, applying the 

control law (16) to the TS system (15), the closed-loop system 
is:  

      1 z z zx k M x k N F x k  

      (17) 

for which the following result can be established: 

Theorem 1: Consider the Takagi-Sugeno model (15) and 
the control law (16). The closed-loop system (17) is 

asymptotically stable if there exist matrices L , Y , 
2ijM , zS  

such that: 

 
, 0z z    (18) 

with: 

       

     

   

 
2 , 2 ,,

2 ,

, ,

0

0 0

0 0

T

z z z z zz z

T

z z

T

z z z z z

L

L Y

M L W W

W L

M L J R

 



 

 



 

     
 

    
     
 

  
 
 

 (19) 

where  ,z z z zR N S Y        with    the symmetric 

term of the left hand side and 
, 2 ,

T T T

z z z z z zJ S N M       . 

Remark 2: Standard relaxations cannot be used because of 

 z k   so the inequality (18) must be verified ,i j . 

Proof: Let us consider the Lyapunov function: 

          
1k

T T

i k

V k x k Px k x i Qx i   





 

    (20) 

Then, the difference    1 0V V k V k      can be 

written as: 

 

 

 

 

 

 

 

0 0

1 0 0 1 0

0 0

T

x k P Q x k

x k P x k

x k Q x k

 

 

  

     
          
          

 (21) 

The closed-loop system can also be written as: 

 

 

 

 

1 0z z z

x k

M I N F x k

x k







 



 
 

       
  

 (22) 

It is possible to use the Finsler lemma [27] to get: 

 1

2 ,

0 0 0

0 0 0

0 0

z z z z z

P Q

W M I N F P

Q Q

 



 

    
             
      
  (23) 

where    stands for the symmetric term of the left hand side. 

Then, a congruence transformation is applied with the matrix 

 2 ,, ,z zdiag L W Y  where 1L P  and 1Y Q , the change 

of variable 
z zS F Y    and Schur complements on the term 

TL Q L   in (1,1) and 2 , 2 ,

T

z z z zW P W     in (2,2) terms lead to 

the previously defined quantity (19).  

Remark 3: Results of Theorem 1 only concern the stability of 
the discrete-time system (8), not the continuous-time system 
(3). To obtain stability results on the continuous-time system, 

the sampling value 
sT 

 should be chosen with respect to Euler 

and Shannon theorems.  

IV. APPLICATION TO THE CONVEYOR BELT SYSTEM 

The conveyor belt is an industrial application often used 
where a transport delay appears. The delay depends on the 
length of the belt and the speed of the motor. The proposed 



  

methodology is used to construct a new domain where the 
delay is fixed and to control the system. 

A. Conveyor belt dynamical model 

First, let us present the considered system and the 
dynamical equations. Fig. 1 has been adapted from [17]: 

 

Figure 1.  Conveyor belt modelling 

where 
inm  and 

outm  are the mass flow entering and leaving the 

conveyor belt (g/s) respectively. v  is the linear speed of the 

conveyor belt (m/s). The belt is 10L m  long and 1l m  

wide. The sensor is measuring the height H  of the matter on 
the belt (m).  The control problem is to regulate the height by 
controlling the entering mass flow. The conveyor belt speed is 
considered as a disturbance. Based on the literature, such as 
the moisture model of [17], a first order model of the variation 
of the height is established, considering the mass flow input, 
the conveyor speed and the sensor dynamics: 

 
 

 
 

 

1 1 indH t m t
H t

dt l v t



  


  


 (24) 

In (24)   is the time constant of the sensor (0.2s) and   is the 

volumetric mass of the matter (g/m3). Let us consider for the 
simulation a conveyor transporting some quinoa. The 
volumetric mass of the quinoa is 714.2857  . The variable 

transport delay   depends on the speed of the conveyor belt: 

   
 

l
v t

v t
   (25) 

The state-space representation like (3) is realized with (24): 

      x t Ax t Bu t     (26) 

with    x t H t , 
1

A


  , 
1

B
l

  and  
 

 
inm t

u t
v t

  

B. New domain transformation 

According to the expression of the variable transport delay 
  given in (25), the delay depends on the speed of the 

conveyor belt  v t , so    t v t  . Then,   stands for the 

distance travelled by the conveyor belt. The transformation is 
applied to go from the continuous-time domain to the 
particular discrete-time domain:  

    
 

 
1 s

dx kT
x k x k

v k dt


     (27) 

In order to get the sampling value 
sT   in meters, let us 

consider the discretized delay equal to 10  . Then, by using 

(11), we have: 

 
   

 
1

10 10
s

l
v k

v k l
T m

  






     (28) 

Consequently, in this new meter-domain computed every 
meter, the variable transport delay becomes fixed (equal to 10 
samples). Now, for control design purposes, let us convert the 
state-space system (26) to the new domain:  

      1 10x k Ax k Bu k      (29) 

1

1
1A NL


    and 1

1
B NL

l
   where  

 1
sT

NL
v k



 . The 

bounds are chosen as    3;5v k   so that the assumption 

  0t   is respected. Equation (29) can be written as: 

         
2

1

1 10i i i

i

x k h k M x k N u k 



     (30) 

By solving the LMI conditions presented in Theorem 1, we 
obtain the following controller gains for the control law:  

    zu k F x k    (31) 

1 45.3246F   , 
2 5.61F   . In order to follow a step 

reference, a term is added to the control law as follow: 

    
 

1

ref

z

z z z z z

y
u k F x k

C I A B F B

 


  

    
 (32) 

which is a direct extension of what is done in the linear 

context [28] for the Takagi-Sugeno representation. More 

details can be found in [29].  

C. Simulation results 

This controller is implemented in simulation to control the 

conveyor belt system, i.e. to regulate the height of mass 

leaving the conveyor (for packaging purposes for example). 

The conveyor speed is simulated for the values depicted in 

Fig. 2.  

 

 

Figure 2.  Speed of the conveyor (m/s) 
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The variable transport delay is increasing corresponding 

to the speed as presented in Fig. 3. However, in the   domain, 

the delay does not change. 

 

 

Figure 3.  Variable transport delay (s) 

In addition to this change of speed, a change of reference 

is imposed, for example due to a change in the type of product. 

The reference height changes from 1 centimeter to 2 

centimeters. Moreover, a sensor noise is added at the output 

of the system to simulate real conditions. For comparison 

purposes, a PI controller is designed with gains whose achieve 

the better result that can be obtained empirically to realize a 

trade-off between oscillations and performance. A PI 

controller with a Smith predictor-based structure (since the 

delay is time-varying) is also designed since it can better 

handle delayed systems.  Fig. 4 depicts the height of the 

traveled mass along the conveyor belt with the proposed 

controller, the PI and the PI + Smith one.  

 

 

Figure 4.  Height of transported quinoa (m) controlled by three different 

controllers: PI (black dotted), PI+Smith (green discontinuous) and proposed 

controller (blue) 

As one can see, the PI and PI+Smith controllers do not 

have a good performance. Increasing the gain and the time 

constant of the PI controllers lead to more oscillations. The PI 

controller with the Smith predictor structure has better 

performance than the standard PI, however, it suffers from 

changes of speed, i.e. changes of delay, as one can see in Fig. 

5 which presents a zoom of Fig. 4 from 0 to 30 seconds. Fig. 

6 presents the command generated by the TS discrete 

controller triggered every meter of the conveyor belt. 

 

Figure 5.  Zoom of the behavior of the PI+Smith (blue) and the proposed 

controller (red) around the reference 0.01refH    

 

Figure 6.  Entering quinoa mass flow (g/s) 

 

V. CONCLUSION 

This paper presented a new and original way to deal with 

variable transport delays. It detailed the systematic 

construction of a new discrete domain where the delay 

becomes fixed. Going to this domain leads to adding 

nonlinearities to the problem. The nonlinear aspect is 

considered using the Takagi-Sugeno representation. A 

Takagi-Sugeno state feedback controller is designed. As an 

application, the conveyor belt problem illustrates that our 

methodology provides good performances compared to a PI 

controller with a Smith predictor structure. Future work will 

focus on including the delayed input into the state so less 

conservative results can be obtained, using a non-quadratic 

delayed Lyapunov function and finding the largest sampling 

value 
sT   for which the system in the new   domain is still 

controllable. Furthermore, a transformation will convert the 

results about the stability of the system from the   domain to 

the original continuous-time domain. 
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